JPS6265465A - Manufacture of insulated-gate type semiconductor device - Google Patents

Manufacture of insulated-gate type semiconductor device

Info

Publication number
JPS6265465A
JPS6265465A JP60204227A JP20422785A JPS6265465A JP S6265465 A JPS6265465 A JP S6265465A JP 60204227 A JP60204227 A JP 60204227A JP 20422785 A JP20422785 A JP 20422785A JP S6265465 A JPS6265465 A JP S6265465A
Authority
JP
Japan
Prior art keywords
gate
spacer
oxide film
spacers
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60204227A
Other languages
Japanese (ja)
Inventor
Akira Muramatsu
彰 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60204227A priority Critical patent/JPS6265465A/en
Publication of JPS6265465A publication Critical patent/JPS6265465A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dielectric strength which is equivalent to the dielectric strength of an ordinary low impurity concentration structure without additional processes by a method wherein ion implantation energy is predetermined by taking the thicknesses of spacers in contact with both sides of a gate and the thickness of a gate oxide film into account and then an impurity is introduced. CONSTITUTION:An isolation oxide (SiO2) film 2, a thin gate oxide film 3 and a polycrystalline Si gate 4 are formed on an Si substrate 1. Then a silicon oxide film 5 is formed over the whole surface in order to form spacers and the parts of the silicon oxide film 5 in contact with the sides of the gate 4 are left as spacers while the other part of the silicon oxide film 5 is removed. Then ion implantation of arsenic is applied over the whole surface and the N-type impurity is introduced into the sub strate surface. In this case, ion implantation energy is predetermined by taking the thicknesses of the spacers and the thickness of the gate oxide film 3 into account so as to have As ions introduced into the Si substrate perfectly with high concentration where the spacer does not exist and introduced a little directly under the spacers too. Then annealing is carried out to diffuse As ions in the silicon substrate to form N<+>type layers which are to be source and drain and an N<-> type layer which is to be an offset gate.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は絶縁ゲート半導体装置、特に短チャネルMO8
FETのホットキャリア耐性向上のための技術に関する
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an insulated gate semiconductor device, particularly a short channel MO8
This article relates to technology for improving hot carrier resistance of FETs.

〔背景技術〕[Background technology]

CMOSデバイスは、現在の最先端のゲート長1、2〜
1.3μmからO,Sμm、0.5μmへと微細化する
につれて、ホット・キャリアや短チヤネル効果がますま
す厳しくなる傾向にある。
CMOS devices have the current state-of-the-art gate length of 1, 2~
As the size becomes smaller from 1.3 μm to O.S. μm to 0.5 μm, hot carriers and short channel effects tend to become more severe.

短チヤネル効果はソースとドレインが接近してくるため
にチャネル部分の電圧に影響されてしきい電圧やパンチ
スルー電圧の低下をもたらす現象であり、np両チャネ
ルともゲート長が1μm以下になるとしきい電圧が急激
に低下し始める。
The short channel effect is a phenomenon in which the source and drain become close to each other, resulting in a decrease in the threshold voltage and punch-through voltage due to the influence of the voltage at the channel part. The voltage begins to drop rapidly.

一方、ホットキャリア効果はチャネルを流れる電子が散
乱を受けてゲートの方向に注入される等の現象をいうも
ので、ドレイン電圧が大きいほど起りやすく、注入によ
ってゲート絶縁膜が劣化しトランジスタ特性の劣化をも
たらす。
On the other hand, the hot carrier effect is a phenomenon in which electrons flowing through the channel are scattered and injected in the direction of the gate.The higher the drain voltage, the more likely it is to occur, and the injection deteriorates the gate insulating film, resulting in deterioration of transistor characteristics. bring about.

これらの問題に対して、nチャネルMO3FETにおい
ては、LDD(低不純物濃度ドレイン)構造が採用され
ていることが日経マグロウヒル社発行、「日経マイクロ
デバイス1985年7月号J発行日1985年7月1日
p136−p140に記載されている。
To solve these problems, the n-channel MO3FET uses an LDD (low impurity concentration drain) structure. It is described on days p136-p140.

LDD構造ではゲートと、ソース・ドレインの間の基板
表面に低不純物濃度のオフセットゲート層を形成し、パ
ンチスルー電圧及びホットキャリア耐圧を高めるもので
ある。
In the LDD structure, an offset gate layer with a low impurity concentration is formed on the substrate surface between the gate and the source/drain to increase punch-through voltage and hot carrier breakdown voltage.

第7図はLDD構造ヲ有するC−MOSFETの一例を
断面図で示すものである。
FIG. 7 shows a cross-sectional view of an example of a C-MOSFET having an LDD structure.

同図において、4はゲート、6はスペーサ%7はソース
・ドレイ/高不純物濃度層である。nチャネルMO8F
ET側でLDD&Cよる低不純物濃度n一層からなるオ
フセットゲート8がチャネル部とソース・ドレインn+
層との間に形成されている。
In the figure, 4 is a gate, 6 is a spacer, and 7 is a source/drain/high impurity concentration layer. n channel MO8F
On the ET side, an offset gate 8 made of a single layer of low impurity concentration n formed by LDD&C connects the channel part and the source/drain n+
formed between the layers.

コノヨうなLDD構造を得るために、これまでは第8図
〜第10図に示すような製造方法が採用されている。
In order to obtain a unique LDD structure, a manufacturing method as shown in FIGS. 8 to 10 has been adopted so far.

すなわち、(1)第8図に示すように、絶縁膜3の上に
ゲート(ポリ51)4を形成し、このゲートをマスクに
して低濃度のn不純物イオン打込みを行う。f21第1
図に示すように、ゲート40両側に絶縁物からなるスペ
ーサ6を形成しこのスペーサ6とゲート4をマスクとし
て高濃度n不純物イオン打込みを行う。(3)アニール
(熱処理)を行って第10図に示すようにスペーサ直下
でオフセットゲートn一層8を、スペーサの形成されな
い部分でソース・ドレインn 層7をセルファライン(
自己整合)的に形成する。
That is, (1) as shown in FIG. 8, a gate (poly 51) 4 is formed on the insulating film 3, and low concentration n impurity ions are implanted using the gate as a mask. f21 1st
As shown in the figure, spacers 6 made of an insulator are formed on both sides of the gate 40, and high concentration n impurity ions are implanted using the spacers 6 and the gate 4 as masks. (3) Perform annealing (heat treatment) and as shown in FIG.
self-aligned).

このような従来方法ではオフセラ)n一層8とソース・
ドレインn 層7のためKそれぞれにイオン打込みが必
要である。この例はn−MO8FET単独のLDD構造
であるが、この場合fC4,n−不純物イオン打込みの
ための工程が余分に追加される。C−MOSFETでp
チャネルMO8FETをふくめた単純構造またはnチャ
ネル・pチャネル両方にLDD構造を必要とする場合、
n−不純物イオン打込み、ホトレジスト工程と、p−不
純物イオン打込みとホトレジスト工程がさらに加わって
、工程数がきわめて多くなりコスト高をまぬがれないこ
とが発明者により明らかとされた。
In this conventional method, the offset layer) n layer 8 and the source layer are
For the drain n layer 7, ion implantation is required for each K layer. This example is an LDD structure with only n-MO8FET, but in this case, an extra step for fC4, n- impurity ion implantation is added. p with C-MOSFET
If a simple structure including a channel MO8FET or an LDD structure is required for both n-channel and p-channel,
The inventors have clarified that by adding the n-impurity ion implantation and photoresist process, and the p-impurity ion implantation and photoresist process, the number of processes becomes extremely large, resulting in an unavoidable increase in cost.

〔発明の目的〕[Purpose of the invention]

本発明は上記した問題を克服するため罠なされたもので
、その目的とすることは工程数を倍加することなく通常
のLDD構造を同等の耐圧を得られるMO8半導体装置
の製造方法を提供することにある。
The present invention has been made to overcome the above-mentioned problems, and its purpose is to provide a method for manufacturing an MO8 semiconductor device that can obtain the same breakdown voltage as a normal LDD structure without doubling the number of steps. It is in.

本発明の前記ならびにそのほかの目的と新規な特徴は、
本明細書の記述及び添付図からあきらかになろう。
The above and other objects and novel features of the present invention include:
It will become clear from the description of this specification and the attached drawings.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、半導体基体表面KMO8FETを形成するK
あたりて、たとえばp型半導体基体表面にゲート酸化膜
を介してポリSiからなる絶縁ゲートを形成し、このゲ
ートの両側面に接するスペーサを絶縁材により形成し、
このスペーサを有するゲートをマスク圧して基体表面に
高濃度不純物イオン打込みを行い、その際にスペーサの
厚さを考慮してイオン打込みエネルギを調整することに
より、スペーサの形成されない基板表面にソース・ドレ
インとなる高不純物濃度層を形成すると同時に、スペー
サ直下罠はオフセットとなる低不純物濃度層を形成する
ものであって、この方法により。
That is, K forming the KMO8FET on the semiconductor substrate surface
For example, an insulated gate made of poly-Si is formed on the surface of a p-type semiconductor substrate via a gate oxide film, and spacers in contact with both sides of this gate are formed of an insulating material.
High-concentration impurity ions are implanted into the substrate surface by applying mask pressure to the gate having this spacer, and by adjusting the ion implantation energy taking into account the thickness of the spacer, source and drain can be formed on the substrate surface where no spacer is formed. By this method, a high impurity concentration layer is formed, and at the same time, a low impurity concentration layer is formed as an offset trap immediately below the spacer.

工程数を増加させることなく通常のLDD構造と同等の
対圧を有するMO8半導体装置が得られ。
An MO8 semiconductor device having a counter pressure equivalent to that of a normal LDD structure can be obtained without increasing the number of steps.

前記目的を達成できる。The above objective can be achieved.

〔実施例〕〔Example〕

第1図乃至第5図は本発明の一実施例を示すものであっ
て、LDD構造のnチャネルMO8FETの製造プロセ
スの主要工程断面図である。以下。
1 to 5 show one embodiment of the present invention, and are sectional views of main steps in the manufacturing process of an n-channel MO8FET having an LDD structure. below.

各工程にそって詳述する。Each step will be explained in detail.

(1)第1図において、1は高比抵抗p−型の単結晶S
t基体、2は選択酸化によるアイソレーション酸化物(
Sint)膜、3は熱酸化によりSt基体表面に生成し
たうすい(500〜1000^)ゲート酸化膜、4はポ
リSiゲートであってゲート酸化膜3上に3000A糧
変の厚さに堆積したポリSiをホトエッチにより、所定
のゲート長にバターニングする。
(1) In Figure 1, 1 is a high resistivity p-type single crystal S
t substrate, 2 is isolation oxide (
3 is a thin (500-1000^) gate oxide film generated on the surface of the St substrate by thermal oxidation, and 4 is a poly-Si gate, which is a poly-Si gate deposited on the gate oxide film 3 to a thickness of 3000A. The Si is patterned to a predetermined gate length by photoetching.

(2)スペーサ形成のため第2図に示すように全面KC
VD(化学的気相成長)Kよる絶縁物、たとえば高温低
圧成長法によるシリコン酸化膜、5を形成する。
(2) Full-surface KC as shown in Figure 2 for spacer formation.
An insulator made of VD (Chemical Vapor Deposition) K, such as a silicon oxide film 5, is formed by high temperature and low pressure growth.

(3)たとえばCF4ガス等によるシリコン酸化膜のド
ライエッチを行い、ゲートの側面に接する部分がそれよ
り離れた部分よりエッチされにくい現象を利用して第3
図に示すよ5に、ゲート側面に接する部分をスペーサと
して残し、他のシリコン酸化膜を取り除く。このスペー
サの幅a及び厚さbは2000A程度である。
(3) For example, dry etching the silicon oxide film using CF4 gas, etc., and taking advantage of the phenomenon that the part in contact with the side surface of the gate is less likely to be etched than the part further away, the third
As shown in the figure, the other silicon oxide film is removed, leaving the portion in contact with the side surface of the gate as a spacer. The width a and thickness b of this spacer are about 2000A.

(4)全面にヒ素(As)イオン打込みを行い、第4図
に示すよ5に基体表面Kn型不純物を導入する。このと
きのイオン打込エネルギは400 K e V程度であ
り、アイソレーション酸化膜2及びゲート4がマスクと
なってAsはうすい絶縁膜を通して基体表面に打込まれ
る。この場合、スペーサのない部分ではAsが完全に8
1基体内に高濃度(ドーズ量I X 10 ” Ato
ms−”cy、ビーク2×10 !OAtoms−”c
ln)導入し、スペーサの直下にもわずか(ピーク・ド
ーズ量I X 10 ” Atoms−”cnl)に導
入するように、スペーサ厚、ゲート醸化膜厚等を考慮し
てイオン打込エネルギーを設定するり(5)アニールを
行い、シシコン基体中のAaを拡散して第5図に示すよ
うにソース・ドレインとなるn+廖及びオフセットゲー
トとなるn一層を形成する。
(4) Arsenic (As) ions are implanted into the entire surface, and Kn-type impurities are introduced into the substrate surface at 5 as shown in FIG. The ion implantation energy at this time is about 400 K e V, and the isolation oxide film 2 and gate 4 serve as masks to implant As into the substrate surface through the thin insulating film. In this case, As is completely 8 in the part without spacer.
High concentration (dose amount I x 10” Ato
ms-”cy, beak 2×10!OAtoms-”c
ln), and set the ion implantation energy in consideration of the spacer thickness, gate fostering film thickness, etc. so that the ion implantation energy is introduced just below the spacer (peak dose I x 10"Atoms-"cnl). (5) Annealing is performed to diffuse Aa in the SiSicon substrate to form an n+ layer that will become a source/drain and an n layer that will become an offset gate, as shown in FIG.

(6)  このあと、全面K CV D−8jo2M1
9 k生成し、コンタクトホトな行ってソース・ドレイ
ン部を窓開し、AJを蒸着(スパッタ)、ホトエツチン
グを行ってA2電極10を形成し第6図に示すようなL
DD構造のnチャネルMO3FETを完成する。
(6) After this, the entire surface K CV D-8jo2M1
9k is generated, contact photolithography is performed to open the source/drain regions, AJ is evaporated (sputtered) and photoetched to form the A2 electrode 10, and the L as shown in FIG. 6 is formed.
A DD structure n-channel MO3FET is completed.

〔効果〕〔effect〕

実施例により説明した本発明によれば下記のような効果
がもたらされる。
According to the present invention explained in the examples, the following effects are brought about.

ゲート両側面に接するスペーサの厚さ、ゲート酸化膜の
厚さを考慮してイオン打込みエネルギを設定して不純物
を導入することにより、St基板表面に不純物濃度の高
い領域と低い領域とを従来ならば2回のイオン打込みで
行うところを1回のイオン打込みで選択的に行うことが
できる。すなわち、工aを増加させることなく通常のL
DD構造と同等の耐圧が得られる。たとえばスペーサな
しでイオン打込みした場合耐圧5.0V程度であるがス
ペーサを有効に使用してオフセラ)n一層を設けたこと
により耐圧は8.5〜9.Ovとすることができた。
By introducing impurities by setting the ion implantation energy in consideration of the thickness of the spacer in contact with both sides of the gate and the thickness of the gate oxide film, regions with high impurity concentration and regions with low impurity concentration are created on the St substrate surface, unlike conventional methods. For example, it is possible to perform selective ion implantation with one ion implantation instead of two ion implantations. In other words, normal L without increasing engineering a
A breakdown voltage equivalent to that of the DD structure can be obtained. For example, when ions are implanted without a spacer, the breakdown voltage is about 5.0V, but by effectively using the spacer and providing a single layer, the breakdown voltage is 8.5 to 9. I was able to make it Ov.

以上本発明者によってなされた発明な実施例にもとづき
具体的に説明したが本発明は実施例に限定されるもので
はなく、その要旨を逸脱しない範囲で種々変更可能であ
る。
Although the invention has been specifically described above based on embodiments made by the present inventor, the present invention is not limited to the embodiments, and can be modified in various ways without departing from the gist thereof.

たとえばC−MO8ICにおいて、nチャネルMO8F
ETとpチャネルMO8FETとの両方をLDD構造と
する場合、それぞれ1回の不純物イオン打込みですむか
ら、マスク工程数を大幅に低減することができコスト節
減につながる。
For example, in C-MO8IC, n-channel MO8F
When both the ET and the p-channel MO8FET have an LDD structure, impurity ion implantation is only required once for each, so the number of mask steps can be significantly reduced, leading to cost savings.

〔利用分野〕[Application field]

本発明はnチャネルMO8FET、0MO8IC。 The present invention is an n-channel MO8FET, 0MO8IC.

バイポーラCMO8ICのいずれにも適用することがで
きる。
It can be applied to any bipolar CMO8IC.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第6図は本発明の一実施例プロセスを示す工
程断面図である。 第7図はLDD構造CMO8FETの一例を示す断面図
である。 第8図乃至第10図はこれまでのLDD構造MO8FE
Tのプロセスを示す工程断面図である。 1・・・p”−S i基体、2・・・アイソレージ酋ン
酸化膜、3・・・ゲート酸化膜、4・・・ポリSlゲー
ト、5・・・HLO膜、6・・・スペーサ、7・・・ソ
ース・ドレインn+層、8・・・オフセットゲートn一
層、9・・・C第  1  図 第  2  図 第  3  図 第  7  図 第  8  図
FIGS. 1 to 6 are process cross-sectional views showing one embodiment of the process of the present invention. FIG. 7 is a sectional view showing an example of an LDD structure CMO8FET. Figures 8 to 10 show the conventional LDD structure MO8FE.
It is a process sectional view showing the process of T. DESCRIPTION OF SYMBOLS 1... p''-Si substrate, 2... Isolation oxide film, 3... Gate oxide film, 4... Poly Sl gate, 5... HLO film, 6... Spacer, 7...Source/drain n+ layer, 8...Offset gate n single layer, 9...C Fig. 1 Fig. 2 Fig. 3 Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】 1、半導体基体表面に絶縁ゲート電界効果トランジスタ
を形成するにあたって、第1の導電型の半導体基体の一
主面上に絶縁膜を介してゲートを形成し、上記ゲートの
両側面に接する絶縁物からなるスペーサを形成し、次い
で、上記ゲートをマスクにして基体表面に高濃度不純物
イオン打込みを行い、その際にスペーサの厚さを考慮し
てイオン打込みエネルギを調整することにより、スペー
サの形成されない基板表面部分でソース・ドレインとな
る低比抵抗層を形成するとともにスペーサ直下では高比
抵抗層を形成することを特徴とする絶縁ゲート半導体装
置の製造方法。 2、上記スペーサは化学的気相成長法による絶縁物をゲ
ートを覆って全面に形成したのち、全面エッチすること
により、ゲートの両側面に接する部分でスペーサ分を自
己整合的に残存させるものである特許請求の範囲第1項
に記載の絶縁ゲート半導体装置の製造方法。
[Claims] 1. In forming an insulated gate field effect transistor on the surface of a semiconductor substrate, a gate is formed on one main surface of the semiconductor substrate of the first conductivity type with an insulating film interposed therebetween, and both sides of the gate are By forming a spacer made of an insulator in contact with the surface, and then implanting high-concentration impurity ions into the substrate surface using the gate as a mask, adjusting the ion implantation energy in consideration of the thickness of the spacer. A method for manufacturing an insulated gate semiconductor device, comprising forming a low resistivity layer serving as a source/drain in a surface portion of a substrate where a spacer is not formed, and forming a high resistivity layer immediately below the spacer. 2. The above spacer is made by forming an insulator over the entire surface of the gate using chemical vapor deposition, and then etching the entire surface, so that the spacer remains in a self-aligned manner at the portions that contact both sides of the gate. A method for manufacturing an insulated gate semiconductor device according to claim 1.
JP60204227A 1985-09-18 1985-09-18 Manufacture of insulated-gate type semiconductor device Pending JPS6265465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60204227A JPS6265465A (en) 1985-09-18 1985-09-18 Manufacture of insulated-gate type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204227A JPS6265465A (en) 1985-09-18 1985-09-18 Manufacture of insulated-gate type semiconductor device

Publications (1)

Publication Number Publication Date
JPS6265465A true JPS6265465A (en) 1987-03-24

Family

ID=16486942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204227A Pending JPS6265465A (en) 1985-09-18 1985-09-18 Manufacture of insulated-gate type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6265465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252123A (en) * 2008-06-18 2008-10-16 Canon Inc Solid-state imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008252123A (en) * 2008-06-18 2008-10-16 Canon Inc Solid-state imaging device

Similar Documents

Publication Publication Date Title
JP3007437B2 (en) Method for manufacturing CMOS device
JPH0212836A (en) Manufacture of semiconductor device
JPH0653168A (en) Manufacture of titanium silicide contact
JPH02271673A (en) Semiconductor device
JPH09190983A (en) Manufacture of semiconductor device
JP2629995B2 (en) Thin film transistor
JPH0147016B2 (en)
JPH0519979B2 (en)
JPS6258682A (en) Insulated gate semiconductor device and manufacture thereof
JPS6265465A (en) Manufacture of insulated-gate type semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JPS60263468A (en) Manufacture of semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
JPH0684939A (en) Manufacture of mis field-effect semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JPH01191473A (en) Manufacture of semiconductor device
JPH02208943A (en) Manufacture of silicon thin film semiconductor device
KR0135040B1 (en) Fabrication method of mosfet
JP2712230B2 (en) Method for manufacturing MOS type semiconductor device
JPS6258681A (en) Insulated gate semiconductor device and manufacture thereof
JPS59150477A (en) Manufacture of semiconductor device
JPH0590574A (en) Semiconductor device
JPH08241930A (en) Manufacture of semiconductor device
JPH04346233A (en) Mos transistor and manufacture thereof