JPS63288083A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS63288083A
JPS63288083A JP62122811A JP12281187A JPS63288083A JP S63288083 A JPS63288083 A JP S63288083A JP 62122811 A JP62122811 A JP 62122811A JP 12281187 A JP12281187 A JP 12281187A JP S63288083 A JPS63288083 A JP S63288083A
Authority
JP
Japan
Prior art keywords
type
layers
layer
conductive region
type conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62122811A
Other languages
Japanese (ja)
Inventor
Akira Furuya
章 古谷
Masao Makiuchi
正男 牧内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP62122811A priority Critical patent/JPS63288083A/en
Publication of JPS63288083A publication Critical patent/JPS63288083A/en
Pending legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a device, in which electrodes are led out easily and which has excellent characteristics, by forming p-type and n-type conductive regions reaching a first clad layer from the surface of a semiconductor base body and oppositely facing through superlattice structure and the electrodes respectively brought into contact with the p-type and n-type conductive regions on the surface of the base body. CONSTITUTION:A high-resistance Al0.45Ga0.55As clad layer 1', superlattice structure 2, a high-resistance Al0.45Ga0.55As clad layer 1, and an n-type GaAs cap layer 4 are epitaxial-grown onto a semi-insulating GaAs substrate 10 in succession. In the superlattice structure 2, p-type layers 2Bp, in which beryllium (Be) is doped to Al0.3 Ga0.7As layers, and n-type layers 2Bn, in which silicon (Si) is doped to the Al0.3Ga0.7As layers, are shaped alternately as barrier layers, and non-doped GaAs active layers 2A are formed among both layers 2Bp and 2Bn. A p side electrode 9p is disposed onto the p-type conductive region 5p and an n side electrode 9n onto an n-type conductive region 5n. Holes are injected to an active layer 2A through the p-type barrier layer 2Bp from the p-type conductive region 5p and electrons through the n-type barrier layer 2Bn from the n-type conductive region 5n. Accordingly, constraint by the diffusion length of carriers is not conducted, and the range of selection of a distance between the p-type conductive region 5p and the n-type conductive region 5n is increased.

Description

【発明の詳細な説明】 (概要) この発明は、半導体発光装置にかかり、アクセプタ不純
物とドナー不純物とを交互にドープしたバリア層間に活
性層を挾んだ超格子構造の上下に高抵抗クラッド層を設
け、この半導体基体の表面から、この超格子構造を介し
て対向し、下側のクラッド層に達するp型及びn型の導
電領域を形成し、このp型及びn型のgl、電領域にそ
れぞれ接する電極を設けることにより、 電極引き出しが容易で特性が優れた横型半導体発光装置
の提供を容易にするものである。
Detailed Description of the Invention (Summary) The present invention relates to a semiconductor light emitting device, in which high resistance cladding layers are formed above and below a superlattice structure in which an active layer is sandwiched between barrier layers alternately doped with acceptor impurities and donor impurities. forming p-type and n-type conductive regions from the surface of the semiconductor substrate that face each other via the superlattice structure and reach the lower cladding layer; By providing electrodes in contact with the respective electrodes, it is possible to easily provide a horizontal semiconductor light emitting device with excellent characteristics and easy electrode extraction.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体発光装置、特に集積化に適する横型半導
体発光装置の構造に関する。
The present invention relates to a structure of a semiconductor light emitting device, particularly a horizontal semiconductor light emitting device suitable for integration.

光通信等の高度、化及び多様化のために半導体発光装置
の改善が進められているが、特に半導体発光素子とその
変調回路等とをモノリシンク集積化する光・電子集積回
路(ORIC)のために、ブレーナ形で電橿引き出しが
容易な横型の半導体発光装置が要請されている。
Semiconductor light-emitting devices are being improved for the sophistication, advancement, and diversification of optical communications, etc., and in particular, improvements are being made for optoelectronic integrated circuits (ORIC), which monolithically integrate semiconductor light-emitting elements and their modulation circuits, etc. Therefore, there is a need for a horizontal semiconductor light-emitting device that has a brainer shape and can be easily pulled out.

〔従来の技術〕[Conventional technology]

光通信等に現在用いられている半導体発光装置は半導体
基体面に垂直方向に電流を通ずる縦型が主流となってい
るが、横型の半導体発光装置も種々開発されており、例
えば本特許出願人は特願昭60−270509号により
、第3図に例示する如き半導体発光装置を提供している
Most of the semiconductor light emitting devices currently used in optical communications etc. are vertical type in which current is passed perpendicular to the surface of the semiconductor substrate, but various horizontal type semiconductor light emitting devices have also been developed. has provided a semiconductor light emitting device as illustrated in FIG. 3 in Japanese Patent Application No. 60-270509.

本従来例は、半絶縁性GaAs基板20上に、高抵抗へ
Io、 asGao、 5sAsfi21”、多重量子
井戸(MQGI)活性F!22、高抵抗へIo、 4S
ca@、 ss八へJ?J21、n型GaAsキャップ
層24を順次エピタキシャル成長している。このMQW
活性層22は、厚さ30人のGaAsWJと厚さ120
人のAle、 aGao、 hAsNとを交互に形成し
ており、エネルギバンドは伝導帯底Pcを同図の下方に
示す如くである。
In this conventional example, high resistance Io, asGao, 5sAsfi21'', multiple quantum well (MQGI) active F!22, high resistance Io, 4S are formed on a semi-insulating GaAs substrate 20.
ca@, ss8 to J? J21 and an n-type GaAs cap layer 24 are epitaxially grown in this order. This MQW
The active layer 22 is made of GaAs WJ with a thickness of 30 mm and a thickness of 120 mm.
Ale, aGao, and hAsN are alternately formed, and the energy band is as shown at the bottom of the conduction band Pc in the lower part of the figure.

この半導体基体にn型不純物拡散領域25pとn型不純
物拡散領域25nとを形成し、これらの領域のMQW構
造を無秩序化して平均化された組成として、その間のM
Q−活性層スドライブ28の横方向にダブルへテロ構造
を形成する。この無秩序化された部分の屈折率はMQW
活性層28の平均屈折率よりも低下し、(a)のような
横方向屈折率分布となる。
An n-type impurity diffusion region 25p and an n-type impurity diffusion region 25n are formed in this semiconductor substrate, and the MQW structure of these regions is disordered to have an averaged composition.
A double heterostructure is formed in the lateral direction of the Q-active layer drive 28. The refractive index of this disordered part is MQW
The average refractive index of the active layer 28 is lower than that of the active layer 28, resulting in a lateral refractive index distribution as shown in (a).

他方、高抵抗AI6.4ScaO,5sAs層21.2
1’とこれに挟まれたMQW活性層28には(blのよ
うな屈折率分布を生じており、MQ−活性FJ2Bで発
生する光は此処に閉じ込められる。
On the other hand, high resistance AI6.4ScaO, 5sAs layer 21.2
1' and the MQW active layer 28 sandwiched therebetween have a refractive index distribution like (bl), and the light generated in the MQ-active FJ2B is confined here.

本従来例ではMQ−活性層スドライブ28に正孔がn型
不純物拡散領域25pから、電子がn型不純物拡散領域
25nから注入されるが、禁制帯幅が大きい高抵抗Al
GaAs層21.21°で挟まれた一〇−活性層スドラ
イブ28は全体の厚さを例えば0.1.n或いはそれ以
下に薄くエピタキシャル成長することが容易で電流が橿
めて狭く狭窄され、活性層がMQ−構造であることと相
俟って闇値電流が低減し、効率が向上する。
In this conventional example, holes are injected into the MQ-active layer sdrive 28 from the n-type impurity diffusion region 25p and electrons from the n-type impurity diffusion region 25n.
The 10-active layer sdrive 28 sandwiched between the GaAs layers 21.21° has a total thickness of, for example, 0.1. It is easy to epitaxially grow to a thickness of n or less, and the current is narrowly constricted. Combined with the fact that the active layer has an MQ-structure, the dark value current is reduced and the efficiency is improved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記従来例の半導体レーザは、ブレーナ形で両電極を半
導体基体表面に設けることができ、特性も優れているが
、その構造からM(IW活性層ストライプ28の幅りを
正孔と電子の拡散長の和より小さく、1−程度以下とす
る必要がある。
The conventional semiconductor laser is of the Brehner type, with both electrodes provided on the surface of the semiconductor substrate, and has excellent characteristics. However, due to its structure, the width of the IW active layer stripe 28 is It must be smaller than the sum of the lengths and approximately 1- or less.

しかしながら現在の製造方法では、n型不純物拡散領域
25pとn型不純物拡散領域25nとの間隔をこの様な
小さい値に正確に制御することは甚だ困難であり、この
問題解決が強く要望されている。
However, with the current manufacturing method, it is extremely difficult to accurately control the distance between the n-type impurity diffusion region 25p and the n-type impurity diffusion region 25n to such a small value, and a solution to this problem is strongly desired. .

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、半導体基体に、第1のバンドギャップを
有する第1の高抵抗クラッド層と、該第1のクラフト層
上に形成され、アクセプタ不純物とドナー不純物とが交
互にドープされた第2のバンドギャップを有するバリア
層間に、前記第1及び第2のバンドギャップより狭い第
3のバンドギャップを存する活性層を形成した超格子構
造と、 該超格子構造上に形成され、前記第3のバンドギャップ
より広い第4のバンドギャップを有する第2の高抵抗ク
ラッド層とを備え、 該半導体基体の表面から該第1のクラッド層に達し、該
超格子構造を介して対向するn型及びn型の導7r1.
領域と、 該半導体基体の表面において、ESp型及びn型の導電
領域にそれぞれ接する電極とを有する本発明による半導
体発光装置により解決される。
The problem is that the semiconductor substrate includes a first high-resistance cladding layer having a first bandgap, and a second high-resistance cladding layer formed on the first cladding layer and doped with acceptor impurities and donor impurities alternately. a superlattice structure in which an active layer having a third bandgap narrower than the first and second bandgaps is formed between barrier layers having a bandgap of; a second high-resistance cladding layer having a fourth bandgap wider than the bandgap, reaching the first cladding layer from the surface of the semiconductor substrate and opposing n-type and n-type cladding layers via the superlattice structure; Type guide 7r1.
The problem is solved by a semiconductor light-emitting device according to the invention, comprising: a conductive region of the ESp type and an n-type conductive region, respectively, on the surface of the semiconductor body.

〔作 用〕[For production]

本発明による半導体発光装置は、第1図(a)に模式断
面図、同図(b)に伝導帯底Ecのエネルギバンド図を
例示する如く、アクセプタ不純物とドナー不鈍物とを交
互にドープしたバリアF2Bp、211n間に活性J!
2Aを挾んだ超格子構造2と、その上下に高抵抗クラッ
ドJil、1’とを設けた半導体基体の表面から、この
超格子構造2を介して対向し、下側のクラッドNl’に
達するp型及びn型の導電領域5p、5nを形成し、半
導体基体の表面にこのp型及びn型の導電領域にそれぞ
れ接する電極を設けている。
The semiconductor light emitting device according to the present invention is doped with acceptor impurities and donor impurities alternately, as shown in FIG. 1(a) as a schematic cross-sectional view and as shown in FIG. active J! between barrier F2Bp and 211n!
From the surface of the semiconductor substrate, which has a superlattice structure 2 sandwiching 2A and high-resistance cladding Jil, 1' above and below it, it faces through this superlattice structure 2 and reaches the lower cladding Nl'. P-type and n-type conductive regions 5p and 5n are formed, and electrodes are provided on the surface of the semiconductor substrate in contact with the p-type and n-type conductive regions, respectively.

本半導体発光装置では、正孔はp型導電領域5pからp
型バリア層2Bpを通り、電子はn型導電領域5nから
n型バリアWI2811を通って活性石2^に注入され
る。従って前記従来例の如きキャリアの拡散長による制
約がなく、p型導電領域5pとn型導?¥Off域5n
の間の距離の選択範囲が増大するのみならず、製造誤差
を生じてもその影響が軽微となる。
In this semiconductor light emitting device, holes are transferred from the p-type conductive region 5p to the p-type conductive region 5p.
After passing through the type barrier layer 2Bp, electrons are injected from the n-type conductive region 5n into the active stone 2^ through the n-type barrier WI2811. Therefore, there is no restriction due to the diffusion length of carriers as in the conventional example, and there is no restriction between the p-type conductive region 5p and the n-type conductive region 5p. ¥Off area 5n
Not only does the selectable range of the distance between the two positions increase, but even if manufacturing errors occur, the effects thereof are minor.

なおp型バリアm2Bpとn型導電領域5nとの間及び
n型バリアJi2Bnとp型I71 iI域5pとの間
にpn接合を生ずるが、ビルトインポテンシャル差によ
りこの部分の漏れ電流を抑制することができる。
Note that p-n junctions occur between the p-type barrier m2Bp and the n-type conductive region 5n and between the n-type barrier Ji2Bn and the p-type I71iI region 5p, but the leakage current in this part can be suppressed due to the built-in potential difference. can.

また活性層2八が薄くて、超格子構造2がこれをウェル
層とするMQWを構成すれば、MQW構造による闇値電
流の減少、温度特性の改善等の効果が得られる。なお本
発明の半導体発光装置はバリア層をキャリアがトンネリ
ングする必要はない。
Furthermore, if the active layer 28 is thin and the superlattice structure 2 constitutes an MQW using this as a well layer, effects such as a reduction in dark value current and an improvement in temperature characteristics due to the MQW structure can be obtained. Note that in the semiconductor light emitting device of the present invention, carriers do not need to tunnel through the barrier layer.

〔実施例〕〔Example〕

以下本発明を第2図に模式断面図を示す実施例により具
体的に説明する。
The present invention will be specifically explained below with reference to an example whose schematic cross-sectional view is shown in FIG.

本実施例は、半絶縁性GaAs基板10上に、厚さ例え
ばlI!mの高抵抗Ale、asGao、 5sAsク
ラッド石l°、下記の超格子構造2、厚さ例えば1−の
高抵抗旧o、 4SGaO,5sAsクラフト層1、厚
さ例えば0 、3 pmのn型GaAsキャップ層4を
順次エピタキシャル成長している。
In this embodiment, a semi-insulating GaAs substrate 10 is formed with a thickness of, for example, lI! m high resistance Ale, asGao, 5sAs cladding stone l°, following superlattice structure 2, thickness e.g. The cap layer 4 is epitaxially grown in sequence.

この超格子構造2は第1図に図示した如く、例えば厚さ
300人のAI+、 1Gao、 Js層に、ベリリウ
ム(Be)を濃度I XIO”cm弓程度にドープした
p型層2B、と、シリコン(Si)を濃度I XIO”
cm−’程度にドープしたn型N2Bnとを交互にバリ
ア層とし、その間に、例えば厚さ100人のノンドープ
のGaAs活性FJ2Aを形成している。
As shown in FIG. 1, this superlattice structure 2 includes, for example, a 300-layer AI+, 1 Gao, and Js layer doped with beryllium (Be) to a concentration of about IXIO" cm, a p-type layer 2B. Silicon (Si) concentration I
N-type N2Bn doped to about cm-' are alternately used as barrier layers, and a non-doped GaAs active FJ2A with a thickness of, for example, 100 layers is formed between them.

本実施例では、例えば弗酸、過酸化水素水、純水の混合
液によりこの半導体基体をエツチングして、幅が例えば
3−のストライブ状メサ領域を挟む2本の溝を、溝幅を
例えば5−として下側のクラッド層1゛に達する深さに
形成し、その一方に例えばBeを濃度lXl0’1cm
−”程度にドープしたp型へIs、 aGao、 6A
sを、他方に例えばSiを濃度I XIO”cm−”程
度にドープしたn型^1゜、 4Ga6. &^Sを埋
め込み成長して、p型導電領域5p及びn型導電領域5
nとする。
In this example, the semiconductor substrate is etched using a mixed solution of hydrofluoric acid, hydrogen peroxide, and pure water to form two grooves sandwiching a striped mesa region having a width of, for example, 3. For example, 5- is formed to a depth that reaches the lower cladding layer 1'', and on one side, for example, Be is formed at a concentration of lXl0'1 cm.
−” to p-type doped Is, aGao, 6A
s and the other doped with Si to a concentration of about IXIO"cm-", 4Ga6. &^S is buried and grown to form a p-type conductive region 5p and an n-type conductive region 5.
Let it be n.

このp型導電領域5p上に例えば金/亜鉛(Au/Zn
)を用いてp@電極9p、 n型R1j1w4Jjli
 5 n上に例えば金ゲルマニウム/金(AuGe/A
u)を用いてn(IJ電極9nを配設する。
For example, gold/zinc (Au/Zn) is formed on this p-type conductive region 5p.
) using p@electrode 9p, n-type R1j1w4Jjli
For example, gold germanium/gold (AuGe/A
n (IJ electrode 9n is arranged using u).

なお本実施例では前記p型及びn型の導1を領域5p、
5nを各半導体層の埋め込み成長で形成しているが、前
記従来例の如く不純物を選択的に熱拡散し超格子構造を
無秩序化して形成してもよい。
In this embodiment, the p-type and n-type conductors 1 are formed in regions 5p,
5n is formed by buried growth of each semiconductor layer, but it may also be formed by selectively thermally diffusing impurities to disorder the superlattice structure as in the conventional example.

また上述の実施例はGaAs/AlGaAs系半導体材
料を用いているが、例えばInP/ InGaAsP系
などの他の半4体材料を用いても本発明による半導体発
光装置を同様に構成することができる。
Furthermore, although the above-described embodiments use GaAs/AlGaAs-based semiconductor materials, the semiconductor light-emitting device according to the present invention can be similarly constructed using other semi-quadramid materials such as InP/InGaAsP-based materials.

〔発明の効果〕〔Effect of the invention〕

以上説明した如(本発明によれば、屈折率差による光の
閉じ込めと電流狭窄が良好な、ブレーナ形で電極引き出
しが容易な横型の半導体発光装置を、前記従来例の如き
制約なく容易に形成することが可能となり、0EIC化
にも適し、低閾値電流、高効率等の優れた特性をMQW
化により更に向上することも可能であるために、光通信
等の進展に大きい効果が得られる。
As explained above (according to the present invention), a horizontal semiconductor light-emitting device having a brainer shape with good light confinement and current confinement due to a difference in refractive index and easy electrode extraction can be easily formed without the constraints of the conventional example. It is suitable for 0EIC, and has excellent characteristics such as low threshold current and high efficiency.
Since it is possible to further improve the optical communication technology by optimizing the optical communication, it will have a great effect on the progress of optical communications and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体発光装置の説明図、第2図は実
施例の模式断面図、 第3図は従来例の説明図である。 図において、 1.1°は高抵抗クラッド5(AIGaAs)、2は超
格子構造、 2^は活性層(GaAs)、 2Bpはn型バリア層(AIGaAs)、2Bnはn型
バリア層(AIGaAs)、4はn型キャンプ5(Ga
As)、 5pはp藺導teM域(八1GaAs)、5nはn型導
電領域(AIGaAs)、9pはp側電極、 9nはn(ll!ITL極を示す。 (b)詠L6′〉ド園 銖InテV舶
FIG. 1 is an explanatory diagram of a semiconductor light emitting device of the present invention, FIG. 2 is a schematic sectional view of an embodiment, and FIG. 3 is an explanatory diagram of a conventional example. In the figure, 1.1° is the high resistance cladding 5 (AIGaAs), 2 is the superlattice structure, 2^ is the active layer (GaAs), 2Bp is the n-type barrier layer (AIGaAs), and 2Bn is the n-type barrier layer (AIGaAs). , 4 is n-type camp 5 (Ga
As), 5p is a p-type conductive region (81GaAs), 5n is an n-type conductive region (AIGaAs), 9p is a p-side electrode, and 9n is an n(ll!ITL pole). In the garden

Claims (1)

【特許請求の範囲】 1)半導体基体に、第1のバンドギャップを有する第1
の高抵抗クラッド層と、 該第1のクラッド層上に形成され、アクセプタ不純物と
ドナー不純物とが交互にドープされた第2のバンドギャ
ップを有するバリア層間に、前記第1及び第2のバンド
ギャップより狭い第3のバンドギャップを有する活性層
を形成した超格子構造と、 該超格子構造上に形成され、前記第3のバンドギャップ
より広い第4のバンドギャップを有する第2の高抵抗ク
ラッド層とを備え、 該半導体基体の表面から該第1のクラッド層に達し、該
超格子構造を介して対向するp型及びn型の導電領域と
、 該半導体基体の表面において、該p型及びn型の導電領
域にそれぞれ接する電極とを有することを特徴とする半
導体発光装置。 2)前記超格子構造が前記活性層をウェル層とする量子
井戸を構成することを特徴とする特許請求の範囲第1項
記載の半導体発光装置。
[Claims] 1) A first semiconductor substrate having a first bandgap in a semiconductor substrate.
and a barrier layer having a second bandgap formed on the first cladding layer and doped with acceptor impurities and donor impurities alternately. a superlattice structure in which an active layer having a narrower third bandgap is formed; and a second high-resistance cladding layer formed on the superlattice structure and having a fourth bandgap wider than the third bandgap. p-type and n-type conductive regions that reach the first cladding layer from the surface of the semiconductor substrate and face each other via the superlattice structure; 1. A semiconductor light emitting device comprising electrodes in contact with conductive regions of a mold. 2) The semiconductor light emitting device according to claim 1, wherein the superlattice structure constitutes a quantum well in which the active layer is a well layer.
JP62122811A 1987-05-20 1987-05-20 Semiconductor light-emitting device Pending JPS63288083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62122811A JPS63288083A (en) 1987-05-20 1987-05-20 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62122811A JPS63288083A (en) 1987-05-20 1987-05-20 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS63288083A true JPS63288083A (en) 1988-11-25

Family

ID=14845225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62122811A Pending JPS63288083A (en) 1987-05-20 1987-05-20 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS63288083A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073507A (en) * 1991-03-04 1991-12-17 Motorola, Inc. Producing a plasma containing beryllium and beryllium fluoride
US5569939A (en) * 1991-12-18 1996-10-29 Goldstar Co., Ltd. Light emitting diode fabricated with resistors for variable light intensity
CN104332544B (en) * 2014-10-24 2017-04-19 西安神光皓瑞光电科技有限公司 Epitaxial growth method for improving LED lighting efficiency

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5073507A (en) * 1991-03-04 1991-12-17 Motorola, Inc. Producing a plasma containing beryllium and beryllium fluoride
US5569939A (en) * 1991-12-18 1996-10-29 Goldstar Co., Ltd. Light emitting diode fabricated with resistors for variable light intensity
CN104332544B (en) * 2014-10-24 2017-04-19 西安神光皓瑞光电科技有限公司 Epitaxial growth method for improving LED lighting efficiency

Similar Documents

Publication Publication Date Title
US4845724A (en) Semiconductor laser device having optical guilding layers of unequal resistance
KR100648392B1 (en) Al spikes in InP-based layer as a barrier for blocking Zinc diffusion in InP-based structures
KR102182921B1 (en) Etched planarization VCSEL
EP0083697A1 (en) Double channel planar buried heterostructure laser
JPH0221683A (en) Semiconductor laser device
JPH0243351B2 (en)
JPH0834330B2 (en) Semiconductor laser device
US5271028A (en) Semiconductor laser device
JPH06302908A (en) Semiconductor laser
JPS63288083A (en) Semiconductor light-emitting device
US4456999A (en) Terrace-shaped substrate semiconductor laser
JPH04184973A (en) Long-wavelength light transmitting oeic
KR100310885B1 (en) Semiconductor laser and method for manufacturing the same
JPH09199791A (en) Optical semiconductor device and its manufacture
JP3853470B2 (en) Semiconductor light emitting device
US4517674A (en) Zinc-diffused narrow stripe AlGaAs/GaAs double heterostructure laser
US20030062517A1 (en) Semiconductor device with current confinement structure
US4521887A (en) W-shaped diffused stripe GaAs/AlGaAs laser
GB2318211A (en) Optical waveguide
JPH03104292A (en) Semiconductor laser
JPS6251283A (en) Semiconductor light emitting device
JP2550711B2 (en) Semiconductor laser
JPH0828553B2 (en) Semiconductor laser
JPS6261383A (en) Semiconductor laser and manufacture thereof
EP1339108A1 (en) Semiconductor device with current confinement structure