JPS58151057A - Preparation of semiconductor device - Google Patents

Preparation of semiconductor device

Info

Publication number
JPS58151057A
JPS58151057A JP3274082A JP3274082A JPS58151057A JP S58151057 A JPS58151057 A JP S58151057A JP 3274082 A JP3274082 A JP 3274082A JP 3274082 A JP3274082 A JP 3274082A JP S58151057 A JPS58151057 A JP S58151057A
Authority
JP
Japan
Prior art keywords
layer
substrate
silicon layer
single crystal
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3274082A
Other languages
Japanese (ja)
Inventor
Moriya Nakahara
中原 守弥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP3274082A priority Critical patent/JPS58151057A/en
Publication of JPS58151057A publication Critical patent/JPS58151057A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a device having flat surface and less interface leak current through the formation of insulated land layers by implanting any of O, N and C to the epitaxial layer on an Si substrate with an insulating layer used as the mask. CONSTITUTION:A single crystal Si 22 is epitaxially formed on a sapphire substrate 21, the O ion is implanted twice by changing an acceleration voltage with SiO2 23' used as the mask, thereby peak concentration of O can be obtained at the lower layer of the layer 22 and at the surface of substrate 21 and concentration becomes almost zero at the intermediate portion of layer 22. When, an element is processed at 1,000 deg.C under the ambient N2, an SiO2 film 24 is formed at the lower layer portion. Since O ion is implanted at the entire part of the peripheral layer 22, an SiO2 film 25 can be obtained at the entire part. The mask 23' is removed, and a gate oxide film 28, poly-Si gate electrode 27, n<+> type source, drain 29, 30, and SiO2 film 31, electrode 32 are formed sequentially. A self-diffusion of Al from the substrate 21 is rejected because of existence of the SiO2 film 24 and thermal oxidation time is drastically curtailed. Thereby, lateral diffusion of O2 during thermal oxidation is suppressed, leak current is reduced and moreover the surface becomes flat.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to a method for manufacturing a semiconductor device.

〔発明の技術的胃景とその問題点〕[Technical overview of the invention and its problems]

周知の如く、単結晶絶縁基板例えばサファイア基板上に
シリコン層をエピタキシャル成長させた、いわゆる80
g (1iili*@m @n 8appkire )
基板上に半導体集積回路を形成した半導体装置において
は、集積回路を形成している各々の半導体素子を互いに
電気的に分離する必要がある。
As is well known, the so-called 800 nm silicon layer is epitaxially grown on a single crystal insulating substrate such as a sapphire substrate.
g (1iiili*@m @n 8appkire)
In a semiconductor device in which a semiconductor integrated circuit is formed on a substrate, it is necessary to electrically isolate each semiconductor element forming the integrated circuit from each other.

そして、g08基板を用いた素子分離技術は、バルクシ
リコン基板を用いたそれと比べて一般に容易でTo)、
かつ完全に素子分離を行うことができ石といわれている
Furthermore, element isolation technology using a G08 substrate is generally easier than that using a bulk silicon substrate.
Moreover, it is said to be the best because it can perform complete element isolation.

とコロテ、従来808基板を用いた808 g MO1
!トランジスタは、第1図(a)〜(c) K示す如く
製造されている。まず、単結晶絶縁基板例えばナファイ
ア基板1上にシリコン層2を成長させ、このシリコン層
2上に熱酸化膜、813N4膜(夫々図示せず)を順次
形成する。つづいて、常法によ〕前記111.N4g、
酸化膜を順次/fター二ンダして素子領域形成予定部が
残存した81.N4i[Δターン3、酸化膜/臂ターン
番を夫々形成した。
and Corote, 808 g MO1 using conventional 808 substrate
! The transistor is manufactured as shown in FIGS. 1(a)-(c)K. First, a silicon layer 2 is grown on a single crystal insulating substrate, such as a Naphire substrate 1, and a thermal oxide film and an 813N4 film (not shown) are sequentially formed on this silicon layer 2. Continuing, according to the usual method] 111 above. N4g,
81. The oxide film was sequentially/f-tarned and the portion where the element region was to be formed remained. N4i [Δ turn 3 and oxide film/arm turn number were formed, respectively.

次に、これら/4ターンをマスクとして露出し走シリコ
ン層2を厚み方向に半分程度異方性工。
Next, by exposing these /4 turns as a mask, the silicon layer 2 is anisotropically etched by about half in the thickness direction.

チンダ液を用いて工、チンダ除去す漬(第1図(a)W
J示)。次に、駿嵩宴囲気中で高置長時間の熱処理を行
い、露出し−にシリコン層2領域にフィールド酸化1[
Jを形成し、その後81−4馬−ターンJ、酸化j[/
fターフ4を除去する(jllllaACb)図示)。
Processing using a tinde solution, and soaking in a tinda solution (Fig. 1 (a) W
J). Next, field oxidation 1[
J, then 81-4 horse-turn J, oxidized j[/
Remove f-Turf 4 (jllllaACb) (as shown).

次いで、熱処lをして酸化膜(図示ぜず)を形成し先後
、全mに不純物ドープ多結晶シリコン層(図示せず)を
堆積する。この後、前記多結晶シリコン層04ターニン
グを行ってr−)電極Cを形成し、このf−)電極Cを
マスクとして前記酸化膜をエツチングしてr−)酸化膜
rを形成する。つづいて、r−)電極6、フィールド酸
化@lをマスクとしてn1ll不純物を前記シリコン層
2にイオン注入してII+gのソース、?レイン領域1
.#を形成する。更に1全面にCVD−酸化膜1−を威
長しえ後、常法によシソース、ドレイン領域I、#に対
応するCVD−酸化膜10部分の開孔、金属層の蒸着、
Δターニングを行って、ソース、ドレイン領域1,9に
接続する電@11.11を有する8081ml MOj
i )ランジスタを製造する(第1図(、)図示)。
Next, a heat treatment is performed to form an oxide film (not shown), and then an impurity-doped polycrystalline silicon layer (not shown) is deposited over the entire length. Thereafter, the polycrystalline silicon layer 04 is turned to form an r-) electrode C, and the oxide film is etched using the f-) electrode C as a mask to form an r-) oxide film r. Subsequently, using the r-) electrode 6 and field oxidation @l as a mask, n1ll impurities are ion-implanted into the silicon layer 2 to form a source of II+g, ? Rain area 1
.. Form #. After further depositing the CVD oxide film 1 on the entire surface, holes are formed in the CVD oxide film 10 corresponding to the source and drain regions I and #, and a metal layer is deposited by a conventional method.
8081ml MOj with electric potential @11.11 connected to source and drain regions 1 and 9 by Δ turning
i) Manufacture a transistor (as shown in FIG. 1(,)).

前述し友製造方法によれば、ナファイア基板1及び絶縁
化したフィールド酸化111によって各半導体素子を島
状化する丸め、各素子の電気的分離を完全く行なえると
ともに、前記素子をシリコン層2内に極込んで形成する
ため得られるデバイス表面を平坦化できる。しかしなが
ら、前述の如く製造畜れ九嬉1図(譬)図示の808型
MOg )ツンジスタにおいては、シイールド酸化膜5
の形成に際して高温長時間の熱処理を行うため、ナファ
イア基板1からシリコン層2へムIが混入しくオートド
−♂ンダ)、ナファイア基板lとシリコン層2との界i
1に結晶欠陥が存在する。従うて、動作時にソース、ド
レイン領域8.り間に界面リーク電流が発生し、v4動
作の原因となろ。を九、熱処理が長時間にわ九るため、
フィールド酸化膜1がトランジスタ領域形成予定部まで
拡がる。従?て、予めトランジスタ領域形成予定部を設
計値よシ広くとる必要があり、黴細な素子形成が困難で
6つ九。
According to the above-mentioned manufacturing method, it is possible to round each semiconductor element into an island shape by using the Napphire substrate 1 and the insulated field oxide 111, and to completely electrically isolate each element, and also to separate the semiconductor elements within the silicon layer 2. Since the device is formed with high density, the surface of the resulting device can be flattened. However, as mentioned above, the shield oxide film 5 of the 808 type MOg
Because heat treatment is carried out at high temperatures and for a long time during the formation of the silicon layer 2, the material from the Naphire substrate 1 to the silicon layer 2 (auto-doder) is mixed, and the boundary between the Naphire substrate 1 and the silicon layer 2 is
1 has crystal defects. Therefore, during operation, the source and drain regions 8. An interfacial leakage current will occur during this time, causing v4 operation. Nine, because the heat treatment lasts for a long time,
Field oxide film 1 extends to a portion where a transistor region is to be formed. Follow? Therefore, it is necessary to make the area where the transistor region is to be formed wider than the design value, which makes it difficult to form microscopic elements.

一方、従来第11ilK示す如く、バルクシリコン基板
上に絶縁層を介して素子が形成された確実な素子分離を
図フ*MO8)ッンジスタが提案されている。このMo
l )ランジスタの製造方法について説明す為。tず、
シリ171911表面に酸素イオン等をそのsI度ピー
クが前記基板119面から所定の位置にくるようにイオ
ン注入する。つづいて、熱処理を細し、イオン注入され
た基板1jl1分を絶縁化して基板12内部に酸化膜1
1を形成する。次に、絶縁化されない基板ixs面を種
結晶としてエピタキシャル成長させシリコン層14を形
成する。この後、前述した従来の1aDI )ランジス
タの製造方法と同様にして所望のMol )ランジスタ
を製造する。
On the other hand, as shown in No. 11K, a resistor has been proposed in which elements are formed on a bulk silicon substrate with an insulating layer interposed therebetween to achieve reliable element isolation. This Mo
l) To explain the manufacturing method of transistors. tzu,
Oxygen ions or the like are implanted into the surface of the silicon 171911 so that the sI degree peak is at a predetermined position from the surface of the substrate 119. Next, the heat treatment is reduced, the ion-implanted substrate 1jl1 is insulated, and an oxide film 1 is formed inside the substrate 12.
form 1. Next, a silicon layer 14 is formed by epitaxial growth using the non-insulated substrate ixs surface as a seed crystal. Thereafter, a desired Mol 2 ) transistor is manufactured in the same manner as the conventional 1aDI 2 ) transistor manufacturing method described above.

しかしながら、前述し九製造方法によれば、酸化膜11
の膜厚が数千lでTohため、トランジスタ領域とシv
:Iン基I[12とに大暑な静電容量が発生し動作上問
題があり九。eシ、酸化膜11の膜厚はイオン注入の際
の加速電圧を変えることKよって厚くすることができる
が、作業性の点から問題があった。
However, according to the ninth manufacturing method described above, the oxide film 11
Since the film thickness is several thousand liters, the transistor area and the
:In group I [12] A large amount of capacitance occurs, causing operational problems.9. Although the thickness of the oxide film 11 can be increased by changing the accelerating voltage during ion implantation, there is a problem in terms of workability.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、デバイス表
面を平坦化することは勿論のこと、単結晶絶縁基板と単
結晶半導体層との界[K存する結晶欠陥に基因する界面
リーク電流の発生を減少し先手導体装置の製造方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances, and is capable of flattening the device surface as well as generating interfacial leakage current due to crystal defects existing at the interface between the single crystal insulating substrate and the single crystal semiconductor layer. It is an object of the present invention to provide a method for manufacturing a leading conductor device.

〔発明の概要〕[Summary of the invention]

本発明は、単結晶絶縁基板上に単結晶半導体層をエピタ
キシャル成長させ、前記単結晶半導体層上に絶縁属を形
成し、更にこの絶縁膜を選択的に開孔し先後、前記絶縁
膜を通して前記単結晶半導体層上mに酸素あるいは窒素
あるいは炭素をイオン注入して注入された部分を絶縁化
するととによって、素子を島状とし、これKよ)素子の
一気的分離、及び単結晶絶縁基板と単結晶半導体層との
界面の結晶欠陥に起因する界面リーク電流の発生阻止を
図ったものである。
The present invention epitaxially grows a single-crystal semiconductor layer on a single-crystal insulating substrate, forms an insulating layer on the single-crystal semiconductor layer, selectively opens holes in this insulating film, and then passes the insulating film through the single-crystal semiconductor layer. By implanting oxygen, nitrogen, or carbon ions onto the crystalline semiconductor layer and insulating the implanted portion, the device is made into an island shape. This is intended to prevent interfacial leakage current caused by crystal defects at the interface with the crystalline semiconductor layer.

〔発明の実施例〕[Embodiments of the invention]

本発明をgos II Mol )ツンジスタに適用し
た場合について第111!k) 〜(f)、11141
1!(a) 〜<e)IK基づいて説明する。
No. 111 regarding the case where the present invention is applied to gos II Mol) Thungista! k) ~(f), 11141
1! (a) ~<e) Explanation will be made based on IK.

実j1mfll 〔1〕まず、ナファイア基4[21上に単結晶シリコン
層22を厚−!800G11i度エピタキシャル成長し
九、つづいて、前記単結晶シリコン層j j 上K C
VD −110,llj Jを厚130001程変堆積
し九(第5Ill■図示)。次いで、写真蝕刻法により
m記110.属2Jをトランジスタ領域形成予定部の与
エツチング除去して110□膜/4fi−711’tf
ll威し*<wS図図体図示)。
[1] First, a single crystal silicon layer 22 is thickly deposited on the Naphire group 4 [21]. 800G 11i degree epitaxial growth, followed by K C on the single crystal silicon layer j j
VD -110, llj J was deposited to a thickness of 130,001 mm (as shown in Figure 5). Next, mark 110. is etched by photolithography. 110□ film/4fi-711'tf is removed by etching the portion where the transistor region is to be formed.
llIshi*<wS figure figure illustration).

[:ii]次に1駿嵩イオンを加速電圧1・Ok@V、
ドーズ量2 X 1 @’9Mtの条件下で前記gio
、膜・リーン21′を含む単結蟲シリーン層21全Wi
Kイオン注入した後、再直岡イオyを1適電圧280に
@V、ビーズ貴意X 10”/a/の条件下でイオン注
入した(嬉38iI(@)図示)。この時、酸素イオン
105a11距離は、単結晶シリコン層22中とcvn
 −gto□膜2J中で祉略同様である。従って、第1
回目のイオン注入において、酸素濃度のピークはトラン
ジスタ領域形成予定部の単結晶シリ;ン層12部分では
その表面から40001、トランジスタ領域形成予定部
以外の領域では8io、膜ノ9ターン21の表面から4
000X、つま〕同同シリコン221表から10001
の位置(点線部分)Kなる。また、第2回目のイオン注
入では、同ピークはトランジスタ領域形成予定部の単結
晶シリコン層22表面から5sooXの位置(点線部分
)のすファイア基板21内に、トランジスタ領域形成予
定部以外の領域の同シリゴン層22表面から3500X
O位t(点線部分)のシリコン層22内に夫々なる。こ
うし九イオン注入の結果、トランジスタ領域形成予定部
においては、前記シリコ・ン層22表面から3000’
iの位置の同シリ−4y層22内の酸素濃度はほぼ零で
あり、トランジスタ領域形成予定部以外の領域のシリコ
ン層22中Ka、fiぼ全領域にわたりて酸素イオンが
存在した。
[:ii] Next, one ion is accelerated at a voltage of 1・Ok@V,
The above gio under the condition of dose amount 2 x 1 @'9Mt
, the entire monocrystalline silicone layer 21 including the membrane/lean 21′
After the K ion implantation, the ion implantation was performed again under the conditions of an appropriate voltage of 280 @V and beads of 10"/a/ (as shown in the figure). At this time, oxygen ions of 105a11 The distance is between the inside of the single crystal silicon layer 22 and the cvn
-Gto□The behavior is almost the same in the membrane 2J. Therefore, the first
In the second ion implantation, the peak of the oxygen concentration was 40001 from the surface of the single crystal silicon layer 12 in the area where the transistor region was to be formed, 8io in the area other than the area where the transistor region was to be formed, and from the surface of the 9th turn 21 of the film. 4
000X, Tsuma] 10001 from the same silicon 221 table
The position (dotted line) is K. In addition, in the second ion implantation, the same peak occurred at a position (dotted line area) 5sooX from the surface of the single crystal silicon layer 22 where the transistor region was to be formed. 3500X from the surface of the same silicon layer 22
They are formed in the silicon layer 22 at position O (dotted line portion). As a result of these nine ion implantations, in the area where the transistor region is to be formed, a distance of 3000' from the surface of the silicon layer 22 is formed.
The oxygen concentration in the same silicon 4y layer 22 at the position i was almost zero, and oxygen ions were present over almost the entire region Ka and fi in the silicon layer 22 in the region other than the portion where the transistor region was to be formed.

c=〕次<、 窒嵩雰■気中”t”1o00c、1時間
の熱処理を麹した(113wA偵)llj示)。その結
果、単結晶シリコン層11にイオン注入された酸素イオ
ンが岡シ9;ン層12中のシv:1ンと化学変化を起こ
し友。即ち、トランジスタ領域形成予定部の岡シlay
ン層JJにおいては、その11面から300011では
とんど酸素イオンが存在していない丸め、上層部の同シ
リコン層22はそeslま残存し、ナファイア基4[1
1界画付近の下層部では酸化fli14が形成され、ト
ランジスタ領域形成予定部以外0領域のシリコン層12
K>いては、はぼ全領域にゎ九って酸素イオンが存在し
てい為ため、その全領域がフィールド酸化膜2Iと1に
りた。
The koji was heat-treated for 1 hour at 1o00C in a nitrogen atmosphere (113wA). As a result, the oxygen ions implanted into the single crystal silicon layer 11 undergo a chemical change with the silicon in the silicon layer 12. That is, the area where the transistor region is to be formed is
In layer JJ, 300011 from the 11th surface is rounded, with almost no oxygen ions present, and the upper silicon layer 22 remains until esl, and the Naphire group 4[1
An oxidized fli 14 is formed in the lower layer near the area 1, and the silicon layer 12 in the area 0 other than the area where the transistor area is planned to be formed is
Since oxygen ions exist in almost the entire region, the entire region becomes field oxide films 2I and 1.

(iv)次に1前記gio、膜、、e p −y j 
J’を除去し先後、熱処理を施して熱酸化膜1#を形成
した。
(iv) Next, 1 said gio, membrane, ep −y j
After removing J', a heat treatment was performed to form a thermal oxide film 1#.

つづいて、金11irK不義物ドーグ多結晶シリコン層
(図示せず)を堆積し先後、dターニングしてr−)電
@srを形成し九(第3図0)図示)。
Subsequently, a gold 11irK impurity doped polycrystalline silicon layer (not shown) is deposited and then d-turned to form an r-) electrode (as shown in FIG. 3).

次いで、こor−ト電極11をマスクとして前記熱酸化
膜26を工、チンダ除去しr−)酸化膜2rを形成した
。この後、フィールド酸化膜2J及びr−)電極21を
マスクとして、残存した単結晶シリコン層j IK、例
えば砒素をイオン注入してl+型ソース、ドレイン領域
II。
Next, using the orthogonal electrode 11 as a mask, the thermal oxide film 26 was etched and the die was removed to form an r-) oxide film 2r. Thereafter, using the field oxide film 2J and the r-) electrode 21 as a mask, ions of arsenic, for example, are implanted into the remaining single crystal silicon layer IK to form the l+ type source and drain regions II.

Joを形成した。更に、全面にCVD−酸化lI[11
を成長した後、常法によ)ソース、ドレイン領域xs、
5eric対応するCVD−酸化膜J7部分を開孔した
。ひきつづ龜、ムノ層讐蒸着した後、パターニングをし
て電極sz、xxを有するgoa m Moli )ラ
ンジスタを製造した(第3図(f)図示)Q しかして、本発明和よれば、単結晶シリコン層21とナ
ファイア基板21閲に酸化膜24を介在できるため、第
1図(、)図示の従来のsos mMo1l )ランジ
スタの如く、ナファイア基板でオートドーピングが生じ
ても、ムlの混入を酸化膜24で阻止しシリコン層22
′に達しない。その結果、従来の如IF″ファイア基板
とシリコン層の界面の結晶欠陥に基づく界面リーク電流
を滅少できる。
Formed Jo. Furthermore, CVD-oxidized lI [11
After growing the source and drain regions xs,
A hole was opened in the J7 portion of the CVD-oxide film corresponding to 5eric. After successively depositing the monolayer, patterning was performed to produce a transistor having electrodes sz, xx (as shown in FIG. 3(f)). Therefore, according to the present invention, a single crystal Since the oxide film 24 can be interposed between the silicon layer 21 and the Naphire substrate 21, even if autodoping occurs in the Naphire substrate, as in the conventional SOS mMo1l transistor shown in FIG. Blocked by a film 24 and silicon layer 22
′ is not reached. As a result, interface leakage current due to crystal defects at the interface between the conventional IF'' fire substrate and the silicon layer can be reduced.

オ九、Mo8トツンゾスタを囲む酸化膜24やフィール
ド酸化膜zio形成に際しては、予め一部が前記酸化膜
14.11になる単結晶シリコン層12に酸素イオンを
イオン注入し、しかる後熱処理を行うため、従来と比べ
熱酸化時間を着しく短くで暑る。従って、単結晶シ9:
17層22′における欠陥発生を肪止でIるとともに、
熱処理時の酸素イオンの横方向の拡散を従来と比べて短
縮で自為丸め、設計値過)C)Ilmな素子形成が可能
である。
9. When forming the oxide film 24 surrounding the Mo8 oxide film and the field oxide film, oxygen ions are implanted in advance into the single crystal silicon layer 12, a portion of which will become the oxide film 14.11, and then heat treatment is performed. , the thermal oxidation time is considerably shorter than conventional methods, making it hotter. Therefore, single crystal Si9:
In addition to preventing the occurrence of defects in the 17th layer 22' with fat fixing,
The lateral diffusion of oxygen ions during heat treatment is shortened and naturally rounded compared to the conventional method, making it possible to form an element that exceeds the design value.

sJ!施例2 叫〕まず、夷llA111と同様に、?7アイ7基板2
1上に単結晶シリコン層J J 、gto21[)量タ
ーン21′を形成しえ。つづ−て、酸素イオンを11A
lli電圧1 @ Ok@V、  Y−1量2 X 1
0”、/312の条件下で単結晶シ9=7層11にイオ
ン注入した(1114図C)図示)。なお、実施例1で
述べたように酸素イオンOga11距離は前記シリコン
層22中とCYD−1亀O1膜2J中では略同様である
。従、て、イオン注入に際し酸素a度のピークはトラン
ジスタ領域形成予定部では単結晶シリコン層22表面か
ら3000X、)ランゾスタ領域形成予定部以外の領域
では同シリコン層22表面から10001の位置(点線
部分)になる。ヒの結果、トランジスタ領域形成予定部
の単結晶シリコン層Jjにおいては、表面から8000
11で、かつドツンジスタ領域形成予定郁以外O領域の
同シリコン層22においては、該シリ;ン層21とナフ
ァイア基板21との界面よ1)80001fiでのシリ
コン層22中の酸素濃度は略零である。
sJ! Example 2 Shout] First, like IllA111,? 7 eye 7 board 2
A monocrystalline silicon layer J J and a turn 21' having a thickness of gto21[) are formed on the same. Next, add oxygen ions to 11A
lli voltage 1 @ Ok @ V, Y-1 amount 2 X 1
Ions were implanted into the single crystal Si9=7 layer 11 under the conditions of 0'', /312 (as shown in Figure 1114, C).As described in Example 1, the distance between the oxygen ions Oga11 is the same as that in the silicon layer 22. It is almost the same in the CYD-1 turtle O1 film 2J.Therefore, during ion implantation, the peak of oxygen a degree is 3000X from the surface of the single crystal silicon layer 22 in the area where the transistor region is planned to be formed, and in the area other than the area where the transistor area is planned to be formed. In the region, the position is 10001 from the surface of the same silicon layer 22 (dotted line portion).As a result, in the single crystal silicon layer Jj where the transistor region is planned to be formed,
11, and in the same silicon layer 22 in the O region other than the area where the dotsunster region is scheduled to be formed, the oxygen concentration in the silicon layer 22 at 1) 80001 fi from the interface between the silicon layer 21 and the Naphire substrate 21 is approximately zero. be.

〔11〕次に、実施例1と同条件下で熱処理を施した。[11] Next, heat treatment was performed under the same conditions as in Example 1.

この結果、トランジスタ領域形成予定部の単結晶シリコ
ン層22においてはナファイア基1[j1界耐付近の下
層部が、を九トランジスタ領域形版予定部以外の領域の
同シリコン層22においては上層部が夫々酸化膜as、
y4−ルド酸化膜J4となり九。更に1前記フイールド
酸化膜14下には単結晶シリコン層si、siが残存し
た(第4!II伽)l!示)。っづiて、前記畠102
11Δターンj J’を除去し先後、常法によ〕、トラ
ンジスタ領域形成予定部以外の領域に対応する部分が開
孔し先しジスト/fターンを形成しえ。次いで、このパ
ターンをマスタとして熱処理時に残存しえフ(−ルr酸
化膜J4下0単結晶シリコン層8111C@えばリンを
ドープし、不純物ドーグ単繍晶かもなる配@R61gを
形成しえ。以下、前記パターンを除去し先後は夷m例1
と略同様にしてr−)電@sr、r−)酸化l[21、
ソース、rレイン領域xs、so。
As a result, in the single-crystal silicon layer 22 in the area where the transistor region is planned to be formed, the lower layer near the Naphire group 1 Oxide film as,
y4- becomes the field oxide film J4. Furthermore, single crystal silicon layers si and si remained under the field oxide film 14 (No. 4! II) l! (shown). Well, Hatake 102
After removing the 11Δ turns jJ', holes are opened in areas other than the area where the transistor region is to be formed, and then a resist/f turn is formed using a conventional method. Next, using this pattern as a master, form a layer (R61g) which remains during heat treatment and which is doped with phosphorus (for example, oxide film J4) and also has a doped monocrystalline silicon layer (R61g). , the pattern is removed and the rest is Example 1
In almost the same way as r-) electricity@sr, r-) oxidation
source, r rain region xs, so.

CVD−酸化膜II、電1iJJ  17.更には前記
配@Jg、IgK麹続する取出し電極11゜J r t
H次形rRシテWitW1o sow igHaoti
 )テンジスタを製造しえ(flK 4−(@)図示)
CVD-Oxide Film II, Electron 1iJJ 17. Furthermore, the extraction electrode 11゜J r t connected to the above-mentioned wiring @Jg and IgK koji
H-shaped rR shiteWitW1o sow igHaoti
) Manufacture a tensistor (flK 4-(@) shown)
.

前述した製造方法によれば、トランジスタ領域以外に不
純物ドープ単結晶からなる配線J g。
According to the above-described manufacturing method, the wiring Jg made of impurity-doped single crystal other than the transistor region.

J#を形成で暑るため、トランジスタ領域と配@1g1
1とにシける平履的なII隔を略零にで龜、素子ol/
&亀積化を達成できる3゜なお、上記実施例ては97ア
イ7基板上の単結晶シリコン層の厚さを50001とし
九が、これに限らず、厚さを厚くすれば一層、上層部の
同シリコン層の結晶性はよい。例えば、単結晶シリ17
層を100001エピ/−?シャル威長させ、同シリコ
ン層上o cvn −gto、膜の厚さ、酸素イオンの
注入条件を適宜選択することによ)、上記実施例と同様
な構造のものが得られる。
Because it gets hot when forming J#, the transistor area and wiring @1g1
1 and 1, the difference between plain shoes and II is reduced to almost zero, and element ol/
In the above embodiment, the thickness of the single crystal silicon layer on the 97I7 substrate is 50,001 mm, but the thickness is not limited to this. The crystallinity of the silicon layer is good. For example, single crystal silicon 17
100001 epi/- layers? By appropriately selecting the conditions for implanting oxygen ions into the silicon layer, the thickness of the film, and the conditions for implanting oxygen ions, a structure similar to that of the above embodiment can be obtained.

仁のようにすることKよ)、結晶欠陥に起因する界面リ
ータ電流中夷効キャリア移動度の低下をよ)抑制でき、
低消費電力、高速動作のMOg0gトランジスタ現する
ことができる。
It is possible to suppress the decrease in carrier mobility during the interfacial Rita current caused by crystal defects.
A MOg0g transistor with low power consumption and high speed operation can be realized.

を九、上記実施例では単結晶シリコン層を絶縁化する物
質として酸素を用い九が、辷れに@らず、窒素あるいは
炭素を用いてもよい。
In the above embodiments, oxygen is used as the material for insulating the single crystal silicon layer, but nitrogen or carbon may also be used instead.

〔発WO効釆〕[Issue WO effect]

以上評ソした如く本発5jlIKよれば、デバイス表面
を平坦化するととは勿論のこと、界面リーク電流の低減
による素子特性の改善、高集積化などを達成したsos
 m Mos )ッンジスタ等の半導体装置の製造方法
を提供で亀るものである。
As reviewed above, the proposed 5JlIK not only flattens the device surface, but also improves device characteristics by reducing interfacial leakage current and achieves higher integration.
The present invention provides a method for manufacturing semiconductor devices such as mMos transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、) 〜(@)は従来011011t MOI
 )ランジスタの製造方法を工@HK示す断面図、11
2図は従来のMOI )ツンゾスタの断lii図、第3
図(、)〜(f)は本発@O1[J11fllOIOI
II恥Sトツ/ジスタO製造方法を工楊願に示す断面図
、第4図(a)〜(#1)は本岸−の実施aXの808
薯急Sトツンジスタの製造方法な工1i1[K示す断面
図である。 21・・・サファイア基板、j J y z f 、 
x s・・・単結晶シリフン層、I J 、 !I 1
−CVD −8102属、I J’−8101[/lタ
ーン、24.JJ−810,膜、15.14−・フィー
ルド酸化膜、zl−・ダート電極、21・−・r−)酸
化膜、29・・・ソース領域、JJ・・・Pレイン領域
、29・・・r−)絶縁膜、32−電極、xi−配線、
11・・・取出し電極。 出願人代理人  弁理士 鈴 江 武 彦1I ―′ ■
Figure 1 (,) ~ (@) is the conventional 011011t MOI
) Cross-sectional view showing the method of manufacturing a transistor, 11
Figure 2 shows the conventional MOI.
Figures (,) to (f) are the original @O1[J11fllOIOI
II Shame S Totsu/Jista O manufacturing method is shown in a cross-sectional view, Figures 4 (a) to (#1) are 808 of Honkishi's implementation aX.
FIG. 1 is a cross-sectional view showing the manufacturing method of the Sukyu Stotunister. 21... Sapphire substrate, j J y z f,
x s...single crystal silicon layer, I J,! I 1
-CVD-8102 genus, I J'-8101 [/l turn, 24. JJ-810, film, 15.14-・field oxide film, zl-・dart electrode, 21・-・r-) oxide film, 29... source region, JJ...P rain region, 29... r-) insulating film, 32-electrode, xi-wiring,
11... Extraction electrode. Applicant's agent Patent attorney Takehiko Suzue 1I -' ■

Claims (1)

【特許請求の範囲】 1、単結晶絶縁基板上に単結晶半導体層をエピタキシャ
ル成長させる工程と、前記単結晶半導体層上に絶縁属を
形成する工1と、この絶縁膜の素子形成予定部に対応す
る部分を遍択的に開孔する工程と、前記絶縁属を通して
前記単結晶半導体層全1iK絶縁化する物質をイオン注
入し、注入された部分を絶縁化する工程とを具備するこ
とt41黴とする半導体装置の製造方法。 2、絶縁化する物質が、酸素あるいは窒素あるいは炭素
であることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
[Claims] 1. A step of epitaxially growing a single crystal semiconductor layer on a single crystal insulating substrate, step 1 of forming an insulating layer on the single crystal semiconductor layer, and corresponding to a portion of this insulating film where an element is to be formed. and a step of ion-implanting a substance that insulates the entire single crystal semiconductor layer by 1iK through the insulating metal, and insulating the implanted portion. A method for manufacturing a semiconductor device. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating substance is oxygen, nitrogen, or carbon.
JP3274082A 1982-03-02 1982-03-02 Preparation of semiconductor device Pending JPS58151057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3274082A JPS58151057A (en) 1982-03-02 1982-03-02 Preparation of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3274082A JPS58151057A (en) 1982-03-02 1982-03-02 Preparation of semiconductor device

Publications (1)

Publication Number Publication Date
JPS58151057A true JPS58151057A (en) 1983-09-08

Family

ID=12367230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3274082A Pending JPS58151057A (en) 1982-03-02 1982-03-02 Preparation of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58151057A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098640A (en) * 1983-11-02 1985-06-01 Sony Corp Manufacture of semiconductor device
JPS62299050A (en) * 1986-06-18 1987-12-26 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH02208943A (en) * 1989-02-08 1990-08-20 Ricoh Co Ltd Manufacture of silicon thin film semiconductor device
JPH0472763A (en) * 1990-07-13 1992-03-06 Toshiba Corp Semiconductor device and manufacture thereof
JP2007329392A (en) * 2006-06-09 2007-12-20 Oki Electric Ind Co Ltd Manufacturing method of sos substrate and sos device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6098640A (en) * 1983-11-02 1985-06-01 Sony Corp Manufacture of semiconductor device
JPS62299050A (en) * 1986-06-18 1987-12-26 Sanyo Electric Co Ltd Manufacture of semiconductor device
JPH02208943A (en) * 1989-02-08 1990-08-20 Ricoh Co Ltd Manufacture of silicon thin film semiconductor device
JPH0472763A (en) * 1990-07-13 1992-03-06 Toshiba Corp Semiconductor device and manufacture thereof
JP2007329392A (en) * 2006-06-09 2007-12-20 Oki Electric Ind Co Ltd Manufacturing method of sos substrate and sos device

Similar Documents

Publication Publication Date Title
US20020168802A1 (en) SiGe/SOI CMOS and method of making the same
JP2005277420A (en) Method for forming local &#34;silicon-on-nothing&#34; wafer having tensile strain or &#34;silicon-on-insulator&#34;
EP0687002A2 (en) Producing method of SOI semiconductor device
JPH04214634A (en) High-speed silicon-on-insulator device and its manufacture
US4560421A (en) Semiconductor device and method of manufacturing the same
JPH09102550A (en) Lddcmos formation
US5208181A (en) Locos isolation scheme for small geometry or high voltage circuit
JPS58151057A (en) Preparation of semiconductor device
JPH06349856A (en) Thin-film transistor and its manufacture
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPS62202559A (en) Semiconductor device and its manufacture
JPH07176742A (en) Manufacture of semiconductor device and semiconductor device
KR960015933B1 (en) Manufacturing method for thin film transistor
JPS63261879A (en) Manufacture of semiconductor device
JPH04301623A (en) Production of thin-film transistor
JPH01239867A (en) Formation of semiconductor on insulating film
JP2770324B2 (en) Method for manufacturing thin film transistor
JPH0225036A (en) Manufacture of semiconductor device
JPH0555204A (en) Manufacture of semiconductor device
JPH05335407A (en) Manufacture of semiconductor device
JPS63308385A (en) Manufacture of buried-gate field-effect transistor
JPS5830123A (en) Manufacture of semiconductor device
JPS62193170A (en) Manufacture of field effect semiconductor device
JP2000138347A (en) Manufacture of semiconductor device
JPH08241930A (en) Manufacture of semiconductor device