JPS5836505B2 - Method for manufacturing semiconductor memory device - Google Patents

Method for manufacturing semiconductor memory device

Info

Publication number
JPS5836505B2
JPS5836505B2 JP55089375A JP8937580A JPS5836505B2 JP S5836505 B2 JPS5836505 B2 JP S5836505B2 JP 55089375 A JP55089375 A JP 55089375A JP 8937580 A JP8937580 A JP 8937580A JP S5836505 B2 JPS5836505 B2 JP S5836505B2
Authority
JP
Japan
Prior art keywords
oxide film
region
impurity
forming
metal silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55089375A
Other languages
Japanese (ja)
Other versions
JPS5713755A (en
Inventor
信市 井上
元 石川
信夫 豊蔵
博 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55089375A priority Critical patent/JPS5836505B2/en
Publication of JPS5713755A publication Critical patent/JPS5713755A/en
Publication of JPS5836505B2 publication Critical patent/JPS5836505B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】 本発明は、1トランジスタ・1キャパシタ・メモリ・セ
ルを有する半導体記憶装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor memory device having one transistor and one capacitor memory cell.

従来、前記種類の装置として第1図に見られる構造のも
のが知られている。
Conventionally, as a device of the above type, one having the structure shown in FIG. 1 is known.

即ち、図はその要部側断面説明図であり、1はp型シリ
コン半導体基板、2はフィールド酸化膜、3はゲート酸
化膜、4は多結晶シリコンからなるキャパシタ電極(第
1層電極)、5は絶縁酸化膜、6は多結晶シリコンから
なるトランスファ・ゲート電極(第2層電極)、7はビ
ット線であるn十型不純物領域をそれぞれ示している。
That is, the figure is an explanatory side cross-sectional view of the main parts, and 1 is a p-type silicon semiconductor substrate, 2 is a field oxide film, 3 is a gate oxide film, 4 is a capacitor electrode (first layer electrode) made of polycrystalline silicon, Reference numeral 5 indicates an insulating oxide film, 6 a transfer gate electrode (second layer electrode) made of polycrystalline silicon, and 7 an n+ type impurity region which is a bit line.

この装置では、ピット線が不純物領域7で形成されてい
る為、その比抵抗はIXIO−3[Ω゜鋼〕以上であっ
て、かなり高いものとなっている。
In this device, since the pit line is formed in the impurity region 7, its specific resistance is higher than IXIO-3 [Ω° steel], which is quite high.

その結果、信号の遅延を生じることになる。As a result, signal delays will occur.

一般に、不純物領域の抵抗値を低下させる為には領域を
深く形成すれば良いが、そのようにすると、拡散の横方
向拡がりも大になるので、トランスファ・ゲートのゲー
ト長精度に影響を及ぼすことになり、特性劣化を招来す
る。
Generally, in order to reduce the resistance value of an impurity region, it is sufficient to form the region deeply, but this will also increase the lateral spread of diffusion, which will affect the gate length accuracy of the transfer gate. This results in deterioration of characteristics.

本発明は、前記の装置に於けるビット線として不純物含
有高融点金属珪化物膜を利用することに依り形戒し、前
記従来の欠点を解消しようとするものであり、以下これ
を詳細に説明する。
The present invention attempts to solve the above-mentioned conventional drawbacks by using an impurity-containing refractory metal silicide film as a bit line in the above-mentioned device, and will be described in detail below. do.

なお、ここにいう高融点金属珪化物は、半導体装置の製
造工程における加熱処理の際安定な状態を保つことがで
きれば、化学量論的組成と異っていてもよい。
Note that the high melting point metal silicide mentioned here may have a different stoichiometric composition as long as it can maintain a stable state during heat treatment in the manufacturing process of a semiconductor device.

第2図乃至第6図は本発明一実施例を説明する為の工程
要所に於ける半導体装置の要部側断面説明図であり、次
に、これ等の図を参照しつつ記述する。
2 to 6 are sectional side views of essential parts of a semiconductor device at key points in the process for explaining one embodiment of the present invention, and the following description will be made with reference to these figures.

本実施例においては、金属硅化物としてモリブデン硅化
物を掲げて述べる。
In this embodiment, molybdenum silicide will be used as the metal silicide.

第2図参照 (1) p型シリコン半導体基板1に例えば窒化シリ
コン膜をマスクとする選択酸化法を適用し、フィールド
酸化膜2を形或する。
Refer to FIG. 2 (1) A field oxide film 2 is formed on the p-type silicon semiconductor substrate 1 by applying a selective oxidation method using, for example, a silicon nitride film as a mask.

(2)マスクを除去してから熱酸化法を適用し、薄い絶
縁酸化膜3を形成する。
(2) After removing the mask, a thermal oxidation method is applied to form a thin insulating oxide film 3.

(3)スパッタリング法を適用してモリブデン珪化物膜
を形成し、それを通常のフォト・リングラフイ技術にて
パターニングし、キャパシタ電極4を形成する。
(3) A molybdenum silicide film is formed by applying a sputtering method, and it is patterned by ordinary photolithography technology to form a capacitor electrode 4.

第3図参照 (4)キャパシタ電極4をマスクとして酸化膜3のパタ
ーニングを行ない開口3Aを形成し、基板10表面一部
を露出する。
Refer to FIG. 3 (4) Using the capacitor electrode 4 as a mask, the oxide film 3 is patterned to form an opening 3A to expose a part of the surface of the substrate 10.

なお本工程を省略して、次の酸化工程へ進んでもよい。Note that this step may be omitted and the process may proceed to the next oxidation step.

この場合酸化膜30表出部の厚さは増加する。In this case, the thickness of the exposed portion of the oxide film 30 increases.

第4図参照 (5)高温の酸化性雰囲気中での処理を行ない、さきに
露出させた基板1の表面及びキャパシタ電極40表面に
熱酸化膜5を形成する。
Refer to FIG. 4 (5) Processing is performed in a high temperature oxidizing atmosphere to form a thermal oxide film 5 on the previously exposed surface of the substrate 1 and the surface of the capacitor electrode 40.

第5図参照 (6)フォト・リングラフイ技術にてビット線を形成す
べき領域上に在る酸化膜5を除去する。
Refer to FIG. 5. (6) The oxide film 5 existing on the region where the bit line is to be formed is removed by photolithography technology.

(7)スパッタリング法を適用し、ドナー不純物例えば
燐を含有するモリブデン珪化物膜を厚さ例えば3000
〔A〕程変に形成する。
(7) Sputtering is applied to form a molybdenum silicide film containing donor impurities such as phosphorus to a thickness of 3,000 ml, for example.
[A] Form in varying degrees.

このスパッタリング&エモリブデン珪化物膜に燐を含有
させる為例えばスパッタリング雰囲気をホスフイン(P
H3)/アルゴン(Ar )にする。
In order to make the sputtering and emolybdenum silicide film contain phosphorus, for example, the sputtering atmosphere is changed to phosphine (P).
H3)/argon (Ar).

また、モリブデン硅化物に燐を含ませる方法として、モ
リブデンターケット上に金属燐を置いた状態でスパッタ
リング処理を行なってもよい。
Further, as a method of impregnating phosphorus into molybdenum silicide, sputtering treatment may be performed with metallic phosphorus placed on a molybdenum tarket.

また、ドナー不純物として砒素を用いてもよい。Furthermore, arsenic may be used as a donor impurity.

(8)フォト・リングラフイ技術にてモリブデン珪化物
膜のパターニングを行ない、トランスファ・ゲート電極
6G及びピット線として用いられる配線6Bを形成する
(8) The molybdenum silicide film is patterned using photolithography technology to form a transfer gate electrode 6G and a wiring 6B used as a pit line.

尚、配線6Bの両側には開口3Aの一部が残留している
Note that a portion of the opening 3A remains on both sides of the wiring 6B.

(9)イオン注入法を適用し、砒素(或いは燐)を打ち
込んでn十型不純物導入領域7を形成する。
(9) Applying the ion implantation method, arsenic (or phosphorus) is implanted to form the n+ type impurity introduction region 7.

第6図参照 (10) 高温で熱処理を行ない、領域7の注入イオ
ンの活性化及び配線6Bからの燐拡散をして分離されて
いた領域7を一つに結合する。
Refer to FIG. 6 (10) Heat treatment is performed at a high temperature to activate the implanted ions in the region 7 and diffuse phosphorus from the wiring 6B, thereby joining the separated regions 7 into one.

01)この後、化学気相成長法により二酸化シリコン膜
8(或いは燐珪酸ガラス膜)を形成し、それに電極コン
タタト窓を形成したり電極・配線を形或するなどして完
成する。
01) Thereafter, a silicon dioxide film 8 (or a phosphosilicate glass film) is formed by chemical vapor deposition, and electrode contact windows are formed thereon, and electrodes and wiring are shaped to complete the process.

このようにして完成された装置のビット線は配線6B及
び領域7で形成される。
The bit line of the device thus completed is formed by the wiring 6B and the region 7.

第7図は燐含有モリブデン珪化物膜から熱処理に依り燐
をシリコン半導体基板に拡散した場合の分布を表わす線
図である。
FIG. 7 is a diagram showing the distribution when phosphorus is diffused from a phosphorus-containing molybdenum silicide film into a silicon semiconductor substrate by heat treatment.

以上の説明で判るように、本発明に依れば、1トランジ
スタ・1キャパシタ・メモリ・セルヲ有する半導体記憶
装置を製造する際、トランスファ・ゲート電極及びビッ
ト線の一部となる配線を不純物含有高融点金属珪化物で
形成するものであるから、特に、ビット線は多結晶シリ
コン或いは不純物拡散領域のみを用いるものと異なり、
抵抗値は1桁以上も小さくなるので、伝播信号遅延も小
さくすることができる。
As can be seen from the above description, according to the present invention, when manufacturing a semiconductor memory device having one transistor, one capacitor, and a memory cell, the wiring that becomes part of the transfer gate electrode and the bit line is doped with high impurity content. Since the bit line is made of melting point metal silicide, it is different from bit lines that use only polycrystalline silicon or impurity diffusion regions.
Since the resistance value is reduced by more than one order of magnitude, the propagation signal delay can also be reduced.

また、ビット線の一部となる不純物導入領域は前記ビッ
ト線の一部となる配線の存在に依り、然程深く拡散する
必要がない為、拡散の横拡がりも少ないから設計通りの
パターンを得ることが容易である。
In addition, the impurity doped region that will become part of the bit line does not need to be diffused very deeply due to the existence of the wiring that will become part of the bit line, so the lateral spread of diffusion is also small, so a pattern as designed can be obtained. It is easy to do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第6図は本発明一実施例を説明する為の工程
要所に於ける半導体装置の要部側断面説明図、第7図は
不純物分布を表わす線図である。 図に於いて、h工基板、2ぱ酸化膜、3は酸化膜、4は
キャパシタ電極、5は酸化膜、6Bは配線、6Gはトラ
ンスファ・ゲート電極、7は不純物導入領域、8は二酸
化シリコン膜である。
1 to 6 are side cross-sectional views of essential parts of a semiconductor device at key points in the process for explaining one embodiment of the present invention, and FIG. 7 is a diagram showing impurity distribution. In the figure, H is an engineered substrate, 2 is an oxide film, 3 is an oxide film, 4 is a capacitor electrode, 5 is an oxide film, 6B is a wiring, 6G is a transfer gate electrode, 7 is an impurity doped region, 8 is silicon dioxide It is a membrane.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型半導体基板の活性領域上に酸化膜を形成し
てから高融点金属珪化物膜を形成し、その高融点金属珪
化物膜をパターニングしてキャパシタ電極を形成し、そ
のキャパシタ電極をマスクにして前記酸化膜をパターニ
ングして前記活性領域の一部表面を露出し、その露出さ
れた表面にゲート酸化膜を形成するとともに前記キャパ
シタ電極表面に絶縁酸化膜を形成し、前記ゲート酸化膜
をパターニングして不純物導入領域を形成する為の開口
を形成してから反対導電型不純物含有高融点金属珪化物
膜を形成し、その不純物含有高融点金属珪化物膜をパタ
ーニングしてゲー}t極及び前記不純物導入領域を形成
する為の開口内を通る配線を形成してからその開口より
前記活性領域中に不純物導入を行ないキャパシタ領域と
チャネル領域を介して対向する反対導電型不純物導入領
域を形成し、しかる後、前記配線から不純物拡散する工
程が含まれてなることを特徴とする半導体記憶装置の製
造方法。
1 Form an oxide film on the active region of a semiconductor substrate of one conductivity type, then form a high melting point metal silicide film, pattern the high melting point metal silicide film to form a capacitor electrode, and mask the capacitor electrode. patterning the oxide film to expose a part of the surface of the active region, forming a gate oxide film on the exposed surface, and forming an insulating oxide film on the surface of the capacitor electrode; After patterning to form an opening for forming an impurity introduction region, a high melting point metal silicide film containing an impurity of the opposite conductivity type is formed, and the impurity containing high melting point metal silicide film is patterned to form a gate electrode and a gate electrode. After forming a wiring passing through the opening for forming the impurity doped region, impurities are introduced into the active region through the opening to form an opposite conductivity type impurity doped region facing the capacitor region and the channel region. A method of manufacturing a semiconductor memory device, comprising the steps of: . . . and thereafter diffusing impurities from the wiring.
JP55089375A 1980-06-30 1980-06-30 Method for manufacturing semiconductor memory device Expired JPS5836505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55089375A JPS5836505B2 (en) 1980-06-30 1980-06-30 Method for manufacturing semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55089375A JPS5836505B2 (en) 1980-06-30 1980-06-30 Method for manufacturing semiconductor memory device

Publications (2)

Publication Number Publication Date
JPS5713755A JPS5713755A (en) 1982-01-23
JPS5836505B2 true JPS5836505B2 (en) 1983-08-09

Family

ID=13968932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55089375A Expired JPS5836505B2 (en) 1980-06-30 1980-06-30 Method for manufacturing semiconductor memory device

Country Status (1)

Country Link
JP (1) JPS5836505B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450620A (en) * 1983-02-18 1984-05-29 Bell Telephone Laboratories, Incorporated Fabrication of MOS integrated circuit devices
JPS6014852U (en) * 1983-07-07 1985-01-31 屋敷 静雄 Driver with sliding door
JP2527162Y2 (en) * 1989-05-17 1997-02-26 スズキ株式会社 Motorcycle throttle grip device
DE4304450A1 (en) * 1993-02-13 1994-08-18 Boehringer Mannheim Gmbh System for the preparation of liquids

Also Published As

Publication number Publication date
JPS5713755A (en) 1982-01-23

Similar Documents

Publication Publication Date Title
US4925807A (en) Method of manufacturing a semiconductor device
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JPS5836505B2 (en) Method for manufacturing semiconductor memory device
JPH03227516A (en) Manufacture of semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
JPS6197975A (en) Manufacture of semiconductor device
US4653173A (en) Method of manufacturing an insulated gate field effect device
KR100255008B1 (en) Manufacture method of semiconductor apparatus
JP2809393B2 (en) Method for manufacturing semiconductor device
JPH0227769A (en) Semiconductor device
JPH06163576A (en) Manufacture of semiconductor device
JPH04303944A (en) Manufacture of semiconductor device
JPS6068655A (en) Manufacture of mos transistor
JPH01143358A (en) Manufacture of mos semiconductor integrated circuit device
JPS63164357A (en) Manufacture of semiconductor device
KR19980058438A (en) Silicide Formation Method of Semiconductor Device
JPS61156883A (en) Manufacture of semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JP3030569B2 (en) Manufacturing method of nonvolatile semiconductor memory
JPH0226034A (en) Manufacture of semiconductor device
JPH0846191A (en) Manufacture of semiconductor device
JPH07106443A (en) Nonvolatile semiconductor memory and fabrication thereof
JPH025411A (en) Manufacture of semiconductor device
JPH02267943A (en) Manufacture of mis type semiconductor device