JPH0565063B2 - - Google Patents

Info

Publication number
JPH0565063B2
JPH0565063B2 JP14454287A JP14454287A JPH0565063B2 JP H0565063 B2 JPH0565063 B2 JP H0565063B2 JP 14454287 A JP14454287 A JP 14454287A JP 14454287 A JP14454287 A JP 14454287A JP H0565063 B2 JPH0565063 B2 JP H0565063B2
Authority
JP
Japan
Prior art keywords
source
drain regions
gate electrode
buried gate
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14454287A
Other languages
Japanese (ja)
Other versions
JPS63308385A (en
Inventor
Toshio Komori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP14454287A priority Critical patent/JPS63308385A/en
Publication of JPS63308385A publication Critical patent/JPS63308385A/en
Publication of JPH0565063B2 publication Critical patent/JPH0565063B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばシリコン薄膜トランジスタな
どで採用されている埋込みゲート型電界効果トラ
ンジスタ(以下FETと記す)の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a buried gate field effect transistor (hereinafter referred to as FET), which is employed, for example, in a silicon thin film transistor.

〔従来の技術〕[Conventional technology]

埋込みゲート型FETは高抵抗半導体基板に埋
込まれた抵抗半導体領域をゲートとし、基板上に
絶縁膜を介して形成された半導体薄膜のチヤネル
領域およびソース・ドレイン領域を有するのであ
る。第2図a〜cはその従来の製造方法を示し、
先ず図aに示したとおり、まずシリコン基板1上
に酸化膜2を形成し、ゲート部のみ選択的に開口
したレジスト31をフオトリソグラフイ技術によ
り形成し、酸化膜2を部分的にエツチング除去し
た後、例えばn形ゲート電極を形成する場合は、
りんイオン4の注入により不純物拡散を行う。イ
オン注入の代わりに従来のPoCl3を用いたガス拡
散法が用いられることもある。次に第2図bのと
おり、再酸化してゲート酸化膜5を形成すると同
時にその際の加熱により埋込みゲート電極部のn
型拡散層6を形成する。その後FETのチヤネル
領域およびソース・ドレイン領域となる多結晶シ
リコン層7をCVD法により堆積し、その上にソ
ース・ドレイン領域のみ開口されたレジスト32
のパターンを形成したのち再びりんイオン4の注
入を行う。このあと、アニールにより第2図cに
示すように多結晶シリコンにソース・ドレイン領
域8が形成され、その間にチヤネル領域9が残
る。
A buried gate FET uses a resistive semiconductor region buried in a high-resistance semiconductor substrate as a gate, and has a channel region and source/drain regions of a thin semiconductor film formed on the substrate with an insulating film interposed therebetween. Figures 2a to 2c show the conventional manufacturing method,
First, as shown in Figure a, an oxide film 2 was formed on a silicon substrate 1, a resist 31 with selective openings only at the gate was formed by photolithography, and the oxide film 2 was partially removed by etching. After that, for example, when forming an n-type gate electrode,
Impurity diffusion is performed by implanting phosphorus ions 4. A conventional gas diffusion method using PoCl 3 may be used instead of ion implantation. Next, as shown in FIG. 2b, the gate oxide film 5 is formed by reoxidation, and at the same time, the buried gate electrode portion is heated to form a gate oxide film 5.
A mold diffusion layer 6 is formed. Thereafter, a polycrystalline silicon layer 7, which will become the channel region and source/drain region of the FET, is deposited by CVD method, and a resist 32 with openings only in the source/drain region is deposited thereon.
After forming the pattern, phosphorus ions 4 are implanted again. Thereafter, source/drain regions 8 are formed in the polycrystalline silicon by annealing, as shown in FIG. 2c, and a channel region 9 remains between them.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の製造方法におけるこのような工程におい
て、埋込みゲート電極6とソース・ドレイン領域
8との位置合わせは、フオトリソグラフイ技術の
マスク合わせ精度に左右される。通常薄膜トラン
ジスタなどの素子製作に用いられるマスクアライ
ナの精度は±1〜1.5μmのレベルであるから、こ
の合わせ余裕を考慮する必要のある従来方法で
は、トランジスタの微細加工に限界があつた。
In such steps in the conventional manufacturing method, the alignment between the buried gate electrode 6 and the source/drain region 8 depends on the mask alignment accuracy of the photolithography technique. Since the precision of mask aligners normally used for manufacturing elements such as thin film transistors is at the level of ±1 to 1.5 μm, conventional methods that require consideration of this alignment margin have had limits on microfabrication of transistors.

本発明の目的は、上述の問題に対処してゲート
電極をソース・ドレイン領域との位置合わせ精度
を高め、従来より微細化に適した埋込みゲート型
FETの製造方法を提供することにある。
An object of the present invention is to address the above-mentioned problems and improve the alignment accuracy of the gate electrode with the source/drain region, thereby making the buried gate type more suitable for miniaturization than the conventional one.
The purpose of the present invention is to provide a method for manufacturing FETs.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明の方法は
半導体基板上に絶縁膜を形成したのちその絶縁膜
の上に高不純物濃度の半導体層からなる二つのソ
ース・ドレイン領域を離して形成し、次いでこの
ソース・ドレイン領域をマスクとして半導体基板
に不純物を導入して埋込みゲート電極を形成し、
さらにソース・ドレイン領域間に低不純物濃度の
半導体層よりなるチヤネル領域を形成するものと
する。
In order to achieve the above object, the method of the present invention forms an insulating film on a semiconductor substrate, and then forms two source/drain regions made of a semiconductor layer with a high impurity concentration on the insulating film, separated from each other. Next, using this source/drain region as a mask, impurities are introduced into the semiconductor substrate to form a buried gate electrode.
Furthermore, a channel region made of a semiconductor layer with a low impurity concentration is formed between the source and drain regions.

〔作用〕[Effect]

上述の方法においては、埋込みゲート電極が既
に形成されたソース・ドレイン領域をマスクとし
た不純物導入により自己整合にて形成されるの
で、位置合わせの余裕を考慮する必要がなく、パ
ターンの微細化が可能になる。
In the above method, the buried gate electrode is formed in self-alignment by introducing impurities using the already formed source/drain regions as a mask, so there is no need to consider alignment margins, and pattern miniaturization is possible. It becomes possible.

〔実施例〕〔Example〕

第1図a〜eに本発明の一実施例を示し、第2
図と共通の部分には同一の符号が付されている。
まず、半導体基板1を酸化して、ゲート酸化膜5
を形成する(図a)。ここで基板1の材料は、単
結晶シリコンでも、薄膜トランジスタでよく用い
られる多結晶シリコンでもよい。次に、埋込みゲ
ート型FETのソース・ドレイン領域となる多結
晶シリコン層7を形成する(図b)。これは、通
常の減圧CVD法にて、ドープされた多結晶Siの
形で堆積する。しかし、ドープされない多結晶Si
を堆積後、PoCl3のガス拡散やイオン注入法で不
純物を導入してもよい。代表的な値としては、ソ
ース・ドレイン領域として20〜40Ω/□のシート
抵抗値があげられる。次に第1図cに示すよう
に、ソース・ドレイン領域を選択的にカバーする
レジスト33をパターニングし、ドライエツチン
グによりカバーされない多結晶Si層7をエツチン
グ除去する。このとき、第1図dに示す両ソー
ス・ドレイン領域8が形成され、その間が埋込み
ゲート電極を作る窓となり、またチヤネル領域が
形成される部分である。次に、イオン注入法によ
り、ゲート酸化膜5を貫通してりんイオン4を
150keVで5×1015/cm2程度埋込みゲート領域に
注入する。この時ゲート電極から離れた領域はレ
ジスト34でカバーしておくが、そのパターンは
位置合わせの精度を必要としない。このように、
ソース・ドレイン領域を形成する多結晶Si層8を
マスクにゲート酸化膜を通して自己整合にて第1
図eに示すn+層のゲート電極6を形成するため、
マスク合わせ精度に左右されることなく、微細加
工が達成できる。最後に、チヤネル領域となる低
濃度多結晶Si層9を減圧CVD法にて形成する。
これにより、通常の絶縁ゲート型FETとは逆の
ゲート電極に半導体基板内拡散層を用いた埋込み
ゲート型FETを、ゲートとソース・ドレイン領
域間自己整合技術を用いて作ることができる。
An embodiment of the present invention is shown in FIGS.
Parts common to those in the figure are given the same reference numerals.
First, the semiconductor substrate 1 is oxidized to form a gate oxide film 5.
(Figure a). Here, the material of the substrate 1 may be single crystal silicon or polycrystalline silicon often used in thin film transistors. Next, a polycrystalline silicon layer 7, which will become the source/drain region of the buried gate FET, is formed (FIG. b). This is deposited in the form of doped polycrystalline Si using a conventional low pressure CVD method. However, undoped polycrystalline Si
After deposition, impurities may be introduced by PoCl 3 gas diffusion or ion implantation. A typical value is a sheet resistance value of 20 to 40 Ω/□ for the source/drain region. Next, as shown in FIG. 1c, the resist 33 that selectively covers the source/drain regions is patterned, and the polycrystalline Si layer 7 that is not covered is removed by dry etching. At this time, both source and drain regions 8 shown in FIG. 1d are formed, and the space between them serves as a window for forming a buried gate electrode, and is also a portion where a channel region is formed. Next, phosphorus ions 4 are implanted through the gate oxide film 5 by ion implantation.
A dose of about 5×10 15 /cm 2 is implanted at 150 keV into the buried gate region. At this time, the region away from the gate electrode is covered with a resist 34, but the pattern does not require alignment accuracy. in this way,
The first layer is self-aligned through the gate oxide film using the polycrystalline Si layer 8 forming the source/drain region as a mask.
To form the gate electrode 6 of the n + layer shown in Figure e,
Microfabrication can be achieved without being affected by mask alignment accuracy. Finally, a low concentration polycrystalline Si layer 9, which will become a channel region, is formed by low pressure CVD.
This makes it possible to create a buried gate FET that uses a diffusion layer in the semiconductor substrate for the gate electrode, which is the opposite of a normal insulated gate FET, using self-alignment technology between the gate and source/drain regions.

なお、埋込みゲート7、ソース・ドレイン領域
8の外部回路との接続あるいは半導体基板1の他
の領域に形成される素子との接続のため端子電極
あるいは配線は、それぞれ埋込みゲートあるいは
ソース・ドレイン領域形成と同時に同様にして形
成することができる。
Note that terminal electrodes or wiring for connecting the buried gate 7 and the source/drain region 8 with an external circuit or with elements formed in other regions of the semiconductor substrate 1 are formed in the buried gate or the source/drain region, respectively. They can be formed simultaneously and in the same manner.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、半導体基板へのゲート電極の
埋込み予め行わないで、ソース・ドレイン領域形
成後、それをマスクとしての不純物導入により自
己整合で形成するもので、マスク合わせの必要が
なく、マスク合わせ精度に左右されないので微細
加工が可能になり、素子の小型化、高密度集積化
に有効である。またゲート重なり容量も減少する
ので、埋込みゲート型FETの高速化を達成でき
る。
According to the present invention, the gate electrode is not buried in the semiconductor substrate in advance, but after the source/drain region is formed, it is formed in self-alignment by introducing impurities as a mask, and there is no need for mask alignment. Since it is not affected by alignment accuracy, microfabrication is possible, which is effective for miniaturizing devices and increasing their density. Furthermore, since the gate overlap capacitance is reduced, it is possible to achieve higher speed buried gate type FETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは本発明の一実施例の製造工程を
順次示す断面図、第2図a〜cは従来の方法の製
造工程を順次示す断面図である。 1:半導体基板、4:りんイオン、5:ゲート
酸化膜、6:ゲート電極、8:ソース・ドレイン
領域。
1A to 1E are cross-sectional views sequentially showing the manufacturing process of an embodiment of the present invention, and FIGS. 2A to 2C are cross-sectional views sequentially showing the manufacturing process of a conventional method. 1: semiconductor substrate, 4: phosphorus ion, 5: gate oxide film, 6: gate electrode, 8: source/drain region.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に絶縁膜を形成したのち該絶縁
膜の上に高不純物濃度の半導体層よりなる二つの
ソース・ドレイン領域を離して形成し、次いで該
ソース・ドレイン領域をマスクとして前記半導体
基板に不純物を導入して埋込みゲート電極を形成
し、さらに前記ソース・ドレイン領域間に低不純
物濃度の半導体層よりなるチヤネル領域を形成す
ることを特徴とする埋込みゲート型電界効果トラ
ンジスタの製造方法。
1. After forming an insulating film on a semiconductor substrate, two source/drain regions made of a semiconductor layer with a high impurity concentration are formed on the insulating film, separated from each other, and then, using the source/drain regions as a mask, the semiconductor substrate is coated. A method for manufacturing a buried gate field effect transistor, comprising the steps of: introducing an impurity to form a buried gate electrode; and further forming a channel region made of a semiconductor layer with a low impurity concentration between the source and drain regions.
JP14454287A 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor Granted JPS63308385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14454287A JPS63308385A (en) 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14454287A JPS63308385A (en) 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor

Publications (2)

Publication Number Publication Date
JPS63308385A JPS63308385A (en) 1988-12-15
JPH0565063B2 true JPH0565063B2 (en) 1993-09-16

Family

ID=15364720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14454287A Granted JPS63308385A (en) 1987-06-10 1987-06-10 Manufacture of buried-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPS63308385A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001267034A1 (en) * 2000-06-16 2001-12-24 Advanced Micro Devices Inc. Buried inverted gate field-effect transistor (bigfet)
US9780002B1 (en) * 2016-06-06 2017-10-03 Globalfoundries Inc. Threshold voltage and well implantation method for semiconductor devices

Also Published As

Publication number Publication date
JPS63308385A (en) 1988-12-15

Similar Documents

Publication Publication Date Title
US5013678A (en) Method of making an integrated circuit comprising load resistors arranged on the field oxide zones which separate the active transistor zones
JPH07202193A (en) Semiconductor device and manufacture thereof
JPH0564456B2 (en)
JPH0558265B2 (en)
JPH0565063B2 (en)
JPH01164061A (en) Manufacture of bi-cmos semiconductor device
JPS6360549B2 (en)
JPS61182267A (en) Manufacture of semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS5836505B2 (en) Method for manufacturing semiconductor memory device
JPH0369168A (en) Thin film field effect transistor
JPS6384161A (en) Manufacture of semiconductor device
JPH01165162A (en) Manufacture of semiconductor memory device
JPH05121744A (en) Soi semiconductor device and manufacture thereof
JPH0621094A (en) Manufacture of semiconductor device
JP3241914B2 (en) Method for manufacturing semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS6024589B2 (en) Method for manufacturing complementary insulated gate field effect transistors
JPS61166154A (en) Manufacture of mis type semiconductor device
JPH04142749A (en) Manufacture of semiconductor device
JPS62249486A (en) Manufacture of semiconductor device
JPH02267943A (en) Manufacture of mis type semiconductor device
JPH02215152A (en) Manufacture of semiconductor device
JPH03209773A (en) Semiconductor device