JPS6278871A - Forming method for wiring of complementary mos transistor - Google Patents

Forming method for wiring of complementary mos transistor

Info

Publication number
JPS6278871A
JPS6278871A JP60218360A JP21836085A JPS6278871A JP S6278871 A JPS6278871 A JP S6278871A JP 60218360 A JP60218360 A JP 60218360A JP 21836085 A JP21836085 A JP 21836085A JP S6278871 A JPS6278871 A JP S6278871A
Authority
JP
Japan
Prior art keywords
source
insulating film
wiring
gate
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60218360A
Other languages
Japanese (ja)
Other versions
JPH0654800B2 (en
Inventor
Kiyouzou Sekiya
関家 恭三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60218360A priority Critical patent/JPH0654800B2/en
Publication of JPS6278871A publication Critical patent/JPS6278871A/en
Publication of JPH0654800B2 publication Critical patent/JPH0654800B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an excellent ohmic contact in a wiring by providing apertures on an insulating film covering gate electrodes and source.drain regions of the same conduction type as the gate electrodes, and forming the wiring after introducing impurity from the apertures. CONSTITUTION:A field oxide film 11 and a gate oxide film 12 are grown after an N-type well 10 is formed on a P-type silicon substrate 1, and then gate electrodes 3 are formed on a gate oxide film 12. Successively, an N-type source.drain region 6 and a P-type source.drain region 5 are formed in order on a substrate 1 and a well 10, and an inter-layer insulating film 4 is stuck by CVD method. Contact holes 13 are made on the inter-layer insulating film 4 on the gate electrode 3 and the N-type source.drain region 6. After the ion implantation of N-type impurity, annealing at the temperature of 960 deg.C is performed for about 20min. Then a contact hole is made on the insulating layer 4 on the P-type source.drain region 5 to form the wiring by Al, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は相補形MOSトランジスタの配線形成方法、特
に、不純物を含む半導体のゲートを含む相補型MOSト
ランジスタの配線形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for forming wiring for complementary MOS transistors, and more particularly, to a method for forming wiring for complementary MOS transistors including gates of semiconductors containing impurities.

〔従来技術〕[Prior art]

近年、半導体装置の集積度の向上に伴い、配線の線幅も
減少してきたので、配線抵抗が増大し、信号伝播の遅延
が問題となり、配線材料として不純物の導入されたポリ
シリコンに高融点金属珪物を積層した、いわゆるポリサ
イドを使用して配線抵抗の低下を図る試みがなされてい
る。このようなポリサイドで配線およびゲート電極を形
成した相補型MOSトランジスタ(以下CMO8という
)は、第2図に示すように半導体基板上1に酸化膜2を
形成し、該酸化膜上にポリサイドのゲート電極3を形成
した後、基板およびウェル内にそれぞれソース・ドレイ
ン領域5,6を形成し、これらを酸化膜4で被う。この
彼、基板およびウェル内のそれぞれのソース・ドレイン
領域上の酸化膜4とゲート電極上の酸化膜4とにコンタ
クト孔7を則時に形成し、該コンタクト孔7を通してア
ルミニウム等で配線を形成していた。
In recent years, as the degree of integration of semiconductor devices has improved, the line width of interconnects has also decreased, increasing interconnect resistance and causing problems with signal propagation delays. Attempts have been made to reduce wiring resistance by using so-called polycide, which is a layered layer of silicon. A complementary MOS transistor (hereinafter referred to as CMO8) in which interconnections and gate electrodes are formed using polycide is manufactured by forming an oxide film 2 on a semiconductor substrate 1, as shown in FIG. 2, and forming a polycide gate on the oxide film. After forming the electrode 3, source/drain regions 5 and 6 are formed in the substrate and well, respectively, and covered with an oxide film 4. A contact hole 7 is regularly formed in the oxide film 4 on the source/drain region of the substrate and in the well, and in the oxide film 4 on the gate electrode, and wiring is formed using aluminum or the like through the contact hole 7. was.

しかしながら、ゲート電極形成後にソース・ドレイン領
域5,6等を形成することから、ゲート電極3のポリサ
イドから不純物が蒸散し、配線形成後、良好なオーミ、
り接触が得られないこともあって、配線前にケート電極
等の不純物濃度を高めたいとの要請があった。
However, since the source/drain regions 5, 6, etc. are formed after forming the gate electrode, impurities evaporate from the polycide of the gate electrode 3, resulting in good ohmic and
Because it is not possible to obtain contact with wires, there have been requests to increase the concentration of impurities in gate electrodes and the like before wiring.

ソitで、コンタクトホール7の穿設後、有機系レジス
トを全面に塗布しゲート電極とその同一導電型のソース
・ドレイン領域のコンタクトホールに再び開口を設け、
イオン打込みでゲート電極等の不純物濃度を高めていた
After forming the contact hole 7 in a solitary process, an organic resist is applied to the entire surface, and an opening is made again in the contact hole of the gate electrode and the source/drain region of the same conductivity type.
Ion implantation was used to increase the impurity concentration in gate electrodes, etc.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかしながら、高集積度のCMO8にあっては、各素子
のソース・ドレイン領域は極めて微細であり、そこにイ
オン打込み用の開口を設けることは、ホトマスクの位置
合せ誤差を考慮すると、正確な穿設が難しく、誤差を考
慮してソース・ドレイン領域を大きくすると集積度が低
下するという問題点があった。さらにs lXl07c
m以上のイオン打込みを行なおうとすると、有機系レジ
ストが変質し、半導体基板に悪影響を与えるという問題
点があった。
However, in the highly integrated CMO8, the source/drain regions of each element are extremely fine, and providing openings for ion implantation there requires accurate drilling, taking into account photomask alignment errors. However, if the source/drain regions are enlarged in consideration of errors, the degree of integration decreases. Furthermore, s lXl07c
If an attempt is made to perform ion implantation of m or more, there is a problem in that the organic resist changes in quality and has an adverse effect on the semiconductor substrate.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ゲート電極とこれと同−導電壓のソース・ド
レイン領域との上の絶縁膜に開口を設けた後、不純物を
導入して不純物濃度を高め、しかる後、ゲート電極と反
対導電型のソース・ドレイン領域上の絶縁膜に開口を設
け、配線を形成することを要旨とする。
In the present invention, an opening is formed in an insulating film above a gate electrode and a source/drain region of the same conductivity, and then impurities are introduced to increase the impurity concentration, and then the gate electrode is of a conductivity type opposite to that of the gate electrode. The gist of this method is to provide an opening in the insulating film over the source/drain region and form wiring.

〔実施例〕〔Example〕

第1図は本発明の一実施例の途中工程を示す断面図であ
り、p型のシリコン基板1にn型のウェル10を形成し
た後、約1μmのフィールド酸化膜11と約50OAの
ゲート酸化膜12とを成長させる。ゲート酸化膜12上
には、n型不純物を拡散したポリシリコンと高融点金属
珪化物、例えば、珪化チタン、珪化モリブテン等を積層
し、パターニングによりゲート電極3を形成する。続い
て、基板1とウェル1oとに、n型のソース・ドレイン
領域6とp型のソース・ドレイン領域5とを0.6μm
の深さにj@次影形成、CVD法で層間絶縁膜4を0.
7μm被着させる。
FIG. 1 is a sectional view showing an intermediate step in an embodiment of the present invention. After forming an n-type well 10 on a p-type silicon substrate 1, a field oxide film 11 of about 1 μm and a gate oxide film of about 50 OA are formed. The film 12 is grown. On the gate oxide film 12, polysilicon with n-type impurities diffused therein and a high melting point metal silicide such as titanium silicide, molybdenum silicide, etc. are laminated, and the gate electrode 3 is formed by patterning. Next, an n-type source/drain region 6 and a p-type source/drain region 5 are formed with a thickness of 0.6 μm on the substrate 1 and the well 1o.
The interlayer insulating film 4 is formed by forming a second shadow at a depth of 0.0.
Deposit 7 μm.

コノ後、ケート電極3とn型のソース・ドレイン領域6
との上の層間絶縁膜4にコンタクトホール13を穿設し
、p型のソース・ドレイン領域5上の絶縁膜4にはコン
タクトホールを穿設しない。
After that, the gate electrode 3 and the n-type source/drain region 6
A contact hole 13 is formed in the interlayer insulating film 4 above the p-type source/drain region 5, but no contact hole is formed in the insulating film 4 above the p-type source/drain region 5.

第1図はこの状態を示している。         4
続いて、n型の不純物、例えばリンを、80kevのエ
ネルギーで2.5XIO/cm  程度イオン打込し、
960℃で約20分のアニールを行なう。
FIG. 1 shows this state. 4
Next, an n-type impurity, for example, phosphorus, is ion-implanted at an energy of 80 keV to approximately 2.5XIO/cm2.
Annealing is performed at 960° C. for about 20 minutes.

次に、p型のソース・ドレイン領域5上の絶縁膜4にコ
ンタクトホールを穿設し、アルミニウム等で配線を行な
う。
Next, contact holes are formed in the insulating film 4 on the p-type source/drain regions 5, and wiring is formed using aluminum or the like.

〔効 果〕〔effect〕

以上説明してきたように、本発明によれば、ゲート電極
およびこれと同一導電型のソース・ドレイン領域上の絶
縁膜に開口を設け、該開口から不純物を導入した後にゲ
ート電極と反対導電型のソース・ドレイン領域上の絶縁
膜に開口を設け、配線を形成するようにしたので、良好
な配線のオーミック接触を得られるうえ、不純物の導入
の際、反対導電型のソース・ドレイン領域の保護にレジ
ストの塗付が不要なことから、不純物の導入中に半導体
基板がレジストによる悪影響を受けることがないという
効果が得られる。
As described above, according to the present invention, an opening is provided in the insulating film over the gate electrode and the source/drain regions of the same conductivity type, and after introducing impurities through the opening, Openings are made in the insulating film over the source/drain regions to form wiring, which not only allows for good ohmic contact with the wiring, but also helps protect the source/drain regions of opposite conductivity type when introducing impurities. Since there is no need to apply a resist, the semiconductor substrate is not adversely affected by the resist during the introduction of impurities.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の途中工程を示す断面図、第
2図は従来例の第1図に対応する工程の断面図である。 l・・・・・・半導体基板、3・・・・・・ゲート、4
・・・・・・絶縁膜、5・・・・・・第1導電型のソー
ス・ドレイン領域、6・・・・・・第2導電型のソース
・ドレイン領域、10・・・・・・ウェル、13・・・
・・・ゲートおよびケートと同一導電型のソース・ドレ
イン領域上の絶縁膜に穿設される開口 第2図
FIG. 1 is a sectional view showing an intermediate step in an embodiment of the present invention, and FIG. 2 is a sectional view showing a step corresponding to FIG. 1 in a conventional example. l... Semiconductor substrate, 3... Gate, 4
...Insulating film, 5...First conductivity type source/drain region, 6...Second conductivity type source/drain region, 10... Well, 13...
...Openings drilled in the insulating film over the source/drain regions of the same conductivity type as the gate and gate (Figure 2)

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板に形成された第2導電型のソー
ス・ドレイン領域と、半導体基板内の第2導電型のウェ
ル内に形成された第1導電型のソース・ドレイン領域と
、半導体基板の表面を被う絶縁膜と、絶縁膜を介して第
1導電型のソース・ドレイン間のチャンネルと第2導電
型のソース・ドレイン間のチャンネルと第2導電型のソ
ース・ドレイン間のチャンネルとにそれぞれ対向する第
1または第2導電型の半導体を含むゲートと、ゲートを
被う絶縁膜とを有する相補型MOSトランジスタの配線
形成方法において、ゲート上の絶縁膜とゲートと同一導
電型のソース・ドレイン領域上の絶縁膜とに開口を穿設
する工程と、該開口を通して不純物を導入しゲートおよ
びソース・ドレイン領域の不純物濃度を高める工程と、
ゲートと反対導電型のソース・ドレイン領域に開口を穿
設する工程と、開口を通して配線を形成する工程とを含
む粗補型MOSトランジスタの配線形成方法。
A source/drain region of a second conductivity type formed in a semiconductor substrate of a first conductivity type; a source/drain region of a first conductivity type formed in a well of a second conductivity type in the semiconductor substrate; an insulating film covering the surface of the insulating film, a channel between the source and drain of the first conductivity type, a channel between the source and drain of the second conductivity type, and a channel between the source and drain of the second conductivity type through the insulating film. In a method for forming wiring of a complementary MOS transistor having a gate including a semiconductor of a first or second conductivity type facing each other, and an insulating film covering the gate, an insulating film on the gate and a source of the same conductivity type as the gate. - a step of drilling an opening in the insulating film over the drain region, and a step of introducing impurities through the opening to increase the impurity concentration of the gate and source/drain regions;
A method for forming wiring for a coarsely complementary MOS transistor, including the steps of: forming an opening in a source/drain region of a conductivity type opposite to that of the gate; and forming a wiring through the opening.
JP60218360A 1985-09-30 1985-09-30 Wiring forming method for complementary MOS transistor Expired - Lifetime JPH0654800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60218360A JPH0654800B2 (en) 1985-09-30 1985-09-30 Wiring forming method for complementary MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60218360A JPH0654800B2 (en) 1985-09-30 1985-09-30 Wiring forming method for complementary MOS transistor

Publications (2)

Publication Number Publication Date
JPS6278871A true JPS6278871A (en) 1987-04-11
JPH0654800B2 JPH0654800B2 (en) 1994-07-20

Family

ID=16718664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60218360A Expired - Lifetime JPH0654800B2 (en) 1985-09-30 1985-09-30 Wiring forming method for complementary MOS transistor

Country Status (1)

Country Link
JP (1) JPH0654800B2 (en)

Also Published As

Publication number Publication date
JPH0654800B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US5670390A (en) Method of making semiconductor device having thin film transistor
US4517731A (en) Double polysilicon process for fabricating CMOS integrated circuits
JPS6360549B2 (en)
JPS6278871A (en) Forming method for wiring of complementary mos transistor
JPS61258447A (en) Manufacture of semiconductor device
JP2886186B2 (en) Semiconductor device
JPH06252345A (en) Manufacture of semiconductor integrated circuit
JPS62154784A (en) Semiconductor device
JPH07221300A (en) Manufacture of semiconductor device
JPS63114160A (en) Integrated circuit for complementary type misfet
JPH0521736A (en) Semiconductor device and manufacture thereof
JPS6169165A (en) Complementary type semiconductor device and manufacture thereof
JPH0864688A (en) Manufacture of semiconductor device
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
KR0167667B1 (en) Method of fabricating semiconductor
JPH03203366A (en) Semiconductor device
JP3104296B2 (en) Method for manufacturing thin film transistor
EP0145583A2 (en) Metal insulator semiconductor device and method for the fabrication thereof
JP2945069B2 (en) Connection structure of different polarity conductive layers
JPH0127590B2 (en)
JP2971083B2 (en) Semiconductor device
JPH0527975B2 (en)
JPH07161826A (en) Manufacture of semiconductor device
JP3077146B2 (en) Method for manufacturing semiconductor device
JPS6084859A (en) Complementary type semiconductor device and manufacture thereof