JPS6284580A - Manufacture of optical semiconductor device - Google Patents

Manufacture of optical semiconductor device

Info

Publication number
JPS6284580A
JPS6284580A JP22401385A JP22401385A JPS6284580A JP S6284580 A JPS6284580 A JP S6284580A JP 22401385 A JP22401385 A JP 22401385A JP 22401385 A JP22401385 A JP 22401385A JP S6284580 A JPS6284580 A JP S6284580A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
inp
buried
high resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22401385A
Other languages
Japanese (ja)
Inventor
Mitsuru Sugawara
充 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22401385A priority Critical patent/JPS6284580A/en
Publication of JPS6284580A publication Critical patent/JPS6284580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To flatten the surface of a buried type semiconductor laser, and to inhibit leakage currents by thickly growing a high resistance layer up to the thickness capable of flattening, covering a projecting section in a light-emitting section, introducing an impurity to the high resistance layer on an active layer through a diffusion, an ion implantation, etc. in order to ensure a current injection path to the active layer and lowering a resistance value. CONSTITUTION:An InGaAsP layer 2 as an active layer and a P-InP layer (a clad layer) 3 as a first semiconductor layer are grown on a semiconductor layer 1 formed onto a semiconductor substrate in succession, and these layers on both sides of a light-emitting region and one part of the N-InP substrate 1 are removed, thus shaping a projecting section. A P<->-InP layer (a buried layer) 4 having high resistance is grown so that the surface is flattened, covering said projecting section as a second semiconductor layer. A P-type impurity is introduced to the P<->-InP layer layer 4 just above the active layer 2, thus shaping a P<+> type region 5 so as to reach the P-InP layer 3 from the surface.

Description

【発明の詳細な説明】 〔概要〕 埋込型半導体レーザの漏れ電流を高抵抗層を用いて抑制
し、かつこの層表面が平坦になるように厚く成長し、活
性層上のこの層に拡散、またはイオン注入等の不純物導
入手段により、活性層への電流注入経路を確保するよう
にした。
[Detailed Description of the Invention] [Summary] Leakage current of a buried semiconductor laser is suppressed by using a high resistance layer, and this layer is grown thickly so that the surface thereof becomes flat, and is diffused into this layer above the active layer. Alternatively, a current injection path to the active layer is secured by impurity introduction means such as ion implantation.

〔産業上の利用分野〕[Industrial application field]

本発明は光半導体装置の製造方法に係り、特に高抵抗層
を有効に利用して漏れ電流の低減をはかった埋込型半導
体レーザの製造方法に関する。
The present invention relates to a method of manufacturing an optical semiconductor device, and more particularly to a method of manufacturing a buried semiconductor laser that effectively utilizes a high resistance layer to reduce leakage current.

埋込型半導体レーザは、発光に与かる活性層と、この層
を挾んで光を閉じ込める作用をする上下のクラッド層よ
りなる凸部の両側を埋込層で埋め込んでなる構造を有し
、レーザのしきい値電流、効率、温度特性等を向上させ
るためには活性層に有効に電流を注入する必要があり、
活性層を通らないで埋込層を通る漏れ電流をできるだけ
抑制しなければならない。
A buried semiconductor laser has a structure in which both sides of a convex part made up of an active layer that participates in light emission and upper and lower cladding layers that sandwich this layer and act to confine light are buried with buried layers. In order to improve the threshold current, efficiency, temperature characteristics, etc. of the active layer, it is necessary to effectively inject current into the active layer.
Leakage current that passes through the buried layer without passing through the active layer must be suppressed as much as possible.

〔従来の技術〕[Conventional technology]

第2図(1)〜(3)は従来例による埋込型半導体レー
ザの断面図である。
FIGS. 2(1) to 2(3) are cross-sectional views of a conventional buried semiconductor laser.

この構造は埋込型半導体レーザの主要なもので、FB)
l(Flat Buried Heterojunct
ion)  レーザと呼ばれる。
This structure is the main type of buried semiconductor laser.FB)
l(Flat Buried Heterojunct
ion) called a laser.

第2図(11において、1は半導体下地で半導体基板、
あるいは半導体基板上に形成された半導体層で、例えば
n型インジウム1(n−InP) %板で、この上に活
性層としてインジウムガリウム砒素燐(InGaAsP
)層2、クラッド層としてp型インジウムW(p−In
P)層3を順次成長し、発光領域の両側のこれらの層と
n−1nP基板1の一部を除去して凸部を形成し、つぎ
に、埋込層としてp−1nP層6、n−InP層? 、
p−1nP層8を順次成長する。
FIG. 2 (in 11, 1 is a semiconductor base, a semiconductor substrate,
Alternatively, it is a semiconductor layer formed on a semiconductor substrate, such as an n-type indium 1% (n-InP) plate, on which an active layer is made of indium gallium arsenide phosphide (InGaAsP).
) layer 2, p-type indium W (p-In
P) Layers 3 are sequentially grown, these layers on both sides of the light emitting region and a part of the n-1nP substrate 1 are removed to form a convex portion, and then p-1nP layers 6, nP are grown as buried layers. -InP layer? ,
A p-1nP layer 8 is sequentially grown.

このレーザでは、活性層とInP層がつくるヘテロ接合
ダイオードの順方向立上がり電圧がInPのホモ接合ダ
イオード9のそれより低いこと、および逆接合10には
電流がほとんど流れないことにより漏れ電流の広がりを
防いでいる。
In this laser, the forward rising voltage of the heterojunction diode formed by the active layer and the InP layer is lower than that of the InP homojunction diode 9, and the fact that almost no current flows through the reverse junction 10 reduces the spread of leakage current. Preventing.

この効果を有効にするため第2図(2)のようにp−1
nP H6のキャリア濃度を増加させてp・−InPと
し、ホモ接合ダイオード9で電流注入された電子のn−
1nP層7への到達率を少なくしている。
In order to make this effect effective, as shown in Figure 2 (2), p-1
The carrier concentration of nP H6 is increased to p・-InP, and the n-
The rate of reaching the 1nP layer 7 is reduced.

このために、漏れ電流の横方向への広がりは抑えられ、
わずかの漏れ電流が11の経路を通って流れることにな
る。
For this reason, the horizontal spread of leakage current is suppressed,
A small amount of leakage current will flow through the 11 paths.

もし第2図(3)のように、p−InP層6としてキャ
リア濃度の低いp−InPを用いると、ホモ接合ダイオ
ード9で電流注入された電子のn−InP 層7への到
達率が大きくなるため、InP M 1.6.7.8で
構成されるサイリスクに対して、前記の経路11に流れ
るわずかのゲート電流により電流経路12に過大電流が
流れる。従って漏れ電流は横方向に大きく広がってしま
う。
If p-InP with a low carrier concentration is used as the p-InP layer 6 as shown in FIG. Therefore, an excessive current flows in the current path 12 due to the slight gate current flowing in the path 11 for the cyrisk made of InP M 1.6.7.8. Therefore, the leakage current spreads widely in the lateral direction.

以上のことから、現在では、漏れ電流を抑制する構造と
してpdnP層6をp”−InPにする第2図(2)の
構造をとっている。
In view of the above, at present, a structure shown in FIG. 2 (2) in which the pdnP layer 6 is made of p''-InP is adopted as a structure for suppressing leakage current.

しかしながら、この構造においてもレーザの特性は必ず
しも良好でない。これは漏れ電流の抑制をp−n接合の
立上がり電圧の大小のみによっているためと考えられる
However, even in this structure, the laser characteristics are not necessarily good. This is considered to be because the leakage current is suppressed only by the magnitude of the rising voltage of the pn junction.

そこで、埋込層に高抵抗層を用いる試みが行われている
Therefore, attempts are being made to use a high resistance layer as the buried layer.

第3図(1)、(2)は従来例による埋込層に高抵抗層
を用いた埋込型半導体レーザの断面図である。
FIGS. 3(1) and 3(2) are cross-sectional views of a conventional buried semiconductor laser using a high resistance layer as a buried layer.

第3図(1)において、活性層2の両側に高抵抗層(p
−−1nP層)13を埋め込む。
In FIG. 3(1), high resistance layers (p
--1nP layer) 13 is embedded.

これによって、横方向の漏れ電流が流れると高抵抗層1
3での電圧降下が大きいために、ホモ接合ダイオード9
にかかるバイアス電圧が低く抑えられ、結果的に漏れ電
流が小さくなると云う効果がある。
As a result, when a lateral leakage current flows, the high resistance layer 1
Due to the large voltage drop at 3, the homojunction diode 9
This has the effect of suppressing the bias voltage applied to the device to a low level, resulting in a reduction in leakage current.

ただし、この高抵抗層13における前記の電子到達率は
大きいので第2図のような逆接合10を設けることはで
きない。
However, since the above-mentioned electron arrival rate in this high resistance layer 13 is large, it is not possible to provide a reverse junction 10 as shown in FIG. 2.

しかし、この構造では、表面が平坦にならないために、
製造プロセスが困難となり、またヒートシンクへのマウ
ントの状態が悪くなり熱放射性εこ問題を生ずる。
However, with this structure, the surface is not flat, so
The manufacturing process becomes difficult, and the mounting condition on the heat sink becomes poor, resulting in heat radiation problems.

そこで、表面の平坦化のために第3図(2)のように、
最上層として従来と同様にp−TnP層14を成長させ
ると、この層を通して経路15の横方向の漏れ電流が大
きくなり、高抵抗層13の効果を十分に生かしきれない
という欠点を生じる。
Therefore, in order to flatten the surface, as shown in Figure 3 (2),
If the p-TnP layer 14 is grown as the top layer in the conventional manner, the leakage current in the lateral direction of the path 15 increases through this layer, resulting in the disadvantage that the effect of the high resistance layer 13 cannot be fully utilized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

埋込型半導体レーザにおいて、漏れ電流を抑制し、かつ
平坦化構造を得ることは難しかった。
In a buried semiconductor laser, it has been difficult to suppress leakage current and obtain a flat structure.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点の解決は、−導電型の半導体下地(1)に活
性層(2)と、他導電型の第1の半導体層(3)とを順
次成長し、発光領域以外の該第1の半導体層(3)と、
該活性層(2)と、該半導体下地(1)の一部とを除去
して凸部を形成し、該凸部を覆って該第1の半導体層(
3)より比抵抗の大きい第2の半導体層(4)を成長し
、該第2の半導体層(4)の表面より該第1の半導体層
(3)に届くように他導電型不純物を導入する工程を含
む本発明による光半導体装置の製造方法により達成され
る。
The solution to the above problem is to sequentially grow an active layer (2) and a first semiconductor layer (3) of a different conductivity type on a semiconductor base (1) of a negative conductivity type, and to a semiconductor layer (3);
The active layer (2) and a portion of the semiconductor base (1) are removed to form a convex portion, and the first semiconductor layer (
3) Growing a second semiconductor layer (4) with higher specific resistance, and introducing impurities of other conductivity type so that it reaches the first semiconductor layer (3) from the surface of the second semiconductor layer (4). This is achieved by the method for manufacturing an optical semiconductor device according to the present invention, which includes the steps of:

〔作用〕[Effect]

埋込型半導体レーザの漏れ電流防止のため、埋込層に高
抵抗層を使用すると、表面の平坦化が困難となる。その
ため、発光部の凸部を覆って平坦化が可能な厚さまで厚
く高抵抗層を成長し、かつ活性層への電流注入経路を確
保するため、活性層上の高抵抗層に拡散、イオン注入等
により不純物を導入して抵抗値を下げる。このようにし
て、表面の平坦化と漏れ電流の抑制を両立させることが
できる。
If a high resistance layer is used as a buried layer to prevent leakage current in a buried semiconductor laser, it becomes difficult to flatten the surface. Therefore, in order to grow a high-resistance layer thick enough to cover the convex part of the light-emitting part and flatten it, and to ensure a current injection path to the active layer, ions are diffused and ion-implanted into the high-resistance layer above the active layer. By introducing impurities, etc., the resistance value is lowered. In this way, it is possible to achieve both flattening of the surface and suppression of leakage current.

〔実施例〕〔Example〕

第1図(1)〜(3)は本発明による埋込層に高抵抗層
を用いた埋込型半導体レーザの断面図である。
FIGS. 1(1) to 1(3) are cross-sectional views of a buried semiconductor laser using a high resistance layer as a buried layer according to the present invention.

第1図(1)において、lは半導体下地で半導体基板、
あるいは半導体基板上に形成された半導体層で、例えば
n4nP基板で、この上に活性層としてInGaAsP
層2、第1の半導体層としてp−InP層(クラッド層
)3を順次成長し、発光領域の両側のこれらの層とn−
InP基板1の一部を除去して凸部を形成する。
In FIG. 1 (1), l is a semiconductor base, a semiconductor substrate,
Alternatively, it is a semiconductor layer formed on a semiconductor substrate, for example an n4nP substrate, and an active layer on which InGaAsP is formed.
Layer 2 and p-InP layer (cladding layer) 3 as the first semiconductor layer are grown in sequence, and these layers and n-
A portion of the InP substrate 1 is removed to form a convex portion.

第1図(2)において、第2の半導体層として高抵抗の
p−InP層(埋込層)4を前記凸部を覆って、表面が
平坦化されるように成長する。
In FIG. 1(2), a high-resistance p-InP layer (buried layer) 4 is grown as a second semiconductor layer to cover the convex portion and to flatten the surface.

第1図(3)において、活性層2の直上のp−InP層
4にp型不純物を導入し、表面からp−1nP層3に届
くようにρ°型領領域5形成する。
In FIG. 1(3), a p-type impurity is introduced into the p-InP layer 4 directly above the active layer 2, and a ρ° type region 5 is formed so as to reach the p-1nP layer 3 from the surface.

以上により、レーザの主要工程を終わり、この後通常の
工程により電極形成、共振器端面のへき開、マウント等
を行ってデバイスを完成する。
With the above steps, the main steps of the laser are completed, and then the normal steps are performed to form electrodes, cleave the end face of the resonator, mount, etc., and complete the device.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、埋込型半導
体レーザの表面を平坦化し、かつ漏れ電流を抑制できる
As described in detail above, according to the present invention, the surface of a buried semiconductor laser can be flattened and leakage current can be suppressed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(1)〜(3)は本発明による埋込層に高抵抗層
を用いた埋込型半導体レーザの断面図、第2図(1)〜
(3)は従来例による埋込型半導体レーザの断面図、 第3図(1)、(2)は従来例による埋込層に高抵抗層
を用いた埋込型半導体レーザの断面図である。 図において、 1は半導体下地で、例えばn−InP基板、2は活性層
でInGaAsP JiL 3は第1の半導体層でp−1nP層(クラッド層)、4
は第2の半導体層でp−InP層、 5はp゛型領領 域発盲月(ゴ乳−V゛のボL面口 半1 口 fi!イクjのL−−ワー゛の才咋■図い9苧2 口 1づ a5ホ5りJのL−ブパの掠γ面図03)夢 3囚
Figures 1 (1) to (3) are cross-sectional views of a buried semiconductor laser using a high resistance layer as a buried layer according to the present invention, and Figures 2 (1) to (3).
(3) is a cross-sectional view of a conventional buried semiconductor laser, and FIG. 3 (1) and (2) are cross-sectional views of a conventional buried semiconductor laser using a high-resistance layer as a buried layer. . In the figure, 1 is a semiconductor base, for example, an n-InP substrate; 2 is an active layer, InGaAsP JiL; 3 is a first semiconductor layer, a p-1nP layer (cladding layer);
is the second semiconductor layer, which is the p-InP layer, and 5 is the p-type region (the 1st and a half part of the L-face of the V-V). Figure 9 苧 2 Mouth 1zu a5 Hole 5ri J's L-bupa's γ-plane diagram 03) Dream 3 prisoners

Claims (1)

【特許請求の範囲】[Claims] 一導電型の半導体下地(1)に活性層(2)と、他導電
型の第1の半導体層(3)とを順次成長し、発光領域以
外の該第1の半導体層(3)と、該活性層(2)と、該
半導体下地(1)の一部とを除去して凸部を形成し、該
凸部を覆って該第1の半導体層(3)より比抵抗の大き
い第2の半導体層(4)を成長し、該第2の半導体層(
4)の表面より該第1の半導体層(3)に届くように他
導電型不純物を導入する工程を含むことを特徴とする光
半導体装置の製造方法。
An active layer (2) and a first semiconductor layer (3) of another conductivity type are sequentially grown on a semiconductor base (1) of one conductivity type, and the first semiconductor layer (3) other than the light emitting region is The active layer (2) and a part of the semiconductor base (1) are removed to form a convex portion, and a second semiconductor layer having a resistivity higher than the first semiconductor layer (3) is formed to cover the convex portion. The second semiconductor layer (4) is grown, and the second semiconductor layer (4) is grown.
4) A method for manufacturing an optical semiconductor device, comprising the step of introducing an impurity of another conductivity type so as to reach the first semiconductor layer (3) from the surface.
JP22401385A 1985-10-08 1985-10-08 Manufacture of optical semiconductor device Pending JPS6284580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22401385A JPS6284580A (en) 1985-10-08 1985-10-08 Manufacture of optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22401385A JPS6284580A (en) 1985-10-08 1985-10-08 Manufacture of optical semiconductor device

Publications (1)

Publication Number Publication Date
JPS6284580A true JPS6284580A (en) 1987-04-18

Family

ID=16807217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22401385A Pending JPS6284580A (en) 1985-10-08 1985-10-08 Manufacture of optical semiconductor device

Country Status (1)

Country Link
JP (1) JPS6284580A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482585A (en) * 1987-09-25 1989-03-28 Toshiba Corp Manufacture of buried semiconductor laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6482585A (en) * 1987-09-25 1989-03-28 Toshiba Corp Manufacture of buried semiconductor laser

Similar Documents

Publication Publication Date Title
JPH09307140A (en) Semiconductor light emitting device
JPH11121860A (en) Compound semiconductor light emitting device and its forming method
JPS6284580A (en) Manufacture of optical semiconductor device
JPS59124183A (en) Light emitting semiconductor device
JP3966962B2 (en) Light emitting diode and manufacturing method thereof
JP2738040B2 (en) Semiconductor light emitting device
JPH05218585A (en) Semiconductor light emitting device
JPS61228684A (en) Semiconductor light emitting element
JPS61139082A (en) Semiconductor light-emitting device
JPS6248079A (en) Semiconductor light receiving element
JP2000082841A (en) Epitaxial wafer and manufacture thereof
JPH03203282A (en) Semiconductor laser diode
JP2663118B2 (en) Semiconductor light emitting device
JPS61247084A (en) Embedded hetero-structure semiconductor laser
JPH05299771A (en) Semiconductor laser diode
JP3046161B2 (en) Semiconductor device including undoped layer
JPS59124184A (en) Semiconductor light emitting device
JPH02181491A (en) Semiconductor light-emitting device
JPS6132485A (en) Semiconductor light emitting element
JPH088482A (en) Semiconductor laser and manufacture thereof
JPS5923575A (en) Semiconductor light emtting device
JPS60158689A (en) Semiconductor light-emitting device
JPS62226674A (en) Light-emitting diode
JPH02114676A (en) Semiconductor light emitting element and manufacture thereof
JPH05226780A (en) Semiconductor light emitting device