JPS60158689A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS60158689A
JPS60158689A JP1365184A JP1365184A JPS60158689A JP S60158689 A JPS60158689 A JP S60158689A JP 1365184 A JP1365184 A JP 1365184A JP 1365184 A JP1365184 A JP 1365184A JP S60158689 A JPS60158689 A JP S60158689A
Authority
JP
Japan
Prior art keywords
layer
semiconductor
type
type inp
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1365184A
Other languages
Japanese (ja)
Inventor
Haruhiko Tabuchi
田渕 晴彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1365184A priority Critical patent/JPS60158689A/en
Publication of JPS60158689A publication Critical patent/JPS60158689A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure

Abstract

PURPOSE:To reduce reactive currents displaced from an active layer, and to improve luminous efficiency by forming layers having a conduction type reverse to a current stopping layer in the current stopping layer to a sandwich shape while being separated from double hetero-junction structure. CONSTITUTION:An N<+> type InP layer 11A and a P type InP layer 12A are grown on an N type InP substrate 1, and a V-shaped striped groove is formed. A P type region is shaped through diffusion, and an N type InP clad layer 15, an InGaAs active layer 16, a P type InP clad layer 17 and a P type InGaAsP contact layer 18 are formed through an epitaxial growth method. A P side electrode 19 and an N side electrode 20 are shaped, thus completing the titled light- emitting device through cleavage. Accordingly, a reverse bias junction is formed in a current interrupting layer, and reactive currents flowing while being displaced from the active layer are reduced, thereby improving luminous efficiency.

Description

【発明の詳細な説明】 偽ン 発明の技術分野 本発明は半導体発光装置、特に埋め込み構造の活性領域
を有する半導体発光装置の発光効率及び温度特性を向上
する構造の改善に関する。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a structure for improving the luminous efficiency and temperature characteristics of a semiconductor light emitting device, particularly a semiconductor light emitting device having a buried active region.

(bン 技術の背景 光通信等の光を情報信号の媒体とするシステムにおいて
は半導体発光装置t1.は最も重要な構M、要素であっ
て、要求される波長帯域の実現、或いに安定した単一の
基本零次横モード発振、単一の縦モード発振、電流−光
出力特性の直線性の向上、量子効率の向上、出力の増大
などのlイ特性の改善が重ねられて、システムの進展に
寄与している0(Cン 従来技術と問題点 半導体発行装置について既に多数の構造が提供されてい
るが、その一つにVSB(V−grooved 5−u
bstrate Buried doubAe het
erostructure)レーザがある〇 第1図はVSB v−ザの一例を示す1lilr面図で
ある。図において、1はnmインジウム・燐化合物(I
nP)基板、2はpffiInPtic流阻止層、4鉱
ストライブ溝、5はn箆InPクラッド層、5aはクラ
ッド層5と同時に成長したn型In各層、6はノンドー
プのインジウム・ガリウム嗜砒累・燐化合物(InGa
AsP)活性層、6alC活性層6と同時に成長したI
nGaAsP/L 7はpWInPクラッド層、8はp
型jnGaAsPコンタクト層、9はp側電極、10は
n側電極を示す。
(b) Background of the Technology In a system that uses light as an information signal medium such as optical communication, the semiconductor light emitting device t1. The system has been improved by improving the characteristics such as single fundamental zero-order transverse mode oscillation, single longitudinal mode oscillation, improved linearity of current-optical output characteristics, improved quantum efficiency, and increased output power. Conventional technology and problems Many structures have already been provided for semiconductor issuing devices, one of which is the VSB (V-grooved 5-u
bstrate Buried doubAe het
FIG. 1 is a side view showing an example of a VSB v-za. In the figure, 1 is a nm indium-phosphorus compound (I
nP) substrate, 2 is a pffiInPtic flow blocking layer, 4 is a striped groove, 5 is an n-type InP cladding layer, 5a is an n-type In layer grown at the same time as the cladding layer 5, 6 is a non-doped indium-gallium arsenic layer, Phosphorus compound (InGa
AsP) active layer, I grown simultaneously with 6alC active layer 6
nGaAsP/L 7 is pWInP cladding layer, 8 is p
A jnGaAsP contact layer, 9 represents a p-side electrode, and 10 represents an n-side electrode.

本従来例の類1’sBレーザは、ストライプdi44の
側表面が(111)B而であるために前記クラッド層5
、活性N6及びクラッド層7のダブルへテロ接合構造の
成長が容易であり、活性IfII6の形状と寸法が安定
するなどの製造上の利点と、溝の内部表面が結晶面であ
るために極めて平滑であってこの部分からの光の乱反射
がなく、光の強度分布が滑らかであることなどの特性上
の利点と′f、兼ね備えている。
In the conventional type 1'sB laser, since the side surface of the stripe di44 is (111)B, the cladding layer 5
, the double heterojunction structure of active N6 and cladding layer 7 is easy to grow, the shape and dimensions of active IfII6 are stable, and the inner surface of the groove is a crystal plane, making it extremely smooth. It also has the advantages of characteristics such as no diffuse reflection of light from this part and a smooth light intensity distribution.

以上説明したVSBレーザの従来例における電流通路と
して第1図に示すI及びn 、 ntがあげられる。こ
の中■は活性層6を流れて発光に寄与する電流であるが
、■及び■は活性層6t−流れない無効電流である。
I, n, and nt shown in FIG. 1 can be mentioned as current paths in the conventional example of the VSB laser described above. In this figure, 2 is a current that flows through the active layer 6 and contributes to light emission, while 2 and 3 are invalid currents that do not flow through the active layer 6t.

電流■はpWInPクラッド層7→P型InP電流阻止
層2→n型InP基板1の径路を流れ、この径路にp屋
InP−n戯InPのpn接合が含まれる。
The current (2) flows through a path of pWInP cladding layer 7→P-type InP current blocking layer 2→n-type InP substrate 1, and this path includes a p-n junction of p-type InP-n-type InP.

これに対して電流■の径路に含まれるpn接合はp型I
nPクラッド層7とn型InGaAsP活性層6との界
面に形成されてInGaAsPの禁制帯幅がInPより
小さいために% pn接合の立ち上り電圧は電流■側が
電流I側より大きく、通常の電流密度で見る限り電流■
の密度は電流Iの密度より小さい。しかしながらpn接
合面積は活性層とクラ、ド層との界面より電流阻止層と
基板との界面が蓬に大きく、電流値(電流密度×接合面
積)としてμ電流■はかなり大きくなる。
On the other hand, the p-n junction included in the path of the current ■ is a p-type I
It is formed at the interface between the nP cladding layer 7 and the n-type InGaAsP active layer 6, and the forbidden band width of InGaAsP is smaller than that of InP. Current as far as I can see■
The density of is smaller than the density of current I. However, the pn junction area is much larger at the interface between the current blocking layer and the substrate than at the interface between the active layer and the C/D layers, and the μ current (2) as a current value (current density x junction area) becomes considerably large.

次に電流■に関して前記構造のVSBレーザのストライ
プ構外の部分の半導体層の導電型を見れば、(()In
GaAsP コンタクト層8及びInPクラッド層7か
らなるp属領域、(ロ)InP層各層からなるnff1
領域、ヒ1InPK流阻止層2からなるp属領域、に)
InP基板lからりるnW領領域、中間のp型もしくは
nmの薄いInGaAsP層6aを含カフ、pnpn接
合を両電極間に構成していることが知られる。この構造
自体はnfflInP層5aとp型InP亀流阻止層2
との界面に逆バイアス接合が構成されているために高い
電流阻止効果を有する。
Next, regarding the current (2), if we look at the conductivity type of the semiconductor layer outside the stripe structure of the VSB laser with the above structure, we find that (()In
p-group region consisting of GaAsP contact layer 8 and InP cladding layer 7; (b) nff1 consisting of InP layers;
region, p region consisting of InPK flow blocking layer 2)
It is known that an nW region formed from an InP substrate 1, a cuff including an intermediate p-type or nm-thin InGaAsP layer 6a, and a pnpn junction formed between both electrodes. This structure itself consists of an nfflInP layer 5a and a p-type InP current blocking layer 2.
It has a high current blocking effect because a reverse bias junction is formed at the interface.

しかしながら前記電流■が流れることによってこのpn
pn病造はこれ全ゲート電流とするサイリスタとして動
作し、アノード電流に相当する電流■が順次ターンオン
する0このpnpn構造の断面積も活性層の面積より瘉
に大きく、無効電流が増大して発光効率が低下する。こ
の影響は温度が上昇するに伴なって甚だしくなる。
However, as the current ■ flows, this pn
The pnpn structure operates as a thyristor with the entire gate current, and the current corresponding to the anode current is turned on sequentially.The cross-sectional area of this pnpn structure is also much larger than the area of the active layer, and the reactive current increases, causing light emission. Efficiency decreases. This effect becomes more severe as the temperature rises.

(弔 発明の目的 本発明は以上説明した問題点に対処して、無効電流が減
少し発光効率が向上する半導体発光装置を提供すること
を目的とする。
(Condolences) OBJECT OF THE INVENTION An object of the present invention is to address the above-described problems and provide a semiconductor light emitting device in which reactive current is reduced and luminous efficiency is improved.

(e) 発明の構成 本発明の前記目的は、第1導電型の半導体基板又は第1
の半導体層に接して、第1導電型の第2の半導体閉じ込
め層と、該第2の半導体層より禁制帯幅が小である第3
の半導体活性層と、第2導電型の第4の半導体閉じ込め
層とが順次積層されたダブルへテロ接合構造がストライ
プ状に設けられ、該ダブルへテロ構造を挾んで、前記半
導体基板又は第1の半導体層に接する第24電型の第5
の半導体層と、該第5の半導体層に接する第14電星の
第6の半導体層と、該第6の半導体層と前記ダブルへテ
ロ構造との間に介在しかつ該第6の半導体層の上面に接
する第24電型の第7の半導体層と、該第7の半導体層
に接する第1導wL型の第8の半導体層と金備えて、該
第8の半導体層上に第2導電屋の第9の牛導″亀体I―
が設けられてなる半導体発光装置により達成される0 (fJ 発明の実施例 以下本発明を実施例により図面を参照して具体的に説明
する。
(e) Structure of the Invention The object of the present invention is to provide a semiconductor substrate of a first conductivity type or
in contact with the semiconductor layer, a second semiconductor confinement layer of the first conductivity type, and a third semiconductor confinement layer whose forbidden band width is smaller than that of the second semiconductor layer.
A double heterojunction structure in which a semiconductor active layer and a fourth semiconductor confinement layer of a second conductivity type are sequentially laminated is provided in a stripe shape, and the double heterojunction structure is sandwiched between the semiconductor substrate or the first semiconductor confinement layer. The fifth layer of the 24th electric type in contact with the semiconductor layer of
a semiconductor layer of a fourteenth semiconductor layer that is in contact with the fifth semiconductor layer, and a sixth semiconductor layer that is interposed between the sixth semiconductor layer and the double heterostructure and that is interposed between the sixth semiconductor layer and the double heterostructure. a seventh semiconductor layer of the 24th electric type in contact with the upper surface, an eighth semiconductor layer of the first conductivity type WL in contact with the seventh semiconductor layer, and a second semiconductor layer on the eighth semiconductor layer. Conductor's 9th cow conductor "turtle body I"
0 (fJ) achieved by a semiconductor light emitting device provided with 0 (fJ) Embodiments of the Invention The present invention will be specifically explained below using embodiments with reference to the drawings.

第2図は本発明の構造を有する半導体発光装置の例を示
す断面図であり、11はn型InP基板、12A及び1
2Bはp型In各層、13はn型In各層、15はn凰
InPクラッド(閉じ込め) J−515aはn型In
カフ、16 B InGaAsP活性層、17はP型I
nPクラッド層、18はp型InGaAsカフ、19鉱
p側電極、20はn側電極を示す。
FIG. 2 is a sectional view showing an example of a semiconductor light emitting device having the structure of the present invention, in which 11 is an n-type InP substrate, 12A and 1
2B is each p-type In layer, 13 is each n-type In layer, 15 is n-InP cladding (confinement) J-515a is n-type In
Cuff, 16 B InGaAsP active layer, 17 is P type I
An nP cladding layer, 18 a p-type InGaAs cuff, 19 a p-side electrode, and 20 an n-side electrode.

本実施例と先に第1図に示した従来例とを比較すれば、
前記従来例のp型InP電流阻止層2の位置に、p型I
nカフ12A及び12Bとこれにサイドイッチ状に挾ま
れかつ溝内のダブルへテロ接合構造から隔てられたn型
InP/d13が設けられている。なおn製Inカフ1
3に一ダブルへテロ接合構造から隔てる部分のp梨In
カフ12Bの幅嬬通常I nGaAsP活性1lli1
6の幅より狭くする。上述の如く挿入されたn型InP
Ii13によって無効電流の径路は極めて制限され、か
つn ’EI InP Jill15a+p型InP層
12B及び12A並びにnff1InP基板11によっ
て構成されるnpn)ランジスタ構造の電流増幅率が低
下して、無効電流は大幅に減少するO 第3図(a)乃至(c)U不発′明の実施例を示す工程
順断面図である。
Comparing this embodiment with the conventional example shown in FIG.
At the position of the p-type InP current blocking layer 2 of the conventional example, a p-type I
An n-type InP/d 13 is provided between the n-cuffs 12A and 12B in a side-ditch manner and separated from the double heterojunction structure in the groove. In addition, n-made In cuff 1
3. pear In of the part separating from the double heterozygous structure
Width of cuff 12B Normal I nGaAsP activity 1lli1
Make it narrower than the width of 6. n-type InP inserted as described above
The reactive current path is extremely limited by Ii13, and the current amplification factor of the npn) transistor structure composed of n'EI InP Jill15a + p-type InP layers 12B and 12A and nff1InP substrate 11 is reduced, and the reactive current is significantly reduced. FIGS. 3(a) to 3(c) are process-order sectional views showing an embodiment of the undiscovered invention.

第3図(a)参照 不純物濃度が例えは1〜2X10”(cnI″″3〕の
n型よ InP基板x’rW、例えば錫(Sn)e5xlO”乃
至lXl0′。(cm−”)程度に含むn+ff1In
P層11Aと例カフ亜鉛(Zn)を5X10”乃至LX
 10”程度に含むp型Inカフ12Aと例えは不純物
濃度1〜5Xxoil(。−り程度のn型Inカフ13
とを順次各層の厚さ全それぞれ例えは2.0〔μm)、
0.5[μm]及ヒ1.5Cμm)程度にエピタキシャ
ル成長する。
Figure 3(a) For example, if the reference impurity concentration is 1 to 2X10''(cnI''3), an InP substrate Including n+ff1In
P layer 11A and example cuff zinc (Zn) 5X10" to LX
For example, the p-type In cuff 12A containing approximately 10" and the n-type In cuff 13 having an impurity concentration of 1 to 5Xxoil (.
For example, the total thickness of each layer is 2.0 [μm],
Epitaxial growth is performed to a thickness of about 0.5 [μm] and 1.5Cμm).

第3図(切参照 前記nfflInP層13上に例えは二酸化シリコン(
SiOx)又は窒化シリコン(S isN+ )等によ
ってマスクを設け、例えは塩酸(net)によるエツチ
ングを行なって断面がV字状のストライプ擲を形成する
。本実施例においてはこの溝の開口幅を例えば3乃至4
〔μm〕としている。
FIG. 3 (see OFF) For example, silicon dioxide (
A mask is provided using SiOx) or silicon nitride (S isN+), and etching is performed using, for example, hydrochloric acid (net) to form a stripe with a V-shaped cross section. In this embodiment, the opening width of this groove is, for example, 3 to 4.
[μm].

前記マスクを除去した後に封管法による温度500乃至
600(C)、時間2乃至3時間程度のカドミウム((
Dd)拡散を行ない、前記中等体基体の表出面近傍に濃
度1〜2X10”(副−8〕程度に導入する。
After removing the mask, cadmium ((
Dd) Diffusion is performed to introduce the substance near the exposed surface of the intermediate substrate at a concentration of about 1 to 2×10” (sub-8).

この結果n型InPIl@13の上面及び■#面に深さ
0.5乃至1〔μm)程度のp型領域12Bが形成され
るが、n”InPllAにn型不純物嬢度が高いために
そのV111面μpWK変換されない。なお拡散する不
純物はZnk用いても工い。
As a result, a p-type region 12B with a depth of approximately 0.5 to 1 [μm] is formed on the upper surface of the n-type InPIl@13 and the ■# surface, but since the n''InPllA has a high n-type impurity resistance, V111 plane μpWK is not converted. Note that Znk can also be used for the impurity to be diffused.

第3図(e)参照 液相エピタキシャル成長方法により下記の各中等体1−
ヲ順次成長する。すなわち、n型InPクラッド層15
全例えは不純物議夏5X10IffI:cm−”〕程度
、InGaAsP活性層16をノンドーグで厚さ例えば
0.2〔μm〕程就、p捜InPクラッドN17t−例
えば不純物dkK 5X 10” (cm−’)程度、
p型InGaAsPコンタクト層18を例えば不純物濃
度2X10’″(cln−”)程度とする。なおn型I
nPクラッド11115の成長の際にn型InPI11
5a* InGaAsP活性層16の成長の際にInG
aAeP層16&がそ層上6&長する。
Each of the following intermediates 1-
It grows gradually. That is, the n-type InP cladding layer 15
In all examples, the impurity content is about 5X10IffI:cm-'', the InGaAsP active layer 16 is non-doped and has a thickness of, for example, about 0.2[μm], and the impurity is about 5X10''(cm-'). degree,
The p-type InGaAsP contact layer 18 has an impurity concentration of about 2×10'''(cln-''), for example. Furthermore, n-type I
During the growth of nP cladding 11115, n-type InPI11
5a* When growing the InGaAsP active layer 16, InG
An aAeP layer 16& extends above it.

次いで更に従来技術によって、例えばチタン/白金/金
/(Ti/Pt/Au)をスパッタ法及びめっきによっ
て積1−するなどの方法によってP9[電極19及びn
側゛電極20を設け、骨間など全行なりて本実施例のV
SBレーザが完成する。
Then, P9 [electrodes 19 and n
A side electrode 20 is provided, and the V of this embodiment is
The SB laser is completed.

(2)発明の詳細 な説明した如く不発明によって、従来既に行なわれてい
る中等体1−積/#方向のpn逆バイアス接合に加えて
、中等体層の昇面に平行方向にもpn逆バイアス接合を
ストライブ近傍に設けることにより、活性層を外れて流
れる無効電流が大幅に減少して中等体発光装置の発光効
率が同上する。この効果は環境温度が高温となるときに
特に顕著となる。
(2) As described in the detailed explanation of the invention, in addition to the pn reverse bias junction in the intermediate layer 1-product/# direction, which has already been performed in the past, the pn reverse bias junction is also applied in the direction parallel to the ascending surface of the intermediate layer. By providing the bias junction in the vicinity of the stripe, the reactive current flowing out of the active layer is significantly reduced, thereby increasing the luminous efficiency of the intermediate light emitting device. This effect becomes particularly noticeable when the environmental temperature becomes high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はVSBレーザの従来例を示す〜[面図、第2図
は本発明の中等体発光装置の11造の例を示す断面図、
第3図(aJ乃至(Q)は不発明の実施例を示す工程順
11rtfi図である。 図において、11はnff1InP基板、IIAはn+
凰InPカフ12A及び12BtipffllnP層、
13はn MI I n P JH% 15はnff1
InPクラッドl−115aはn屋Inカフ、16はI
nGaAsP活性層、16aはInGaAsP層、17
UP型InPクツツドノー、18はp fin I n
GaAsP層、19はp@、電極、2゜はnollI電
極全示す。 峯 l 聞 ¥−2画 拳 3 図 IL7
FIG. 1 shows a conventional example of a VSB laser.
FIG. 3 (aJ to (Q) are process order 11rtfi diagrams showing an embodiment of the invention. In the figure, 11 is an nff1InP substrate, IIA is an n+
凰InP cuff 12A and 12B tipffllnP layer,
13 is n MI I n P JH% 15 is nff1
InP clad l-115a is nya In cuff, 16 is I
nGaAsP active layer, 16a is InGaAsP layer, 17
UP type InP Kutsudono, 18 is p fin I n
A GaAsP layer, 19 a p@ electrode, and 2° a nollI electrode are all shown. Mine l mon¥-2 Gaken 3 Figure IL7

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板又は第1の半導体層に接して、
第1導電屋の第2の半導体閉じ込め層と、該第2の半導
体層より禁制帯幅が小である第3の半導体活性層と、第
2導電製の第4の半導体閉じ込め層とが順次積層された
ダブルへテロ接合構造がストライプ状に設けられ、該ダ
ブルへテロ構造を挾んで、前記半導体基板又は第1の半
導体層に接する第2導電型の第5の半導体層と、該第5
の半導体層に接する第1導電型の第6の半導体層と、該
第6の半導体層と前記ダブルへテロ構造との間電裂の第
8の半導体層とを備えて、該第8の半導体層上に@2導
電型の第9の半導体層が設けられてなることを特徴とす
る半導体発光装置0
In contact with a first conductivity type semiconductor substrate or a first semiconductor layer,
A second semiconductor confinement layer of a first conductive layer, a third semiconductor active layer whose forbidden band width is smaller than that of the second semiconductor layer, and a fourth semiconductor confinement layer made of a second conductive layer are sequentially laminated. A fifth semiconductor layer of a second conductivity type that is in contact with the semiconductor substrate or the first semiconductor layer, sandwiching the double heterojunction structure, and a fifth semiconductor layer that is in contact with the semiconductor substrate or the first semiconductor layer;
a sixth semiconductor layer of a first conductivity type that is in contact with the semiconductor layer; and an eighth semiconductor layer that has a dielectric gap between the sixth semiconductor layer and the double heterostructure, A semiconductor light emitting device 0 characterized in that a ninth semiconductor layer of @2 conductivity type is provided on the layer.
JP1365184A 1984-01-27 1984-01-27 Semiconductor light-emitting device Pending JPS60158689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1365184A JPS60158689A (en) 1984-01-27 1984-01-27 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1365184A JPS60158689A (en) 1984-01-27 1984-01-27 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS60158689A true JPS60158689A (en) 1985-08-20

Family

ID=11839122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1365184A Pending JPS60158689A (en) 1984-01-27 1984-01-27 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS60158689A (en)

Similar Documents

Publication Publication Date Title
US4525841A (en) Double channel planar buried heterostructure laser
JP3095545B2 (en) Surface emitting semiconductor light emitting device and method of manufacturing the same
JP2980435B2 (en) Semiconductor device
JPH0719934B2 (en) Laser diode array and manufacturing method thereof
JPH0243351B2 (en)
JPH0834330B2 (en) Semiconductor laser device
US6881978B2 (en) Semiconductor epitaxial structure and semiconductor light-emitting device
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
US4809289A (en) Semiconductor laser device
JPS60158689A (en) Semiconductor light-emitting device
JP3966962B2 (en) Light emitting diode and manufacturing method thereof
JPS58207690A (en) Buried type semiconductor laser
JPS6284581A (en) Semiconductor light-emitting device
JPS6244713B2 (en)
JP2555984B2 (en) Semiconductor laser and manufacturing method thereof
JPS61247084A (en) Embedded hetero-structure semiconductor laser
JPS60235484A (en) Semiconductor light-emitting device
JPS61139082A (en) Semiconductor light-emitting device
JP2865325B2 (en) Semiconductor laser device
JPS6261383A (en) Semiconductor laser and manufacture thereof
JPH01313985A (en) Manufacture of semiconductor light emitting device
JP2716717B2 (en) Semiconductor laser device
JPS63288083A (en) Semiconductor light-emitting device
JPS60128691A (en) Semiconductor light-emitting device
JPH0227829B2 (en)