JPS63308385A - Manufacture of buried-gate field-effect transistor - Google Patents

Manufacture of buried-gate field-effect transistor

Info

Publication number
JPS63308385A
JPS63308385A JP14454287A JP14454287A JPS63308385A JP S63308385 A JPS63308385 A JP S63308385A JP 14454287 A JP14454287 A JP 14454287A JP 14454287 A JP14454287 A JP 14454287A JP S63308385 A JPS63308385 A JP S63308385A
Authority
JP
Japan
Prior art keywords
source
drain regions
gate
buried
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14454287A
Other languages
Japanese (ja)
Other versions
JPH0565063B2 (en
Inventor
Toshio Komori
古森 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14454287A priority Critical patent/JPS63308385A/en
Publication of JPS63308385A publication Critical patent/JPS63308385A/en
Publication of JPH0565063B2 publication Critical patent/JPH0565063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enable the fine processing to be performed without any mask matching by a method wherein, after forming.source drain regions without previously burying a gate electrode in a semiconductor substrate, the gate electrode is formed in a selfalignment manner by impurity implantation using the source.drain regions as masks. CONSTITUTION:A semiconductor substrate 1 is oxidized to form a gate oxide film 5 and then a polycrystalline silicon layer 7 to be a source.drain region of a buried gate type FET is formed. Next, a resist 33 is patterned and the uncovered polycrystalline Si layer 7 is etched away. At this time, both source.drain regions 8 are formed while the space between the two regions 8 is made into a window to form the buried gate electrode as well as a channel region 9. Furthermore, phosphorus ions 4 are implanted in the buried gate region through the gate oxide film 5 by ion implantation process. Through these procedures, an n<+> gate electrode 6 can be formed in a selfalignment manner through the gate oxide film 5 using the polycrystalline Si layers forming the source.drain regions as masks to enable the fine processing to be performed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばシリコン薄膜トランジスタなどで採用
されている埋込みゲート型電界効果トランジスタ (以
下FETと記す)の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a buried gate field effect transistor (hereinafter referred to as FET), which is employed, for example, in a silicon thin film transistor.

〔従来の技術〕[Conventional technology]

埋込みゲート型FETは高抵抗半導体基板に埋込まれた
低抵抗半導体領域をゲートとし、基板上に絶縁膜を介し
て形成された半導体薄膜のチャネル領域およびソース・
ドレイン領域を存するものである。第2図(al〜tc
+はその従来の製造方法を示し、先ず図(alに示した
とおり、まずシリコン基板l上に酸化膜2を形成し、ゲ
ート部のみ選択的に開口したレジスト31をフォトリソ
グラフィ技術により形成し、酸化膜2を部分的にエツチ
ング除去した後、例えばn形ゲート電極を形成する場合
は、りんイオン4の注入により不純物拡散を行う、イオ
ン注入の代わりに従来のPoCj2を用いたガス拡散法
が用いられることもある0次に第2図中)砺とおり、再
酸化してゲート酸化膜5を形成すると同時にその際の加
熱により埋込みゲート電極部のn型拡散N6を形成する
。その後FETのチャネル領域およびソース・ドレイン
領域となる多結晶シリコン層7をCVD法により堆積し
、その上にソース・ドレイン領域のみ開口されたレジス
ト32のパターンを形成したのち再びりんイオン4の注
入を行う、このあと、アニールにより第2図tc+に示
すように多結晶シリコンにソース・ドレイン領域8が形
成され、その間にチャネル領域9が残る。
A buried-gate FET uses a low-resistance semiconductor region buried in a high-resistance semiconductor substrate as a gate, and a channel region and source region of a semiconductor thin film formed on the substrate via an insulating film.
It has a drain region. Figure 2 (al~tc
+ indicates the conventional manufacturing method. First, as shown in Figure (al), an oxide film 2 is first formed on a silicon substrate 1, and a resist 31 with selective openings only at the gate portion is formed by photolithography. After partially etching away the oxide film 2, when forming an n-type gate electrode, for example, impurity diffusion is performed by implanting phosphorus ions 4. Instead of ion implantation, a conventional gas diffusion method using PoCj2 is used. As shown in FIG. 2), the gate oxide film 5 is formed by reoxidation, and at the same time, the n-type diffusion N6 of the buried gate electrode portion is formed by heating at that time. Thereafter, a polycrystalline silicon layer 7, which will become the channel region and source/drain region of the FET, is deposited by CVD, and after forming a pattern of resist 32 with openings only in the source/drain region, phosphorus ions 4 are implanted again. Thereafter, source/drain regions 8 are formed in the polycrystalline silicon by annealing as shown in FIG. 2 tc+, and a channel region 9 remains between them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の製造方法におけるこのような工程において、埋込
みゲート電極6とソース・ドレイン領域8との位置合わ
せは、フォトリングラフィ技術のマスク合わせ精度に左
右される0通常薄膜トランジスタなどの素子製作に用い
られるマスクアライナの精度は±1〜1.5 nのレベ
ルであるから、この合わせ余裕を考慮する必要のある従
来方法では、トランジスタの微細加工に限界があった。
In such a step in the conventional manufacturing method, the alignment of the buried gate electrode 6 and the source/drain region 8 depends on the mask alignment accuracy of photolithography technology. Since the accuracy of the aligner is at the level of ±1 to 1.5 n, conventional methods that require consideration of this alignment margin have a limit to the microfabrication of transistors.

本発明の目的は、上述の問題に対処してゲート電極をソ
ース・ドレイン領域との位置合わせ精度を高め、従来よ
り8i!1.細化に適した埋込みゲート型FETの製造
方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to address the above-mentioned problems, improve alignment accuracy of gate electrodes with source/drain regions, and improve the alignment accuracy by 8i compared to conventional methods. 1. It is an object of the present invention to provide a method for manufacturing a buried gate type FET suitable for miniaturization.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明の方法は半導体基
板上に絶縁膜を形成したのちその絶縁膜の上に貰不純物
濃度の半導体層からなる二つのソース・ドレイン領域を
離して形成し、次いでこのソース・ドレイン領域をマス
クとして半導体基板に不純物を導入して埋込みゲート電
極を形成し、さらにソース・ドレイン領域間に低不純物
濃度の半導体層よりなるチャネル領域を形成するものと
する。
In order to achieve the above object, the method of the present invention forms an insulating film on a semiconductor substrate, and then forms two source/drain regions made of a semiconductor layer with a low impurity concentration on the insulating film, separated from each other. Next, using the source/drain regions as a mask, impurities are introduced into the semiconductor substrate to form a buried gate electrode, and furthermore, a channel region made of a semiconductor layer with a low impurity concentration is formed between the source/drain regions.

〔作用〕[Effect]

上述の方法においては、埋込みゲート電極が既に形成さ
れたソース・ドレイン領域をマスクとした不純物導入に
より自己整合にて形成されるので、位置合わせの余裕を
考慮する必要がなく、パターンの微細化が可能になる。
In the above method, the buried gate electrode is formed in self-alignment by introducing impurities using the already formed source/drain regions as a mask, so there is no need to consider alignment margins, and pattern miniaturization is possible. It becomes possible.

〔実施例〕〔Example〕

第1図fat〜(e)に本発明の一実施例を示し、第2
図と共通の部分には同一の符号が付されている。
An embodiment of the present invention is shown in FIG.
Parts common to those in the figure are given the same reference numerals.

まず、半導体基板lを酸化して、ゲート酸化膜5を形成
する (図a)、ここで基板1の材料は、単結晶シリコ
ンでも、薄膜トランジスタでよく用いられる多結晶シリ
コンでもよい0次に、埋込みゲート型FETのソース・
ドレイン領域となる多結晶シリコン層7を形成する (
図b)、これは、通常の減圧CVD法にて、ドープされ
た多結晶Siの形で堆積する。しかし、ドープされない
多結晶Stを堆積後、Poα、のガス拡散やイオン注入
法で不純物を導入してもよい0代表的な値としては、ソ
ース・ドレイン領域として20〜40Ω/口のシート抵
抗値があげられる0次に第1図(C1に示すように、ソ
ース・ドレイン領域を選択的にカバーするレジスト33
をバターニングし、ドライエツチングによりカバーされ
ない多結晶St層7をエツチング除去する。このとき、
第1図!d+に示す両ソース・ドレイン領域8が形成さ
れ、その間が埋込みゲート電極を作る窓となり、またチ
ャネル領域が形成される部分である。次に、イオン注入
法により、ゲート酸化It!J5を貫通してりんイオン
4を150ksVで5X1015/c++1程度埋込み
ゲート領域に注入する。
First, the semiconductor substrate 1 is oxidized to form a gate oxide film 5 (Fig. a). Here, the material of the substrate 1 may be monocrystalline silicon or polycrystalline silicon, which is often used in thin film transistors. Source of gate type FET
Form a polycrystalline silicon layer 7 that will become a drain region (
Figure b), which is deposited in the form of doped polycrystalline Si by a conventional low pressure CVD method. However, after depositing undoped polycrystalline St, impurities may be introduced by Poα gas diffusion or ion implantation.A typical value is a sheet resistance of 20 to 40 Ω/gate for the source/drain region. As shown in FIG. 1 (C1), a resist 33 selectively covers the source/drain region.
The polycrystalline St layer 7 not covered is etched away by dry etching. At this time,
Figure 1! Both source/drain regions 8 shown at d+ are formed, and the space between them serves as a window for forming a buried gate electrode, and is also a portion where a channel region is formed. Next, gate oxidation It! is performed by ion implantation. Phosphorus ions 4 are implanted into the buried gate region at 150 ksV to a density of about 5×10 15 /c++1 through J5.

この時ゲート電極から離れた領域はレジスト34でカバ
ーしておくが、そのパターンは位置合わせの精度を必要
としない、このように、ソース・ドレイン領域を形成す
る多結晶5iJi8をマスクにゲート酸化膜を通して自
己整合にて第1図(elに示すn゛層のゲート電極6を
形成するため、マスク合わせ精度に左右されることなく
、微細加工が達成できる。最後に、チャネル領域となる
低濃度多結晶Si層9を減圧CVD法にて形成する。こ
れにより、通常の絶縁ゲート型FETとは逆のゲートを
極に半導体基板内拡散層を用いた埋込みゲート型FET
を、ゲートとソース・ドレイン領域間自己整合技術を用
いて作ることができる。
At this time, the region away from the gate electrode is covered with a resist 34, but the pattern does not require alignment precision.In this way, the gate oxide film is formed using the polycrystalline 5iJi8 that forms the source/drain regions as a mask. Since the n-layer gate electrode 6 shown in FIG. A crystalline Si layer 9 is formed by a low pressure CVD method.This creates a buried gate FET using a diffusion layer in a semiconductor substrate with the gate as a pole opposite to a normal insulated gate FET.
can be made using self-alignment technology between the gate and source/drain regions.

なお、埋込みゲート7、ソース・ドレイン領域8の外部
回路との接続あるいは半導体基板1の他の領域に形成さ
れる素子との接続のための端子電極あるいは配線は、そ
れぞれ埋込みゲートあるいはソース・ドレイン領域形成
と同時に同様にして形成することができる。
Note that terminal electrodes or wiring for connecting the buried gate 7 and the source/drain region 8 with an external circuit or with elements formed in other regions of the semiconductor substrate 1 are connected to the buried gate or the source/drain region, respectively. It can be formed in a similar manner at the same time as the formation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基板へのゲート電極の埋込みを
予め行わないで、ソース・ドレイン′1IJr域形成後
、それをマスクとしての不純物導入により自己整合で形
成するので、マスク合わせの必要がなく、マスク合わせ
精度に左右されないので微細加工が可能になり、素子の
小型化1間密度集積化に有効である。またゲート型なり
容量も減少するので、埋込みゲート型FETの高速化を
達成できる。
According to the present invention, the gate electrode is not buried in the semiconductor substrate in advance, and after the source/drain '1IJr region is formed, it is formed in self-alignment by introducing impurities as a mask, so there is no need for mask alignment. Since this method is not affected by mask alignment accuracy, fine processing becomes possible, and it is effective for miniaturizing devices and increasing their density. Furthermore, since the capacitance of the gate type is also reduced, the speed of the buried gate type FET can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の一実施例の製造工程を
順次示す断面図、第2図(al〜(C)は従来の方法の
製造工程を順次示す断面図である。 に半導体基板、4:りんイオン、5:ゲート酸化膜、6
:ゲート電極、8:ソース・ドレイン領域。 m−、 代:、’1M+ハ・上上山 1−1   i+42ヂ゛ 第1図
FIGS. 1A to 1E are cross-sectional views sequentially showing the manufacturing process of an embodiment of the present invention, and FIGS. 2A to 2C are cross-sectional views sequentially showing the manufacturing process of a conventional method. , semiconductor substrate, 4: phosphorus ion, 5: gate oxide film, 6
: gate electrode, 8: source/drain region. m-, generation:,'1M+c・Kamijoyama 1-1 i+42゛Figure 1

Claims (1)

【特許請求の範囲】[Claims] 1)半導体基板上に絶縁膜を形成したのち該絶縁膜の上
に高不純物濃度の半導体層よりなる二つのソース・ドレ
イン領域を離して形成し、次いで該ソース・ドレイン領
域をマスクとして前記半導体基板に不純物を導入して埋
込みゲート電極を形成し、さらに前記ソース・ドレイン
領域間に低不純物濃度の半導体層よりなるチャネル領域
を形成することを特徴とする埋込みゲート型電界効果ト
ランジスタの製造方法。
1) After forming an insulating film on a semiconductor substrate, two source/drain regions made of a semiconductor layer with a high impurity concentration are formed on the insulating film, separated from each other, and then, using the source/drain regions as a mask, the semiconductor substrate is A method for manufacturing a buried gate field effect transistor, comprising the steps of: introducing impurities to form a buried gate electrode; and further forming a channel region made of a semiconductor layer with a low impurity concentration between the source and drain regions.
JP14454287A 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor Granted JPS63308385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14454287A JPS63308385A (en) 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14454287A JPS63308385A (en) 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor

Publications (2)

Publication Number Publication Date
JPS63308385A true JPS63308385A (en) 1988-12-15
JPH0565063B2 JPH0565063B2 (en) 1993-09-16

Family

ID=15364720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14454287A Granted JPS63308385A (en) 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63308385A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097290A3 (en) * 2000-06-16 2002-08-15 Advanced Micro Devices Inc Buried inverted gate field-effect transistor (bigfet)
CN107464746A (en) * 2016-06-06 2017-12-12 格罗方德半导体公司 Threshold voltage and well method for implantation for semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097290A3 (en) * 2000-06-16 2002-08-15 Advanced Micro Devices Inc Buried inverted gate field-effect transistor (bigfet)
CN107464746A (en) * 2016-06-06 2017-12-12 格罗方德半导体公司 Threshold voltage and well method for implantation for semiconductor device
CN107464746B (en) * 2016-06-06 2020-10-13 格罗方德半导体公司 Threshold voltage and well implant method for semiconductor device

Also Published As

Publication number Publication date
JPH0565063B2 (en) 1993-09-16

Similar Documents

Publication Publication Date Title
JPH06252359A (en) Manufacture of semiconductor device
US8034695B2 (en) Semiconductor device and method of manufacturing the same
JPS63308385A (en) Manufacture of buried-gate field-effect transistor
JPS6251216A (en) Manufacture of semiconductor device
JPS6226850A (en) Manufacture of integrated circuit device
JPS6237960A (en) Manufacture of read only semiconductor memory device
JPS5866358A (en) Semiconductor device and manufacture thereof
JPS6384161A (en) Manufacture of semiconductor device
JPH0113230B2 (en)
JPH0369168A (en) Thin film field effect transistor
JPS62171141A (en) Semiconductor device
JPS62128542A (en) Manufacture of semiconductor device
JPS6159539B2 (en)
JPS6316672A (en) Manufacture of semiconductor element
JPS6039868A (en) Manufacture of semiconductor device
JPS59175769A (en) Semiconductor device and manufacture thereof
JPS6395664A (en) Semiconductor device and manufacture thereof
JPS5935186B2 (en) Manufacturing method of MOS type semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof
JPS6292359A (en) Manufacture of semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH03175676A (en) Semiconductor device
JP2002176107A (en) Method of manufacturing semiconductor device
JPH0225261B2 (en)
JPH0461164A (en) Manufacture of semiconductor device