JP2000138347A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JP2000138347A
JP2000138347A JP10313369A JP31336998A JP2000138347A JP 2000138347 A JP2000138347 A JP 2000138347A JP 10313369 A JP10313369 A JP 10313369A JP 31336998 A JP31336998 A JP 31336998A JP 2000138347 A JP2000138347 A JP 2000138347A
Authority
JP
Japan
Prior art keywords
polysilicon
film
voltage
breakdown voltage
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10313369A
Other languages
Japanese (ja)
Inventor
Koichi Suzuki
孝一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electronics Corp
Priority to JP10313369A priority Critical patent/JP2000138347A/en
Publication of JP2000138347A publication Critical patent/JP2000138347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a semiconductor device, where a high breakdown voltage polysilicon capacitor can be enhanced in breakdown voltage, without varying a low breakdown voltage transistor in electrical properties. SOLUTION: A semiconductor device mounted with both a high breakdown voltage device and a low breakdown voltage device is manufactured in a manner in which a polysilicon film 3 which serves as the lower electrode of a high breakdown voltage polysilicon capacitor is formed on the entire surface, arsenic ions that have larger mass than that of phosphorus ions are implanted in the polysilicon film 3 to turn it electrically conductive, then the polysilicon film 3 is selectively removed to serve as the lower electrode 5, and the surface of the lower electrode 5 is oxidized to form both a capacitor insulating film 6 and a gate oxide film 7 of a low breakdown voltage transistor at the same time.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は同一半導体基板上に
高耐圧ポリシリコン容量と低耐圧トランジスタ形成する
半導体装置の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in which a high withstand voltage polysilicon capacitor and a low withstand voltage transistor are formed on the same semiconductor substrate.

【0002】[0002]

【従来の技術】一般的半導体集積回路の内、液晶ドライ
バーのようなデバイスにおいては、同一半導体基板上に
数十V〜数百Vの印加電圧で駆動する高耐圧素子、例え
ば高耐圧ポリシリコン容量や高耐圧MOSトランジスタ
と、通常の5Vまたは3.3Vなどの低電圧で駆動する
低電圧素子(MOSトランジスタ)が搭載されることが
多い。
2. Description of the Related Art Among general semiconductor integrated circuits, in a device such as a liquid crystal driver, a high withstand voltage element driven by an applied voltage of several tens to several hundreds of volts on the same semiconductor substrate, for example, a high withstand voltage polysilicon capacitor And a high-voltage MOS transistor, and a low-voltage element (MOS transistor) driven at a low voltage such as a normal 5 V or 3.3 V in many cases.

【0003】このような同一半導体基板上に高耐圧ポリ
シリコン容量と高耐圧および低電圧駆動トランジスタ
(以下、低耐圧トランジスタという)を搭載した半導体
装置の製造方法としては次のような方法が知られてお
り、以下図面を参照しながらこの従来の製造方法につい
て説明する。
The following method is known as a method for manufacturing a semiconductor device having a high-breakdown-voltage polysilicon capacitor and a high-breakdown-voltage and low-voltage driving transistor (hereinafter referred to as a low-breakdown-voltage transistor) mounted on the same semiconductor substrate. The conventional manufacturing method will be described below with reference to the drawings.

【0004】図2は従来の半導体装置の製造方法におけ
る製造工程の説明図であり、高耐圧および低耐圧のNチ
ャンネルMOS型トランジスタと高耐圧ポリシリコン容
量を同一基板に形成する半導体装置の各製造工程におけ
る断面構造を示している。
FIG. 2 is an explanatory view of a manufacturing process in a conventional method of manufacturing a semiconductor device. Each manufacturing method of a semiconductor device in which a high breakdown voltage and a low breakdown voltage N-channel MOS transistor and a high breakdown voltage polysilicon capacitor are formed on the same substrate. 4 shows a cross-sectional structure in a process.

【0005】まず、図2(a)に示すように、p型半導
体基板10上にトランジスタのような素子をLOCOS
法などで電気的に分離する厚いフィールド酸化膜11を
形成する。次に熱酸化により、高耐圧MOSトランジス
タのゲート酸化膜12を形成し、高耐圧MOSトランジ
スタのゲート電極と高耐圧ポリシリコン容量の下部電極
を形成するための第1のポリシリコン膜13を形成した
後、このポリシリコン膜の電気抵抗を下げるためにリン
ドープを行う。次に図2(b)に示すように、堆積させ
た第1のポリシリコン膜13をエッチングしてゲート電
極14’とポリシリコン容量部の下部電極14を形成
し、その後、余分なゲート酸化膜12を除去して半導体
基板10の表面を露出させる。
First, as shown in FIG. 2A, an element such as a transistor is formed on a p-type semiconductor substrate 10 by LOCOS.
A thick field oxide film 11 which is electrically separated by a method or the like is formed. Next, the gate oxide film 12 of the high voltage MOS transistor was formed by thermal oxidation, and the first polysilicon film 13 for forming the gate electrode of the high voltage MOS transistor and the lower electrode of the high voltage polysilicon capacitor was formed. Thereafter, phosphorus doping is performed to reduce the electrical resistance of the polysilicon film. Next, as shown in FIG. 2B, the deposited first polysilicon film 13 is etched to form a gate electrode 14 'and a lower electrode 14 of a polysilicon capacitance portion. 12 is removed to expose the surface of the semiconductor substrate 10.

【0006】次に図2(c)に示すように、低耐圧トラ
ンジスタのゲート酸化膜16を形成するのであるが、そ
の際に高耐圧ポリシリコン容量の容量絶縁膜15を熱酸
化で同時に形成する。この工程においてポリシリコン表
面の酸化膜はゲート酸化膜16の2〜3倍の膜厚に成長
し、そして絶縁膜15,16上に第2のポリシリコン膜
17を堆積する。さらに、図2(d)に示すように、高
耐圧ポリシリコン容量の上部電極18と低耐圧トランジ
スタのゲート電極18’を形成し、そして、ゲート電極
14’,18’をマスクとして半導体基板10中にN型
のソース・ドレイン拡散層19を形成する。その後の工
程は図示していないが一般的なCMOSプロセスにて高
耐圧ポリシリコン容量と、低耐圧トランジスタ、高耐圧
トランジスタの上に層間絶縁膜とそれを介して配線層を
形成して完成する。
Next, as shown in FIG. 2C, a gate oxide film 16 of the low breakdown voltage transistor is formed. At this time, a capacitance insulation film 15 having a high breakdown voltage polysilicon capacitance is formed simultaneously by thermal oxidation. . In this step, the oxide film on the polysilicon surface is grown to a thickness two to three times as large as the gate oxide film 16, and a second polysilicon film 17 is deposited on the insulating films 15 and 16. Further, as shown in FIG. 2D, an upper electrode 18 of a high-breakdown-voltage polysilicon capacitor and a gate electrode 18 'of a low-breakdown-voltage transistor are formed, and the gate electrodes 14' and 18 'are used as masks in the semiconductor substrate 10. Then, an N-type source / drain diffusion layer 19 is formed. Subsequent steps are completed by forming a high-voltage polysilicon capacitor, a low-voltage transistor, and an interlayer insulating film on the high-voltage transistor and a wiring layer via the high-voltage transistor, though not shown, by a general CMOS process.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の半導体装置の製造方法においては、高耐圧ポ
リシリコン容量の耐圧を一層向上させるために、高耐圧
ポリシリコン容量の容量絶縁膜15の膜厚を厚くする
と、低耐圧トランジスタのゲート酸化膜16の膜厚も厚
くなり、低耐圧トランジスタの電気特性が設計通りでな
くなってしまうという問題点を有していた。
However, in such a conventional method of manufacturing a semiconductor device, in order to further improve the breakdown voltage of the high-breakdown-voltage polysilicon capacitor, the film of the capacitor insulating film 15 having the high-breakdown-voltage polysilicon capacitor is formed. When the thickness is increased, the thickness of the gate oxide film 16 of the low-breakdown-voltage transistor also increases, and the electrical characteristics of the low-breakdown-voltage transistor may not be as designed.

【0008】本発明は上記従来の問題点を解決するもの
であり、低耐圧トランジスタ部の電気特性を変動させる
ことなく、高耐圧ポリシリコン容量の耐圧を向上させる
ことができる半導体装置の製造方法を提供することを目
的とする。
The present invention solves the above-mentioned conventional problems, and provides a method of manufacturing a semiconductor device capable of improving the breakdown voltage of a high breakdown voltage polysilicon capacitor without changing the electrical characteristics of a low breakdown voltage transistor section. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板の一主面上の所定領域に絶縁膜を
形成する工程と、前記絶縁膜上を含んで前記半導体基板
全面に半導体膜を形成する工程と、前記半導体膜に、リ
ンよりも質量の大きい元素のイオンを注入する工程と、
前記半導体膜を選択的に除去して前記絶縁膜上に第1の
電極を形成する工程と、少なくとも前記第1の電極表面
と前記半導体基板表面を酸化し、酸化膜を形成する工程
と、前記第1の電極領域上の前記酸化膜上に第2の電極
を形成する工程と、前記半導体基板領域の前記酸化膜上
に第3の電極を形成する工程を備えたものである。
According to a method of manufacturing a semiconductor device of the present invention, an insulating film is formed in a predetermined region on one main surface of a semiconductor substrate, and an insulating film is formed on the entire surface of the semiconductor substrate including on the insulating film. A step of forming a semiconductor film, and a step of implanting ions of an element having a larger mass than phosphorus into the semiconductor film,
Selectively removing the semiconductor film to form a first electrode on the insulating film; oxidizing at least the first electrode surface and the semiconductor substrate surface to form an oxide film; A step of forming a second electrode on the oxide film in the first electrode region; and a step of forming a third electrode on the oxide film in the semiconductor substrate region.

【0010】この発明によれば、低耐圧トランジスタ部
の電気特性を変動させることなく、高耐圧ポリシリコン
容量部の絶縁膜を選択的に増速酸化し、ポリシリコン容
量の耐圧を向上させることができる。
According to the present invention, it is possible to selectively increase the oxidation rate of the insulating film of the high-breakdown-voltage polysilicon capacitor portion without changing the electrical characteristics of the low-breakdown-voltage transistor portion, thereby improving the breakdown voltage of the polysilicon capacitor. it can.

【0011】[0011]

【発明の実施の形態】以下、本発明の一実施の形態につ
いて図面を参照しながら説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は本発明の半導体装置の製造方法の一
実施の形態における製造工程の説明図であり、前記の従
来例と同様、高耐圧ポリシリコン容量、高耐圧および低
耐圧MOSトランジスタを同時に搭載した半導体装置の
各製造工程における断面構造を示している。
FIG. 1 is an explanatory view of a manufacturing process in an embodiment of a method of manufacturing a semiconductor device according to the present invention. As in the above-mentioned conventional example, a high-voltage polysilicon capacitor, a high-voltage MOS transistor and a low-voltage MOS transistor are simultaneously used. 2 shows a cross-sectional structure in each manufacturing process of a mounted semiconductor device.

【0013】まず、図1(a)に示すように、p型半導
体基板1上に素子分離を行うフィールド酸化膜2を形成
し、半導体基板1の別の部分には高耐圧NチャンネルM
OSトランジスタのゲート酸化膜4を成長させる。さら
にフィールド酸化膜2を含む全面に、第1のポリシリコ
ン膜3を形成後、ポリシリコンの電気抵抗を下げるため
に砒素イオン注入を行う。この時の注入条件は40ke
V 5×1015cm~2である。
First, as shown in FIG. 1A, a field oxide film 2 for element isolation is formed on a p-type semiconductor substrate 1, and a high breakdown voltage N channel M is formed on another portion of the semiconductor substrate 1.
The gate oxide film 4 of the OS transistor is grown. Further, after forming a first polysilicon film 3 on the entire surface including the field oxide film 2, arsenic ion implantation is performed to reduce the electrical resistance of the polysilicon. The injection condition at this time is 40 ke
V 5 × 10 15 cm 2 .

【0014】次に図1(b)に示すように、第1のポリ
シリコン膜3をエッチングして、フィールド酸化膜上に
は高耐圧ポリシリコン容量の下部電極5を、またゲート
酸化膜4上には高耐圧MOSトランジスタのゲート電極
5’を形成し、さらにこのゲート電極5’をマスクとし
てゲート酸化膜4を除去し、半導体基板1の表面を露出
させる。
Next, as shown in FIG. 1B, the first polysilicon film 3 is etched, a lower electrode 5 having a high withstand voltage polysilicon capacitance is formed on the field oxide film, and a gate oxide film 4 is formed on the field oxide film. Then, a gate electrode 5 'of a high voltage MOS transistor is formed, and the gate oxide film 4 is removed using the gate electrode 5' as a mask to expose the surface of the semiconductor substrate 1.

【0015】そして図1(c)に示すように、熱酸化に
より低耐圧トランジスタのゲート酸化膜7と高耐圧ポリ
シリコン容量の容量絶縁膜6を同時に形成する。この
時、ポリシリコン容量の絶縁膜はポリシリコンへの砒素
イオン注入によりゲート酸化膜7より約4倍の厚さに成
長させることができる。その後、第2のポリシリコン膜
8を全面に形成する。
Then, as shown in FIG. 1C, the gate oxide film 7 of the low breakdown voltage transistor and the capacitance insulation film 6 of the high breakdown voltage polysilicon capacitor are simultaneously formed by thermal oxidation. At this time, the insulating film of the polysilicon capacitor can be grown to about four times the thickness of the gate oxide film 7 by implanting arsenic ions into the polysilicon. Thereafter, a second polysilicon film 8 is formed on the entire surface.

【0016】次に図1(d)に示すように、第2のポリ
シリコン膜8をエッチングして高耐圧ポリシリコン容量
の上部電極8’を形成すると同時に低耐圧MOSトラン
ジスタのゲート電極8’’を形成する。そしてこれらを
マスクとして、容量絶縁膜6とゲート酸化膜7の余分な
部分をエッチングし、ポリシリコン容量構造およびゲー
ト構造を完成させる。容量絶縁膜6とゲート酸化膜7の
厚さは異なるのであるが、これら酸化膜をエッチングす
る時は通常下の半導体基板1と充分エッチング選択比が
あるので、半導体基板1が著しくエッチングされること
はない。
Next, as shown in FIG. 1D, the second polysilicon film 8 is etched to form an upper electrode 8 'having a high withstand voltage polysilicon capacitance, and at the same time, a gate electrode 8 "of a low withstand voltage MOS transistor. To form By using these as masks, extra portions of the capacitor insulating film 6 and the gate oxide film 7 are etched to complete the polysilicon capacitor structure and the gate structure. Although the thickness of the capacitor insulating film 6 and the thickness of the gate oxide film 7 are different, when these oxide films are etched, the semiconductor substrate 1 usually has a sufficient etching selectivity with the underlying semiconductor substrate 1, so that the semiconductor substrate 1 is significantly etched. There is no.

【0017】その後は一般的なCMOSプロセスにて高
耐圧ポリシリコン容量と、高耐圧、低耐圧MOSトラン
ジスタの上に、層間絶縁膜と配線層を形成して完成に至
る。
Thereafter, an interlayer insulating film and a wiring layer are formed on a high-breakdown-voltage polysilicon capacitor and a high-breakdown-voltage and low-breakdown-voltage MOS transistor by a general CMOS process to complete the process.

【0018】この実施の形態においては、第1のポリシ
リコン膜3の表面に従来のリンイオンよりも質量の大き
い砒素イオンを注入する点が特徴であり、この質量の大
きいイオンが注入された時、第1のポリシリコン膜3の
表面層にはより多くの欠陥が生じ、上記の注入量ではほ
とんどアモルファス状態となる。そしてまた、質量が大
きいことによって注入深さが極めて浅くなり、薄い表面
層内に不純物濃度のより高い状態を作り出すことができ
る。この2つのことによって増速熱酸化が起こり、従来
と同じ熱酸化条件であっても従来より厚い酸化膜を形成
できるのである。なおこの時、ゲート酸化膜7の膜厚が
変化しないことはもちろんである。
This embodiment is characterized in that arsenic ions having a larger mass than the conventional phosphorus ions are implanted into the surface of the first polysilicon film 3. When the ions having the larger mass are implanted, More defects are generated in the surface layer of the first polysilicon film 3, and the first polysilicon film 3 is almost in an amorphous state with the above-described implantation amount. Also, due to the large mass, the implantation depth becomes extremely shallow, and a state with a higher impurity concentration in the thin surface layer can be created. These two factors cause accelerated thermal oxidation, so that a thicker oxide film can be formed even under the same thermal oxidation conditions as before. At this time, needless to say, the thickness of the gate oxide film 7 does not change.

【0019】以上のように、本実施の形態によれば、高
耐圧ポリシリコン容量部の絶縁膜を低耐圧トランジスタ
のゲート酸化膜と同時に形成する際、第1のポリシリコ
ン膜の電気抵抗を下げる工程をリンより質量の大きい、
例えば砒素イオン注入によって行うことにより、これを
リンドープで行ったものよりもポリシリコン膜上に成長
する酸化膜の膜厚を他に影響を及ぼすことなく厚くする
ことができ、高耐圧ポリシリコン容量の耐圧を低耐圧の
トランジスタの電気特性を変動させることなく向上させ
ることが可能となる。
As described above, according to this embodiment, when forming the insulating film of the high-breakdown-voltage polysilicon capacitor simultaneously with the gate oxide film of the low-breakdown-voltage transistor, the electric resistance of the first polysilicon film is reduced. Larger process than phosphorus,
For example, by performing arsenic ion implantation, it is possible to increase the thickness of the oxide film grown on the polysilicon film without affecting the others, as compared with the case where the arsenic ion implantation is performed. The breakdown voltage can be improved without changing the electrical characteristics of the low breakdown voltage transistor.

【0020】なお、前記の実施の形態においては、注入
イオンとして砒素イオンを用いたがN型としてはアンチ
モンを、またP型にするのであればガリウムイオンも有
効であり、さらにこれら導電型を決定する不純物イオン
以外にもリンより質量の大きい、シリコンイオンや、キ
セノン、クリプトンイオンなどの不活性ガスイオンを用
いることもできる。ただしこれらのイオンを用いる時
は、ポリシリコン膜の電気抵抗を下げるために導電型決
定不純物注入を併用する必要がある。
In the above embodiment, arsenic ions are used as implanted ions. However, antimony is effective as N-type, and gallium ions are effective if P-type is used. In addition to the impurity ions, silicon gas, inert gas ions such as xenon and krypton ions, which are larger in mass than phosphorus, can also be used. However, when these ions are used, it is necessary to concurrently use impurity implantation for determining the conductivity type in order to reduce the electric resistance of the polysilicon film.

【0021】[0021]

【発明の効果】以上のように本発明によれば、高耐圧ポ
リシリコン容量部の絶縁膜を低耐圧トランジスタのゲー
ト酸化膜と同時に形成する際、第1のポリシリコン膜の
電気抵抗を下げる工程をリンより質量の大きい元素イオ
ン注入によって行うことにより、従来のようにこれをリ
ンドープによって行ったものよりもポリシリコン膜上に
成長する酸化膜の膜厚を厚くすることができ、高耐圧ポ
リシリコン容量の耐圧を低耐圧のトランジスタの電気特
性を変動させることなく向上させることができるという
有利な効果が得られる。
As described above, according to the present invention, the step of reducing the electric resistance of the first polysilicon film when forming the insulating film of the high withstand voltage polysilicon capacitor portion simultaneously with the gate oxide film of the low withstand voltage transistor. Is performed by ion implantation of an element having a larger mass than phosphorus, the thickness of the oxide film grown on the polysilicon film can be made larger than that of the conventional method by phosphorus doping. The advantageous effect that the withstand voltage of the capacitor can be improved without changing the electrical characteristics of the low withstand voltage transistor is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の製造方法の一実施の形態
における製造工程の説明図
FIG. 1 is an explanatory diagram of a manufacturing process in a semiconductor device manufacturing method according to an embodiment of the present invention;

【図2】従来の半導体装置の製造方法における製造工程
の説明図
FIG. 2 is an explanatory view of a manufacturing process in a conventional method of manufacturing a semiconductor device.

【符号の説明】[Explanation of symbols]

1 p型半導体基板 2 フィールド酸化膜 3 第1のポリシリコン膜 4 ゲート酸化膜 5 ポリシリコン容量の下部電極 5’ ゲート電極 6 容量酸化膜 7 ゲート酸化膜 8 第2のポリシリコン膜 8’ ポリシリコン容量の上部電極 8’’ ゲート電極 9 ソース・ドレイン REFERENCE SIGNS LIST 1 p-type semiconductor substrate 2 field oxide film 3 first polysilicon film 4 gate oxide film 5 lower electrode of polysilicon capacitance 5 ′ gate electrode 6 capacitance oxide film 7 gate oxide film 8 second polysilicon film 8 ′ polysilicon Top electrode of capacitance 8 '' Gate electrode 9 Source / drain

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の一主面上の所定領域に絶縁
膜を形成する工程と、前記絶縁膜上を含んで前記半導体
基板全面に半導体膜を形成する工程と、前記半導体膜
に、リンよりも質量の大きい元素イオンを注入する工程
と、前記半導体膜を選択的に除去して前記絶縁膜上に第
1の電極を形成する工程と、少なくとも前記第1の電極
表面と前記半導体基板表面を酸化し、酸化膜を形成する
工程と、前記第1の電極領域上の前記酸化膜上に第2の
電極を形成する工程と、前記半導体基板領域の前記酸化
膜上に第3の電極を形成する工程を含むことを特徴とす
る半導体装置の製造方法。
A step of forming an insulating film in a predetermined region on one main surface of the semiconductor substrate; a step of forming a semiconductor film on the entire surface of the semiconductor substrate including on the insulating film; Implanting elemental ions having a larger mass than the above, selectively removing the semiconductor film to form a first electrode on the insulating film, at least the first electrode surface and the semiconductor substrate surface Forming an oxide film, forming a second electrode on the oxide film on the first electrode region, and forming a third electrode on the oxide film in the semiconductor substrate region. A method for manufacturing a semiconductor device, comprising a step of forming.
JP10313369A 1998-11-04 1998-11-04 Manufacture of semiconductor device Pending JP2000138347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10313369A JP2000138347A (en) 1998-11-04 1998-11-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10313369A JP2000138347A (en) 1998-11-04 1998-11-04 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JP2000138347A true JP2000138347A (en) 2000-05-16

Family

ID=18040438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10313369A Pending JP2000138347A (en) 1998-11-04 1998-11-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JP2000138347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541661B2 (en) 2000-11-30 2009-06-02 Renesas Technology Corp. Semiconductor integrated circuit device with high and low breakdown-voltage MISFETs
WO2012120857A1 (en) * 2011-03-04 2012-09-13 旭化成エレクトロニクス株式会社 Semiconductor device, and method for manufacturing semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7541661B2 (en) 2000-11-30 2009-06-02 Renesas Technology Corp. Semiconductor integrated circuit device with high and low breakdown-voltage MISFETs
US7790554B2 (en) 2000-11-30 2010-09-07 Renesas Technology Corp. Method of manufacturing semiconductor integrated circuit device with high and low breakdown-voltage MISFETs
WO2012120857A1 (en) * 2011-03-04 2012-09-13 旭化成エレクトロニクス株式会社 Semiconductor device, and method for manufacturing semiconductor device
JP5507754B2 (en) * 2011-03-04 2014-05-28 旭化成エレクトロニクス株式会社 Manufacturing method of semiconductor device
US8987145B2 (en) 2011-03-04 2015-03-24 Asahi Kasei Microdevices Corporation Semiconductor device, manufacturing method of the semiconductor device

Similar Documents

Publication Publication Date Title
US6037627A (en) MOS semiconductor device
KR920009745B1 (en) Manufacturing method of semiconductor
US4422885A (en) Polysilicon-doped-first CMOS process
JPH08222645A (en) Method for forming lightly doped drain region
US5554554A (en) Process for fabricating two loads having different resistance levels in a common layer of polysilicon
US7196375B2 (en) High-voltage MOS transistor
US4507846A (en) Method for making complementary MOS semiconductor devices
JPH1084045A (en) Semiconductor integrated circuit device and its manufacturing method
JPH0557741B2 (en)
KR920005511B1 (en) Semiconductor device and its manufacturing method
JP2633104B2 (en) Method for manufacturing semiconductor device
JP3680417B2 (en) Semiconductor device
US20040169224A1 (en) Semiconductor device and manufacturing method therefor
JP2000138347A (en) Manufacture of semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JP3312683B2 (en) MOS type semiconductor device and manufacturing method thereof
JPH09139382A (en) Manufacture of semiconductor device
JP3584866B2 (en) Method for manufacturing semiconductor device
JP3114675B2 (en) Method for manufacturing semiconductor device
KR100365416B1 (en) Method for manufacturing semiconductor device
JP2002231956A (en) Semiconductor device and its manufacturing method
JPH1126766A (en) Mos field effect transistor and manufacture thereof
KR100216537B1 (en) Fabrication method of power integrated circuits
JP2003086810A (en) Semiconductor device and method of manufacturing the same
JPH09129884A (en) Soi thin film field-effect transistor and its manufacture