KR0167667B1 - Method of fabricating semiconductor - Google Patents

Method of fabricating semiconductor Download PDF

Info

Publication number
KR0167667B1
KR0167667B1 KR1019950037736A KR19950037736A KR0167667B1 KR 0167667 B1 KR0167667 B1 KR 0167667B1 KR 1019950037736 A KR1019950037736 A KR 1019950037736A KR 19950037736 A KR19950037736 A KR 19950037736A KR 0167667 B1 KR0167667 B1 KR 0167667B1
Authority
KR
South Korea
Prior art keywords
silicon film
film
transistor
mos
source
Prior art date
Application number
KR1019950037736A
Other languages
Korean (ko)
Other versions
KR970023878A (en
Inventor
김천수
Original Assignee
김주용
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김주용, 현대전자산업주식회사 filed Critical 김주용
Priority to KR1019950037736A priority Critical patent/KR0167667B1/en
Publication of KR970023878A publication Critical patent/KR970023878A/en
Application granted granted Critical
Publication of KR0167667B1 publication Critical patent/KR0167667B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823835Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub

Abstract

본 발명은 적어도 하나의 트렌지스터를 구비하는 반도체소자에서, 상기 트렌지스터의 게이트 전극 상부 표면 및 소오스/드레인 상부 표면에 실리사이드막을 형성하기 위한 반도체 제조 방법에 있어서; 기형성된 트렌지스터의 게이트 전극 및 소오스/드레인 상부 표면에 선택적 증착으로 실리콘막을 형성하는 단계; 상기 실리콘막을 비정질화하는 단계; 상기 비정질화된 실리콘막 상에 실리사이드막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 제조 방법에 관한 것으로, 본 발명은 N-MOS 지역의 As에 의한 실리사이드 성장 억제를 배제하여 낮은 면저항을 가지며, 소자의 고집적화가 가능하고, N-MOS 지역과 P-MOS 지역의 실리사이드막을 균일한 두께로 형성하여 제조 공정이 용이함을 가져오는 효과가 있다.A semiconductor manufacturing method for forming a silicide film on a gate electrode upper surface and a source / drain upper surface of a transistor in a semiconductor device having at least one transistor; Forming a silicon film by selective deposition on the gate electrode and the source / drain top surface of the preformed transistor; Amorphizing the silicon film; The present invention relates to a semiconductor manufacturing method comprising forming a silicide film on the amorphous silicon film, the present invention has a low sheet resistance by excluding silicide growth inhibition by As in the N-MOS region, High integration can be achieved, and the silicide films in the N-MOS region and the P-MOS region are formed to have a uniform thickness, thereby facilitating the manufacturing process.

Description

반도체 제조 방법Semiconductor manufacturing method

제1a도 내지 1d도는 본 발명의 일실시예에 따른 CMOS 제조 공정도.1a to 1d is a CMOS manufacturing process diagram according to an embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘 기판 2 : 필드산화막1 silicon substrate 2 field oxide film

3 : P웰 4 : N웰3: P well 4: N well

5 : 게이트 산화막 6 : 게이트 전극5 gate oxide film 6 gate electrode

7 ; 스페이서 8 : N-MOS의 소오스/드레인 접합7; Spacer 8: Source / drain junction of N-MOS

9 : P-MOS의 소오스/드레인 접합 10 : 비도핑된 실리콘막9 source / drain junction of P-MOS 10 undoped silicon film

11 : 비정질화된 실리콘막 12 : TiSi2 11: amorphous silicon film 12: TiSi 2

본 발명은 반도체 소자의 제조 방법에 관한 것으로, 특히 모스펫(이하, MOSFET라 칭한다)이 고집적화되어 감에 따라 게이트 전극과 소오스/드레인 지역에서 좀더 낮은 면 저항(Sheet Resistance, 전체적으로 직렬 저항이라고 함)을 얻기 위한 반도체 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and in particular, as MOSFETs (hereinafter referred to as MOSFETs) become highly integrated, lower surface resistance (Sheet Resistance, generally referred to as series resistance) in the gate electrode and source / drain regions is increased. It relates to a semiconductor manufacturing method for obtaining.

종래에는 반도체 소자를 구성하는 MOSFET의 게이트 및 소오스/드레인 지역 상에 실리사이드(Silicide)막을 형성하여 낮은 면저항을 얻고 있으며, 그 제조공정을 CMOS 제조 방법을 통해 간단히 살펴보면 다음과 같다.Conventionally, a silicide film is formed on gate and source / drain regions of a MOSFET constituting a semiconductor device to obtain a low sheet resistance. The manufacturing process thereof is briefly described through a CMOS manufacturing method.

먼저, 통상적인 방법으로 소자분리가 이루어진 기판 상에 N-MOS를 위한 P웰 및 P-MNO를 위한 N웰을 각각 형성하고, 각각의 웰 지역에 게이트 전극을 형성한다.First, a P well for an N-MOS and an N well for a P-MNO are formed on a substrate having device isolation in a conventional manner, and a gate electrode is formed in each well region.

그 다음, N-MOS 지역의 소오스/드레인 접합 형성을 위한 As 이온 주입, P-MOS 지역의 소오스/드레인 접합 형성을 위한 BF2이온주입을 각각 실시한 상태에서, 전체구조 상부에 실리사이드막 형성을 위한 Ti막 증착 및 제1신터링(Sintering)과 선택작인 Ti 식각 및 제2신터링을 각각 차례로 실시하여,N-MOS와 P-MOS의 게이트 및 소오스/드레인 상에 실리사이드막인 TiSi2를 형성하고 있다.Next, with the As ion implantation for forming the source / drain junction in the N-MOS region and the BF 2 ion implantation for forming the source / drain junction in the P-MOS region, the silicide layer was formed on the entire structure. Ti film deposition, first sintering, and optional Ti etching and second sintering are sequentially performed to form TiSi 2 , a silicide film, on gates and sources / drains of N-MOS and P-MOS, respectively. have.

그러나, 소자가 점차 고집착화 되어감에 따라, 원하는 낮은 저항을 얻기에는 한계가 있었다.However, as the device became increasingly highly integrated, there was a limit to obtaining the desired low resistance.

즉, 반도체 소자 제조시, N-MOS 지역의 소오스/드레인 영역의 불순물인 As은 실리사이드막(통상적으로 TiSi2) 형성을 억제하여 낮은 면저항을 얻기 힘들고, CMOS와 같이 N-MOS와 P-MOS가 동시에 형성되는 경우, P-MOS 지역의 소오스/드레인 영역의 불순물인 BF2는 TiSi2의 형성을 억제하지 않으므로, N-MOS 지역과 P-MOS 지역의 실리사이드막의 두께가 제조 공정상 균일화될 수 없기 때문에 제조 공정상 어려움이 있게 된다.That is, in the fabrication of semiconductor devices, As, which is an impurity in the source / drain regions of the N-MOS region, suppresses the formation of the silicide film (typically TiSi 2 ), so that it is difficult to obtain low sheet resistance. When formed simultaneously, BF 2 , an impurity in the source / drain regions of the P-MOS region, does not inhibit the formation of TiSi 2 , so that the thicknesses of the silicide films in the N-MOS region and the P-MOS region cannot be uniformized in the manufacturing process. This causes difficulties in the manufacturing process.

그리고, 좁은 실리콘 라인에는 As의 반응(reaction)에 기인하는 TiSi2성장 억제 때문에 고집적화 되는데는 한계점이 있다.In addition, narrow silicon lines have a limitation in that they are highly integrated due to TiSi 2 growth inhibition due to the reaction of As.

본 발명은 상기 제반 문제점을 해결하기 위하여 안출된 것으로, 낮은 면저항을 가져와 고집적화가 가능한 반도체 소자 방법을 제공함을 그 목적으로 한다.Disclosure of Invention The present invention has been made to solve the above problems, and an object of the present invention is to provide a semiconductor device method capable of high integration by bringing low sheet resistance.

또한, 본 발명의 다른 목적은 N-MOS 지역과 P-MOS 지역의 실리사이드막을 균일한 두께로 형성하여 제조 공정이 용이함을 가져오는 반도체 소자 제조 방법을 제공하는데 있다.In addition, another object of the present invention is to provide a method for manufacturing a semiconductor device that makes the manufacturing process easy by forming silicide films in the N-MOS region and the P-MOS region with a uniform thickness.

상기 목적을 달성하기 위하여 본 발명은 적어도 하나의 트렌지스터를 구비하는 반도체 소자에서, 상기 트렌지스터의 게이트 전극 상부 표면 및 소오스/드레인 상부 표면에 실리사이드막을 형성하기 위한 반도체 제조 방법 에 있어서;기형성된 트렌지스터의 게이트 전극 및 소오스/드레인 상부표면에 선택적 증착으로 실리콘막을 형성하는 단계; 상기 실리콘막을 비정질화하는 단계; 및 상기 비정질화된 실리콘막 상의 실리사이드막을 형성하는 단계를 포함하는 것을 특징으로 한다.In order to achieve the above object, the present invention provides a semiconductor manufacturing method for forming a silicide film on a gate electrode upper surface and a source / drain upper surface of a transistor in a semiconductor device having at least one transistor; a gate of a pre-formed transistor; Forming a silicon film on the electrode and the source / drain top surface by selective deposition; Amorphizing the silicon film; And forming a silicide film on the amorphous silicon film.

상기한 바와 같이 본 발명은 N-MOS 지역의 As에 의한 실리사이드 성장 억제를 배제하기 위하여 게이트 전극과 소오스/드레인에 선택적으로 비도핑된 실리콘막을 증착하는 방법과 예비-비정질화(Pro-amorphization) 방법을 사용하는 것이다.As described above, the present invention provides a method of depositing a selectively undoped silicon film on a gate electrode and a source / drain and a pre-amorphization method to exclude silicide growth inhibition by As in the N-MOS region. Is to use

이하, 첨부된 도면을 참조하여 본발명을 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

제1a도 내지 제1d도는 본 발명의 일실시예에 따른 CMOS 제조 공정이다.1A to 1D illustrate a CMOS fabrication process according to an embodiment of the present invention.

먼저, 제1a도는 필드산화막(2)이 형성된 실리콘 기판(1) 상에 N-MOS를 위한 P웰(3) 및 P-MOS를 위한 N웰(4)을 각각 형성하고, 각각의 웰 지역의 소정부위에 게이트 산화막(5) 및 게이트 전극(6)을 형성한 다음, 게이트 전극(6) 측벽에 스페이서(7)를 형성한 상태이다.First, FIG. 1A shows a P well 3 for an N-MOS and an N well 4 for a P-MOS, respectively, on a silicon substrate 1 having a field oxide film 2 formed thereon. After the gate oxide film 5 and the gate electrode 6 are formed at predetermined portions, the spacer 7 is formed on the sidewalls of the gate electrode 6.

이어서, 제1b도와 같이 N-MOS 지역에 As 이온주입을 실시하여 N+영역인 N-MOS의 소오스/드레인 접합(8)을 형성하고, P-MOS 지역의 BF2이온주입을 실시하여 P-MOS의 소오스/드레인 접합(9)을 형성한 다음, 불순물이 주입되지 않은 실리콘막, 즉 비도핑된 실리콘막(10)을 게이트 전극(6) 상부와 N-MOS 및 P-MOS의 소오스/드레인 접합(8,9) 상부에 선택적으로 형성한다.Subsequently, As ion implantation is performed in the N-MOS region as shown in FIG. 1b to form a source / drain junction 8 of N-MOS which is an N + region, and BF 2 ion implantation in the P-MOS region is performed to form P-. After the source / drain junction 9 of MOS is formed, a silicon film that is not implanted with impurities, that is, an undoped silicon film 10, is placed over the gate electrode 6 and the source / drain of N-MOS and P-MOS. It is formed selectively on the junction (8, 9).

이때, 비도핑된 실리콘막(10)의 선택적 증착법은 화학기상증착(CVD) 시스템을 이용하여 600℃ 내지 700℃ 정도의 낮은 온도에서 Si2H6가스의 플로우율(Flow Rate)을 조정하여 형성하며, 두께는 200Å 내지 300Å으로 형성한다.At this time, the selective deposition of the undoped silicon film 10 is formed by adjusting the flow rate of Si 2 H 6 gas at a low temperature of 600 ℃ to 700 ℃ using a chemical vapor deposition (CVD) system And, the thickness is formed to 200 ~ 300Å.

이어서, 제1c도와 같이 상기 비도핑된 실리콘막(10)에 이온주입(11)을 실시하여 비도핑된 실리콘막을 비정질화(10a) 한다.Subsequently, as illustrated in FIG. 1C, ion implantation 11 is performed on the undoped silicon film 10 to amorphousize the undoped silicon film 10a.

이때, 주입되는 이온은 As 이온으로 농도는 3×1014cm-2정도이다.At this time, the implanted ions are As ions, the concentration is about 3 × 10 14 cm -2 .

제1d도와 같이 실리사이드막 형성을 위해, 전체구조 상부에 Ti막을 3500Å 정도 증착하고 690℃의 온도에서 30초 정도 제1신터링을 실시하고, 선택적인 Ti식각을 실시한 후, 840℃의 온도에서 10초 정도 제2신터링을 실시하여, N-MOS와 P-MOS의 게이트 전극(6) 및 소오스/드레인 접합(8,9) 상에 실리사이드막인 TiSi2(12)를 형성한다.In order to form the silicide film as shown in FIG. 1D, a Ti film is deposited on the entire structure at about 3500Å and subjected to first sintering at a temperature of 690 ° C. for about 30 seconds, followed by selective Ti etching, and then at 10 ° C. Second sintering is performed for about a second to form TiSi 2 (12) as a silicide film on the gate electrodes 6 and the source / drain junctions 8 and 9 of the N-MOS and P-MOS.

본 발명은 상기 일실시예와 같이 N-MOS 및 P-MOS로 이루어지는 CMOS 및 그 밖의 다른 반도체 소자에 적용될 수 있으며, As 이온에 의해 소오스/드레인 접합층이 형성되는 N-MOS만에만 적용될 수 있다.The present invention can be applied to CMOS and other semiconductor devices composed of N-MOS and P-MOS as in the above embodiment, and can be applied only to N-MOS in which a source / drain junction layer is formed by As ions. .

이상, 상기 설명한 바와 같이 이루어지느 본 발명은 N-MOS 지역의 As에 의한 실리사이드 성정억제를 배제하여 낮은 면저항을 가지며, 소자의 고집적화가 가능하고, N-MOS 지역과 P-MOS 지역의 실리사이드막을 균일한 두께로 형성하여 제조 공정의 용이함을 가져오는 효과가 있다.As described above, the present invention has a low sheet resistance by suppressing silicide stabilities due to As in the N-MOS region, enables high integration of the device, and makes the silicide films in the N-MOS region and the P-MOS region uniform. Forming to a thickness has the effect of bringing the ease of the manufacturing process.

Claims (11)

적어도 하나의 트렌지스터를 구비하는 반도체 소자에서, 상기 트렌지스터의 게이트 전극 상부 표면 및 소오스/드레인 상부 표면에 실리사이드막을 형성하기 위한 반도체 제조 방법에 있어서; 기형성된 트렌지스터의 게이트 전극 및 소오스/드레인 상부 표면에 선택적 증착으로 실리콘막을 형성하는 단계; 상기 실리콘막을 비정질화하는 단계; 및 상기 비정질화된 실리콘막 상에 실리사이드막을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 제조 방법.A semiconductor device comprising at least one transistor, comprising: forming a silicide film on an upper surface of a gate electrode and an upper surface of a source / drain of the transistor; Forming a silicon film by selective deposition on the gate electrode and the source / drain top surface of the preformed transistor; Amorphizing the silicon film; And forming a silicide film on the amorphous silicon film. 제1항에 있어서; 상기 트렌지스터는 N-MOS인 것을 특징으로 하는 반도체 제조 방법.The method of claim 1; The transistor is a semiconductor manufacturing method, characterized in that the N-MOS. 제1항에 있어서; 상기 트렌지스터는 CMOS로 이루어진 것을 특징으로 하는 반도체 제조 방법.The method of claim 1; The transistor is a semiconductor manufacturing method, characterized in that consisting of CMOS. 제2항 또는 제3항에 있어서; 상기 N-MOS의 소오스/드레인은 As이 이온 주입된 것을 특징으로 하는 반도체 제조 방법.The method of claim 2 or 3; The source / drain of the N-MOS is a semiconductor manufacturing method, characterized in that As is ion implanted. 제4항에 있어서; 상기 실리콘막은 비도핑된 것을 특징으로 하는 반도체 제조 방법.The method of claim 4; And the silicon film is undoped. 제5항에 있어서; 상기 실리콘막의 선택적 증착은 600℃ 내지 700℃의 온도에서 CVD로 이루어진 것을 특징으로 하는 반도체 제조 방법.The method of claim 5; Selective deposition of the silicon film is a semiconductor manufacturing method, characterized in that consisting of CVD at a temperature of 600 ℃ to 700 ℃. 제6항에 있어서; 상기 CVD에서 Si2H6가스의 플로우율을 조정하여 균일한 실리콘막을 형성하는 것을 특징으로 하는 반도체 제조 방법.The method of claim 6; And adjusting a flow rate of Si 2 H 6 gas in the CVD to form a uniform silicon film. 제4항에 있어서; 상기 실리콘막을 비정질화 하는 단계는, 상기 비도핑된 실리콘막에 이온주입을 실시하여 이루어지는 것을 특징으로 하는 반도체 제조 방법.The method of claim 4; Amorphizing the silicon film, the semiconductor manufacturing method, characterized in that by implanting the undoped silicon film. 제8항에 있어서; 상기 비도핑된 실리콘막에 이온주입되는 이온은 As 이온인 것을 특징으로 하는 반도체 제조 방법.The method of claim 8; The ion implanted into the undoped silicon film is a semiconductor manufacturing method, characterized in that the As ion. 제1항에 있어서; 상기 실리사이드막은 TiSi2인 것을 특징으로 하는 반도체 제조 방법.The method of claim 1; The silicide layer is TiSi 2 , characterized in that the semiconductor manufacturing method. 제10항에 있어서; 상기 TiSi2를 형성하는 단계는, 전체구조 상부에 Ti막을 증착하고 제1신터링 하는 단계; 상기 Ti막을 선택적 식각하고 제2신터링을 실시하는 단계를 포함하는 것을 특징으로 하는 반도체 제조 방법.The method of claim 10; The forming of TiSi 2 may include depositing and first sintering a Ti film over the entire structure; Selectively etching the Ti film and performing a second sintering process.
KR1019950037736A 1995-10-27 1995-10-27 Method of fabricating semiconductor KR0167667B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019950037736A KR0167667B1 (en) 1995-10-27 1995-10-27 Method of fabricating semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019950037736A KR0167667B1 (en) 1995-10-27 1995-10-27 Method of fabricating semiconductor

Publications (2)

Publication Number Publication Date
KR970023878A KR970023878A (en) 1997-05-30
KR0167667B1 true KR0167667B1 (en) 1999-02-01

Family

ID=19431684

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019950037736A KR0167667B1 (en) 1995-10-27 1995-10-27 Method of fabricating semiconductor

Country Status (1)

Country Link
KR (1) KR0167667B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000066155A (en) * 1999-04-13 2000-11-15 황인길 Shallow junction &silicide forming method of semiconductor devices

Also Published As

Publication number Publication date
KR970023878A (en) 1997-05-30

Similar Documents

Publication Publication Date Title
JP2978736B2 (en) Method for manufacturing semiconductor device
US6365472B1 (en) Semiconductor device and method of manufacturing the same
US6087234A (en) Method of forming a self-aligned silicide MOSFET with an extended ultra-shallow S/D junction
US20020168802A1 (en) SiGe/SOI CMOS and method of making the same
JP2509518B2 (en) Titanium silicide contact manufacturing method
EP0459398B1 (en) Manufacturing method of a channel in MOS semiconductor devices
JP3014030B2 (en) Method for manufacturing semiconductor device
JPH04305978A (en) Mos semiconductor device for electric power and manufacture thereof
KR0167667B1 (en) Method of fabricating semiconductor
JPH03227516A (en) Manufacture of semiconductor device
US6780700B2 (en) Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
JPH10125919A (en) Method for forming electrode of semiconductor element
JPH0738113A (en) Manufacture of thin film transistor
JP3371631B2 (en) Semiconductor device and manufacturing method thereof
JP2711187B2 (en) Method for manufacturing semiconductor device
JPS6074663A (en) Manufacture of complementary type semiconductor device
KR100214460B1 (en) Method for fabricating thin film transistor
JP2973479B2 (en) Thin film transistor device
JPH0555577A (en) Manufacture of thin film transistor
JPS6097662A (en) Manufacture of semiconductor device
JPH06204418A (en) Semiconductor device and manufacture thereof
JPH04158529A (en) Fabrication of semiconductor element
KR940000988B1 (en) Manufacturing method of double gate semiconductor device
JPS6379377A (en) Manufacture of mis-fet
JPH061775B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100825

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee