JPH02208943A - Manufacture of silicon thin film semiconductor device - Google Patents

Manufacture of silicon thin film semiconductor device

Info

Publication number
JPH02208943A
JPH02208943A JP2939189A JP2939189A JPH02208943A JP H02208943 A JPH02208943 A JP H02208943A JP 2939189 A JP2939189 A JP 2939189A JP 2939189 A JP2939189 A JP 2939189A JP H02208943 A JPH02208943 A JP H02208943A
Authority
JP
Japan
Prior art keywords
thin film
wiring
region
fet
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2939189A
Other languages
Japanese (ja)
Inventor
Hiroyuki Tanaka
浩行 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2939189A priority Critical patent/JPH02208943A/en
Publication of JPH02208943A publication Critical patent/JPH02208943A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the cutting of a wiring due to steps by a method wherein oxygen ions or nitrogen ions are implanted to form insulating regions in a thin film and a FET operating region is separated individually in a state that there is no step. CONSTITUTION:A poly silicon thin film 11 is formed on an insulative substrate 10 and a mask 12 is formed to a region to become a FET operating region in the film 11. In a state that the mask 12 is formed, an ion implantation of oxygen ions or nitrogen ions is totally performed as shown by arrows 13 and the regions other than the FET operating region of the film 11 are converted into an insulator and are used as insulating regions 11a. Thereby, steps are never generated on the film 11 at all and the FET operating region 11b separated individually by the regions 11a is formed. Moreover, each electrode, a wiring and an insulating film are formed on the region 11b to form a FET. Thereby, at the time of an electrode wiring treatment and the like, the generation of steps is eliminated and the cutting due to steps of the wiring can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えばファクシミリ、イメージスキャナ等に
おけるセンサ駆動用TFT (薄膜トランジシスタ)或
いはフラットパネル型デイスプレィ駆動用TPT等とし
て用いられるMOS  FET(電界効果型トランジス
タ)なるシリコン薄膜半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a MOS FET (field effect type The present invention relates to a method of manufacturing a silicon thin film semiconductor device (transistor).

従来の技術 従来、TPT構成のMOS  FETとして、第3図及
び第4図に示すように、ソース電極&配線l、ドレイン
電極&配線2及びゲート電極3をともにシリコンによる
半導体薄膜4の上部に形成するようにしたものがある。
BACKGROUND ART Conventionally, as shown in FIGS. 3 and 4, in a TPT-structured MOS FET, a source electrode and wiring 1, a drain electrode and wiring 2, and a gate electrode 3 are all formed on a semiconductor thin film 4 made of silicon. There is something I tried to do.

その製造方法をみると、特開昭58−28871号公報
中の従来例として示されるように、まず、石英等の絶縁
性基板5上に半導体薄膜4を島状に形成する。次に、こ
の半導体薄膜4及び絶縁性基板5の全面を絶縁膜6で覆
い、これをゲート絶縁膜とする。そして、半導体薄膜4
の島を横切る形でゲート電極3を形成し、さらに、これ
らの上面を全面的に厚めの層間絶縁膜7で覆う。次に、
これらの絶縁膜6,7の適所にコンタクトホール8を形
成し、ソース電極&配線l、ドレイン電極&配線2及び
ゲート電極用配線9を形成するというものである。
Looking at its manufacturing method, as shown in a conventional example in Japanese Patent Application Laid-Open No. 58-28871, first, a semiconductor thin film 4 is formed in the form of an island on an insulating substrate 5 such as quartz. Next, the entire surface of this semiconductor thin film 4 and insulating substrate 5 is covered with an insulating film 6, which is used as a gate insulating film. And the semiconductor thin film 4
A gate electrode 3 is formed across the island, and furthermore, the upper surface thereof is entirely covered with a thick interlayer insulating film 7. next,
Contact holes 8 are formed at appropriate locations in these insulating films 6 and 7, and a source electrode and wiring 1, a drain electrode and wiring 2, and a gate electrode wiring 9 are formed.

このような製造方法によると、半導体薄膜4の島状領域
を横切ってゲート電極3を形成するため、ゲート電極3
・半導体薄膜4間の絶縁性をよくするにはゲート絶縁膜
6を厚くしなければならない。
According to such a manufacturing method, since the gate electrode 3 is formed across the island-like region of the semiconductor thin film 4, the gate electrode 3
- In order to improve the insulation between the semiconductor thin films 4, the gate insulating film 6 must be made thicker.

また、ゲート電極3や各配線1,2.9の段切れを防止
するためには半導体薄膜4をより薄膜化し、かつ、その
島状部分の側面を傾斜させ、かつ、ゲート電極3や各配
線1,2.9を厚めにしなければならない。しかし、こ
のような対処法によると、微細な寸法の電極、配線を正
確に形成することが難しくなり、高集積化を図る上で不
利となる。
In addition, in order to prevent the gate electrode 3 and each wiring 1, 2.9 from breaking, the semiconductor thin film 4 is made thinner, the side surfaces of the island-like portions are inclined, and the gate electrode 3 and each wiring 1, 2.9 are made thinner. 1, 2.9 must be made thicker. However, according to such a countermeasure, it becomes difficult to accurately form electrodes and wiring with minute dimensions, which is disadvantageous in achieving high integration.

このようなことから、例えば上記特開昭58−2887
1号公報に示されるように、半導体薄膜の島状領域を、
FETとしての動作領域のみに形成するのではなく、ソ
ース、ドレイン及びゲート電極及びこれらの電極につな
がる配線全体の下部領域に対しても残して形成し、この
内、動作領域以外の領域については酸素イオンや窒素イ
オンの注入により絶縁化するようにしたものがある。こ
れにより、FET動作領域において素子の段差が少なく
なって段切れが軽減され、かつ、ゲート電極を薄くする
ことが可能でFETのしきい値電圧を下げ得るというも
のである。
For this reason, for example, the above-mentioned Japanese Patent Application Laid-Open No. 58-2887
As shown in Publication No. 1, an island-like region of a semiconductor thin film is
It is not only formed in the operating region of the FET, but also in the lower region of the source, drain, and gate electrodes as well as the entire wiring connected to these electrodes. Some are insulated by implanting ions or nitrogen ions. As a result, the step difference in the element in the FET operating region is reduced, reducing step breakage, and the gate electrode can be made thinner, thereby lowering the threshold voltage of the FET.

また、特開昭59−18672号公報に示されるように
、絶縁性基板上に多結晶シリコン薄膜を形成し、FET
動作領域以外の領域を選択的に熱酸化してFET動作領
域の分離を行うようにしたものもある。これにより、素
子の段差が少なくされ、段切れを減らし得るというもの
である。
Furthermore, as shown in Japanese Patent Application Laid-Open No. 59-18672, a polycrystalline silicon thin film is formed on an insulating substrate, and FET
Some devices separate the FET operating region by selectively thermally oxidizing regions other than the operating region. As a result, the level difference in the element can be reduced and the number of level breaks can be reduced.

発明が解決しようとする課題 ところが、前者の特開昭58−28871号公報方法に
よる場合、配線の下部の半導体薄膜のみを残して絶縁化
するため、配線が交差する部分においては、第3図等に
示す従来方式よりも段差が大きくなってしまう。さらに
、動作領域と配線の下部に半導体薄膜を残すための工程
も必要であり、量産的にも不利である。
Problem to be Solved by the Invention However, in the case of the former method disclosed in Japanese Unexamined Patent Publication No. 58-28871, only the semiconductor thin film under the wiring is left and insulated. The difference in level is larger than that of the conventional method shown in . Furthermore, a process for leaving a semiconductor thin film in the operating area and below the wiring is also required, which is disadvantageous in terms of mass production.

また、特開昭59−18672号公報方式による場合、
選択熱酸化というプロセスを用いているため、プロセス
全体の低温化を図る上で不利となる。
In addition, in the case of using the method disclosed in Japanese Patent Application Laid-Open No. 59-18672,
Since it uses a process called selective thermal oxidation, it is disadvantageous in terms of lowering the temperature of the entire process.

課題を解決するための手段 絶縁性基板の表面にシリコン薄膜を形成し、このシリコ
ン薄膜中のFET動作領域以外の領域に対して酸素イオ
ン又は窒素イオンを注入して絶縁化し、この絶縁領域に
よりシリコン薄膜中に個別化されたFET動作領域を形
成し、個別化されたこのFET動作領域についてFET
を形成するようにした。
Means for Solving the Problem A silicon thin film is formed on the surface of an insulating substrate, and oxygen ions or nitrogen ions are implanted into the silicon thin film to insulate the region other than the FET operating region. forming an individualized FET operating region in the thin film;
.

作用 絶縁性基板上に形成されたシリコン薄膜についての部分
的なイオン注入法による絶縁化処理により、絶縁領域を
形成して、FET動作領域を段差の全くない状態で個別
化しているので、このようなFET動作領域に対する電
極配線処理等に際して、段切れの生ずる可能性が殆どな
くなる。これは、配線交差部等についても同様であり、
必然的な最小限の段差による交差に抑えることができ、
段切れが防止される。このためにも、酸素イオン等のイ
オン注入法による絶縁化処理によるため、プロセスの低
温化も可能となる。
The silicon thin film formed on the active insulating substrate is partially insulated by ion implantation to form insulating regions and the FET operating regions are separated without any steps. There is almost no possibility of disconnection occurring during electrode wiring processing for a FET operating area. This also applies to wiring intersections, etc.
It is possible to keep intersections to the minimum necessary level difference,
Step breakage is prevented. For this purpose as well, since insulation treatment is performed by ion implantation of oxygen ions, etc., it is also possible to lower the process temperature.

実施例 本発明の一実施例を第1図及び第2図に基づいて説明す
る。
Embodiment An embodiment of the present invention will be explained based on FIGS. 1 and 2.

第1図は本実施例方法の原理を示すもので、まず、同図
(a)に示すように石英等の絶縁性基板lOの表面上に
シリコン薄膜として、例えば多結晶シリコン薄膜11を
形成する。このような多結晶シリコン薄膜11の内でF
ET動作領域となる領域に対してマスク12を形成する
。このようなマスク12は例えばスパッタ法によるSi
n、膜として形成される。このようなマスク12が形成
された状態で、矢印13で示すように、全面的に酸素イ
オン又は窒素イオンの注入を行う。これにより、多結晶
シリコン薄膜11はマスク12で覆われたFET動作領
域以外の領域が同図(b)に示すように絶縁化されて絶
縁領域tiaとなる。絶縁化のためのイオン注入は、加
速電圧を変えて数回又は1回行い、絶縁領域11aを完
全に絶縁化する。第1図(b)に示すように絶縁領域1
1aが形成された状態では、多結晶シリコン薄膜11に
全く段差を生ずることなく、絶縁領域11aにより個別
化されたFET動作領域11bが形成されることになる
。よって、この後は、FET動作領域11bについて従
来法等に準じて各電極、配線、絶縁膜等を形成すること
によりFETを作製すればよいことになる。
FIG. 1 shows the principle of this embodiment method. First, as shown in FIG. 1(a), a polycrystalline silicon thin film 11, for example, is formed as a silicon thin film on the surface of an insulating substrate lO made of quartz or the like. . In such a polycrystalline silicon thin film 11, F
A mask 12 is formed over a region that will become an ET operation region. Such a mask 12 is made of Si, for example, by sputtering.
n, formed as a film. With such a mask 12 formed, oxygen ions or nitrogen ions are implanted over the entire surface as shown by arrows 13. As a result, the region of the polycrystalline silicon thin film 11 other than the FET operating region covered by the mask 12 is insulated and becomes an insulating region tia, as shown in FIG. 3(b). Ion implantation for insulation is performed several times or once while changing the acceleration voltage to completely insulate the insulation region 11a. Insulating region 1 as shown in FIG. 1(b)
1a is formed, no step is formed in the polycrystalline silicon thin film 11, and individualized FET operating regions 11b are formed by the insulating regions 11a. Therefore, after this, the FET can be manufactured by forming each electrode, wiring, insulating film, etc. in the FET operating region 11b according to the conventional method.

第2図には、このように個別化されるFET動作領域1
1bの形成を含むFET作製プロセスの一例を示す。ま
ず、絶縁性基板11として石英板を用い、その表面上に
多結晶シリコン簿gzを減圧CVD法により堆積形成す
る。この時、基板温度は630℃、膜厚は1000人と
した。このような多結晶シリコン薄膜ll上にRFスパ
ッタ装置によりSin、を膜厚800Aに堆積形成し、
フォトリソグラフィ法によりパターニングし、これをイ
オン注入による絶縁化のためのマスク12とする。この
後で、酸素イオンを加速電圧30keV、  ドーズ量
1 、 OX 10”am−”で注入させ(イオン注入
13)、マスク12で覆われたFET動作領域11b以
外の領域の多結晶シリコン薄膜11を絶縁化する。これ
により、絶縁領域11aを形成し、FET動作領域11
bを個別化する。
FIG. 2 shows the FET operating region 1 that is individualized in this way.
An example of a FET fabrication process including the formation of 1b is shown. First, a quartz plate is used as the insulating substrate 11, and a polycrystalline silicon film gz is deposited on the surface thereof by low pressure CVD. At this time, the substrate temperature was 630° C. and the film thickness was 1000. On such a polycrystalline silicon thin film II, a film of Sin was deposited to a thickness of 800A using an RF sputtering device.
It is patterned by photolithography and used as a mask 12 for insulation by ion implantation. After this, oxygen ions are implanted at an acceleration voltage of 30 keV, a dose of 1, and OX 10 "am-" (ion implantation 13), and the polycrystalline silicon thin film 11 in the region other than the FET operating region 11b covered with the mask 12 is implanted. Insulate. As a result, an insulating region 11a is formed, and an FET operating region 11 is formed.
Individualize b.

次に、同図(b)に示すように、マスク12をそのまま
ゲート絶縁膜として用いてその上にゲート電極14を多
結晶シリコンにより形成する。また、マスク(ゲート絶
縁膜)12なるSin、膜を通るように、加速電圧30
keV、ドーズ量1.0×10“’cm−′にてボロン
イオンの注入15を行い、多結晶シリコン薄膜11にお
けるFET動作領域11b中のソース及びドレインへ不
純物を打ち込む。
Next, as shown in FIG. 2B, using the mask 12 as it is as a gate insulating film, a gate electrode 14 is formed from polycrystalline silicon thereon. In addition, an acceleration voltage of 30
Boron ions are implanted 15 at keV and at a dose of 1.0×10 cm − , and impurities are implanted into the source and drain in the FET operating region 11 b of the polycrystalline silicon thin film 11 .

そして、同図(C)に示すように、これらの上に層間絶
縁膜16を膜厚5000人にて堆積させ、ソース、ドレ
イン箇所にコンタクトホール17を形成する。この上に
、AQを5000人の膜厚で堆積させバターニングして
、ソース電極&配線18及びドレイン電極&配線19を
形成する。ゲート電極14に対するゲート電極用配線に
ついても同様である。
Then, as shown in FIG. 3C, an interlayer insulating film 16 is deposited on these to a thickness of 5,000 yen, and contact holes 17 are formed at the source and drain locations. On top of this, AQ is deposited to a thickness of 5,000 yen and patterned to form a source electrode and wiring 18 and a drain electrode and wiring 19. The same applies to the gate electrode wiring for the gate electrode 14.

このように、本実施例によれば、FET動作領域11b
はそれ以外の全領域をなして残存する絶縁領域11aと
の間で全く段差のないものとなる。
In this way, according to this embodiment, the FET operating region 11b
There is no difference in level between the remaining insulating region 11a and the remaining insulating region 11a.

つまり、絶縁性基板の一部を凹ませてこの凹部にのみ半
導体薄膜を堆積させて基板表面と同一表面となるFET
動作領域を形成したと仮定したものと等測的なものとな
り、配線全体の下部も含めてFET動作領域11b等が
絶縁性基板10上で島状となって存在することはない。
In other words, a part of the insulating substrate is recessed, and a semiconductor thin film is deposited only in this recess, so that the surface becomes the same as the substrate surface.
This is equivalent to the assumption that an operating region is formed, and the FET operating region 11b, etc., including the lower part of the entire wiring, does not exist as an island on the insulating substrate 10.

この結果、ゲート電極や各配線が、従来のように、半導
体の島状領域を横切ったり、その段差を越えるといった
ことがなくなり、段切れの生ずる可能性が殆どなくなる
。即ち、配線部以外の領域についても多結晶シリコン薄
膜11が絶縁領域11aとして残っているので、配線の
交差部における段差もその交差部での下部配線側の膜厚
のみとなるからである。
As a result, the gate electrode and each wiring no longer cross the semiconductor island-like region or cross the step difference, as in the conventional case, and there is almost no possibility of step breakage occurring. That is, since the polycrystalline silicon thin film 11 remains as the insulating region 11a in areas other than the wiring portion, the step difference at the intersection of the wiring is only the film thickness on the lower wiring side at the intersection.

Claims (1)

【特許請求の範囲】[Claims] 絶縁性基板の表面にシリコン薄膜を形成し、このシリコ
ン薄膜中のFET動作領域以外の領域に対して酸素イオ
ン又は窒素イオンを注入して絶縁化し、この絶縁領域に
よりシリコン薄膜中に個別化されたFET動作領域を形
成し、個別化されたこのFET動作領域についてFET
を形成するようにしたことを特徴とするシリコン薄膜半
導体装置の製造方法。
A silicon thin film is formed on the surface of an insulating substrate, and oxygen ions or nitrogen ions are injected into regions other than the FET operating region in this silicon thin film to insulate them. The FET operating region is formed and the FET operating region is individualized.
1. A method of manufacturing a silicon thin film semiconductor device, characterized in that a silicon thin film semiconductor device is formed.
JP2939189A 1989-02-08 1989-02-08 Manufacture of silicon thin film semiconductor device Pending JPH02208943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2939189A JPH02208943A (en) 1989-02-08 1989-02-08 Manufacture of silicon thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2939189A JPH02208943A (en) 1989-02-08 1989-02-08 Manufacture of silicon thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPH02208943A true JPH02208943A (en) 1990-08-20

Family

ID=12274843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2939189A Pending JPH02208943A (en) 1989-02-08 1989-02-08 Manufacture of silicon thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPH02208943A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318110A (en) * 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for fabricating semiconductor device
JP2016051184A (en) * 2014-09-01 2016-04-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device and manufacturing method thereof
US10505157B2 (en) 2014-09-01 2019-12-10 Samsung Display Co., Ltd. Display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828871A (en) * 1981-08-12 1983-02-19 Toshiba Corp Manufacture of silicon thin film semiconductor device
JPS58151057A (en) * 1982-03-02 1983-09-08 Toshiba Corp Preparation of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828871A (en) * 1981-08-12 1983-02-19 Toshiba Corp Manufacture of silicon thin film semiconductor device
JPS58151057A (en) * 1982-03-02 1983-09-08 Toshiba Corp Preparation of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007318110A (en) * 2006-04-28 2007-12-06 Semiconductor Energy Lab Co Ltd Semiconductor device, and method for fabricating semiconductor device
JP2016051184A (en) * 2014-09-01 2016-04-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Organic light-emitting display device and manufacturing method thereof
US10505157B2 (en) 2014-09-01 2019-12-10 Samsung Display Co., Ltd. Display device
US10818880B2 (en) 2014-09-01 2020-10-27 Samsung Display Co., Ltd. Display device
US11696485B2 (en) 2014-09-01 2023-07-04 Samsung Display Co., Ltd. Display device with driving voltage line overlapping gate electrode to form storage capacitor

Similar Documents

Publication Publication Date Title
US5283455A (en) Thin film field effect element having an LDD structure
JPS638622B2 (en)
JPH0212836A (en) Manufacture of semiconductor device
JP2635809B2 (en) Semiconductor device and manufacturing method thereof
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JPH03218637A (en) Field-effect semiconductor device and manufacture thereof
JPS63293850A (en) Manufacture of semiconductor device
JPS63205944A (en) Manufacture of mos integrated circuit
JPH02208943A (en) Manufacture of silicon thin film semiconductor device
JPH07183528A (en) Thin film transistor
JPH1064898A (en) Manufacturing method of semiconductor device
JPH04154162A (en) Manufacture of mos-type semiconductor device
JPH03227024A (en) Manufacture of semiconductor device
JPS6197975A (en) Manufacture of semiconductor device
JPS61241966A (en) Semiconductor device and manufacture thereof
JPS6161463A (en) Semiconductor integrated circuit element and manufacture thereof
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
JPH07131028A (en) Fabrication of thin film transistor
JPH0567634A (en) Manufacture of mis type semiconductor device
JPH04359562A (en) Thin film transistor and manufacture thereof
JPH04369261A (en) Manufacture of semiconductor device
JPS626664B2 (en)
JPH02197173A (en) Semiconductor device
JPH10209429A (en) Tft semiconductor device and manufacture thereof
JPS60133755A (en) Manufacture of semiconductor device