JPH03209773A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03209773A
JPH03209773A JP418690A JP418690A JPH03209773A JP H03209773 A JPH03209773 A JP H03209773A JP 418690 A JP418690 A JP 418690A JP 418690 A JP418690 A JP 418690A JP H03209773 A JPH03209773 A JP H03209773A
Authority
JP
Japan
Prior art keywords
film
melting point
point metal
high melting
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP418690A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Hirakawa
一喜 平河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP418690A priority Critical patent/JPH03209773A/en
Publication of JPH03209773A publication Critical patent/JPH03209773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To enable buried contact in MOS type field effect transistors of N-type and P-type, by a method wherein a gate electrode is composed of a laminated film of a silicon film, a first high melting point metal compound film, and a second high melting point metal compound film, and either one of a source electrode or a drain electrode is composed of a laminated film of the first high melting point metal compound film and a high melting point metal film or the second high melting point compound film, only in a buried contact region. CONSTITUTION:A gate electrode is constituted of an N-type polycrystalline silicon film 104 containing phosphorus, a titanium silicide film 105, and a molybdenum silicide film 106. A source electrode or a drain electrode is directly in contact with a silicon substrate 101 via a titanium silicide film 105 formed on silicon metal 101, and the molybdenum silicide film 106 laminated on the film 105. After a gate electrode and an electrode in a buried contact region are formed, source and drain diffusions are performed.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、MOS型電界効果トランジスタの構造に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application 1] The present invention relates to the structure of a MOS field effect transistor.

〔従来の技術〕[Conventional technology]

従来のMOS型電界効果トランジスタにおける埋め込み
コンタクトの構造は、ゲート電極と同一の構造を持つ配
線が、ソース、あるいは、ドレインの部分のシリコン基
板に直接接触し、ソース電極、あるいはドレイン電極の
少なくとも一方の電極を形成するものであった。
In the structure of a buried contact in a conventional MOS field effect transistor, a wiring having the same structure as the gate electrode is in direct contact with the silicon substrate in the source or drain part, and the wiring has the same structure as the gate electrode. It was intended to form an electrode.

[発明が解決しようとする課朋1 しかし、前述の従来技術では、回連イオンによる閾値電
圧の不安定性を少なくするために、−M的に、燐を含ん
だ多結晶シリコン膜を、あるいは、燐を含んだ多結晶シ
リコンと高融点金属の積層膜(ポリサリイド構造)をゲ
ート電極、ソース電極、あるいはドレイン電極に用いて
いるため、N形MOS型電界効果トランジスタのみにし
か埋め込みコンタクトの構造を使用できないという間朋
点を有していた。
[Problem to be Solved by the Invention 1 However, in the above-mentioned conventional technology, in order to reduce the instability of the threshold voltage due to repeated ions, -M-wise, a polycrystalline silicon film containing phosphorus or Since a laminated film (polysalide structure) of polycrystalline silicon containing phosphorus and a high-melting point metal is used for the gate, source, or drain electrodes, a buried contact structure is used only for N-type MOS field effect transistors. I had a certain point that I couldn't do it.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは1M4を含んだ多結晶シリコンと
高融点金属の積層膜(ポリサリイド構造)をゲート電極
に用いながら、N形、及び、P形MO5型電界効果トラ
ンジスタに、埋め込みコンタクトが可能な半導体装置を
提供するところにある。
The present invention is intended to solve these problems, and its purpose is to use a stacked film (polysalide structure) of polycrystalline silicon containing 1M4 and a high-melting point metal for the gate electrode, and to The present invention provides a semiconductor device in which a buried contact can be made to a P-type MO5 field effect transistor.

[il 1Mを解決するための手段] 本発明の半導体装置は、ゲート電極が、シリコンを主成
分とする膿と、第1の高融点金属化合物膜と、高融点金
属あるいは第2の高融点金属化合物膜の積層膜、あるい
は、シリコンを主成分とする膿と、高融点金属あるいは
第2の高融点金属化合物膜の積層膜からなり、ソース電
極、あるいはドレイン電極の少なくとも一方の電極が、
少なくとも埋め込みコンタクト領域のみ、前記第1の高
融点金属化合物膜と、高融点金属あるいは第2の高融点
金属化合物膜の積層膜からなることを特徴とする。
[Means for Solving Il 1M] In the semiconductor device of the present invention, the gate electrode is made of pus mainly composed of silicon, a first high melting point metal compound film, and a high melting point metal or a second high melting point metal. A laminated film of a compound film, or a laminated film of a pus mainly composed of silicon and a high melting point metal or a second high melting point metal compound film, and at least one of the source electrode and the drain electrode is
At least only the buried contact region is characterized by being made of a laminated film of the first high melting point metal compound film and a high melting point metal or a second high melting point metal compound film.

[実 施 例] 第1図は、本2発明の実施例における半導体装置の断面
図を示す、101は、N形シリコン基板、102は、シ
リコン酸化膜、103は、ゲート酸化膜、104はN型
多結晶シリコン膜、105は、硅化チタニウム膿、10
6は、硅化モリブデン膜、107は、P膨拡散層、10
8は、眉間絶縁膜、109は、アルミニウム配線膜であ
る1本実施例のように、ゲート電極を燐を含んだN形多
結晶シリコン膜と硅化チタニウム膜と硅化モリブデン膜
で形成することによって、回連イオンによる閾値電圧の
不安定性を少なくなり、ソース、あるいは、ドレイン電
極は、シリコン基板上に形成された硅化チタニウム膜と
、その上に積層された硅化モリブデン膜によって、直接
、シリコン基板に接触し、ゲート電極、及び、埋め込み
コンタクト領域の電極形成後に、ソースおよびトレイン
拡散を1行うことによって、同一タイプの不純物がシリ
コン基板上に形成された硅化チタニウム膓と、その上に
積層された硅化モリブデン瞑、及びその直下のシリコン
基板、及びそれに隣接するジノコン基板に拡散されるた
めに、N形はもちろんのことP形MO5型電界効果トラ
ンジスタにおいても、ソースあるいはドレインから直接
シリコン基板に接続し、自己整合的に電極をとることが
可能となる。
[Embodiment] FIG. 1 shows a cross-sectional view of a semiconductor device according to an embodiment of the second invention. 101 is an N-type silicon substrate, 102 is a silicon oxide film, 103 is a gate oxide film, and 104 is an N-type silicon substrate. type polycrystalline silicon film, 105, titanium silicide, 10
6 is a molybdenum silicide film, 107 is a P swelling diffusion layer, 10
8 is an insulating film between the eyebrows, and 109 is an aluminum wiring film.1 As in this embodiment, by forming the gate electrode with an N-type polycrystalline silicon film containing phosphorus, a titanium silicide film, and a molybdenum silicide film, The instability of the threshold voltage due to circulating ions is reduced, and the source or drain electrode is in direct contact with the silicon substrate through the titanium silicide film formed on the silicon substrate and the molybdenum silicide film laminated thereon. After forming the gate electrode and the buried contact region electrodes, one source and train diffusion is performed to inject the same type of impurity into the titanium silicide layer formed on the silicon substrate and the molybdenum silicide layered thereon. In order to diffuse into the silicon substrate immediately below it, and the Zinocon substrate adjacent to it, in not only N-type but also P-type MO5 field effect transistors, the source or drain is directly connected to the silicon substrate, and the self It becomes possible to take the electrodes in a consistent manner.

次に、本発明の製造方法について第1図を用いて説明す
る。まず、N形シリコン基板101に、シリコン酸化膜
102を形成し、活性領域201にゲート酸化1lll
O3を20nm成長し、その上にCVD法により多結晶
シリコン膜を200nm成長し、燐の雰囲気中で多結晶
シリコン膜に燐を拡散し、N形多結晶シリコン膜及びゲ
ート酸化膜をホトエツチング法により、埋め込みコンタ
クト領域のみ除去する。
Next, the manufacturing method of the present invention will be explained using FIG. 1. First, a silicon oxide film 102 is formed on an N-type silicon substrate 101, and a gate oxide film 1llll is formed on the active region 201.
20 nm of O3 is grown, a 200 nm polycrystalline silicon film is grown on it by CVD, phosphorus is diffused into the polycrystalline silicon film in a phosphorous atmosphere, and the N-type polycrystalline silicon film and gate oxide film are photoetched. , only the buried contact area is removed.

次に、その上に、チタニウムを50nmスパックー法に
より蒸着し、ハロゲンランプにより800℃30秒加熱
し、硅化チタニウムにかえた後、スパッターエツチング
を行い、硅化モリブデン膜を200nmスパックー法に
より蒸着し、ホトエツチング法により、配線領域以外の
硅化チタニウム膜と硅化モリブデン賎あるいは、硅化モ
リブデン膜と硅化チタニウム膜とN形多結晶シリコン膿
を除去し、第1図に示すN型多結晶シリコン膜104、
と硅化チタニウムl1i105と硅化モリブデン10B
を形成する。
Next, a 50 nm film of titanium was deposited using the Spac-method, heated for 30 seconds at 800°C using a halogen lamp, and then sputter etched after changing to titanium silicide. The titanium silicide film and molybdenum silicide film, or the molybdenum silicide film, titanium silicide film, and N-type polycrystalline silicon pus in areas other than the wiring area are removed by the method, and the N-type polycrystalline silicon film 104 shown in FIG.
and titanium silicide l1i105 and molybdenum silicide 10B
form.

最後に、N型多結晶シリコンII!104と硅化モリブ
デン11106をマスクにして、硼素を2×10”cm
−”イオン打ち込みし、P膨拡散層107を形成した後
、CVD法により、酸化シリコン膜を600nm成長し
、眉間絶縁i1! 10 Bを形成し、1000℃20
分アニールを行い、スルーホールを眉間絶縁1! 10
8に開け、アルミニウムを11000nスパツタ法によ
り蒸着し、所望のパターンにホトエツチング法により加
工し、アルミニウム配線111109を形成する。
Finally, N-type polycrystalline silicon II! Using 104 and molybdenum silicide 11106 as a mask, apply boron to 2 x 10”cm.
-" After ion implantation and forming the P expansion diffusion layer 107, a silicon oxide film was grown to a thickness of 600 nm by CVD method, forming a glabellar insulation i1!10 B, and heating at 1000° C. 20
Anneal for 1 minute and insulate the through hole between the eyebrows! 10
8, aluminum is deposited by 11000n sputtering method, and processed into a desired pattern by photoetching method to form aluminum wiring 111109.

以上の工程を経て、本発明の半導体装!が充成する。After the above steps, the semiconductor device of the present invention is completed! will be fulfilled.

上記実施例では、P形MOS型電界効果トランジスタに
ついて説明したが、N形MOS型電界効果トランジスタ
においても、ソース、ドレイン形成のためのイオン打ち
込み不純物タイプが異なるだけで、同様に実施でき、又
、相補形MOS型電界効果トランジスタにも実施できる
。さらには、第1の金属としてチタニウム膜を用いて説
明したが、モリブデン膜、タングステン膿などの高融点
金属でも同等の効果が得られ、また第2の金属として、
硅化モリブデン膜を用いて説明したが、硅化タングステ
ン肋、硅化チタニウム膜などの高融点金属化合物や、モ
リブデン賎、タングステン膿などの高融点金属でも同等
の効果が得られる。さらには、シリサイド化の際のスト
レスによるゲート膜破壊を少なくするために、高濃度の
燐を含む多結晶シリコン上にシリサイドができにくいこ
とをつがい、選択的にシリサイド化を行い、ゲート領域
に硅化チタニウム謹を形成しないことも可能である0本
発明の趣旨を逸脱しない範囲において、種々変更可能な
事は言うまでもない。
In the above embodiment, a P-type MOS field effect transistor was described, but the same method can be applied to an N-type MOS field effect transistor, with the only difference being the type of ion implantation impurity for forming the source and drain. It can also be implemented in complementary MOS type field effect transistors. Furthermore, although the explanation has been made using a titanium film as the first metal, the same effect can be obtained with a high melting point metal such as a molybdenum film or tungsten.
Although the explanation has been made using a molybdenum silicide film, the same effect can be obtained with a high melting point metal compound such as a tungsten silicide rib or a titanium silicide film, or a high melting point metal such as molybdenum paste or tungsten pus. Furthermore, in order to reduce gate film breakdown due to stress during silicidation, we took advantage of the fact that silicide is difficult to form on polycrystalline silicon that contains a high concentration of phosphorous, and selectively silicided the gate region. It is also possible not to form titanium. It goes without saying that various changes can be made without departing from the spirit of the present invention.

[発明の効果] 以上述べたように本発明によれば、ゲート電極が、シリ
コンを主成分とする膜と、第1の高融点金属化合物膜と
、高融点金属あるいは第2の高融点金属化合物膜の積層
膜、あるいは、シリコンを主成分とする膿と、高融点金
属あるいは第2の高融点金属化合物膜の積層膜からなり
、ソース電極、あるいはドレイン電極の少なくとも一方
の電極が、少なくとも埋め込みコンタクト領域のみ、前
記第1の高融点金属化合物膜と、高融点金属あるいは第
2の高融点金属化合物膜の積層膜からなることにより、
燐を含んだ多結晶シリコンと高融点金属の積層1m(ポ
リサリイド構造)をゲート電極に用いながら、N形、及
び、P形MOS型電界効果トランジスタにおいて、埋め
込みコンタクトが可能となり、相互配線の自由度が高く
なり、回連イオンにたいして安定な相補形MOS型電界
効果トランジスタ集積回路が、よりコンパクトできると
いう効果を有する。更には、第2の高融点金属化合物膜
である硅化モリブデン膜が、シリコン基板との化合物で
ある第1の高融点金属化合物膜硅化チタニウム膜を介し
てシリコン基板に接続しているため、硅化モリブデン膜
とシリコン基板との接触抵抗が低下するという効果を有
する。
[Effects of the Invention] As described above, according to the present invention, the gate electrode includes a film mainly composed of silicon, a first high melting point metal compound film, and a high melting point metal or a second high melting point metal compound. It consists of a laminated film of a film, or a laminated film of a film mainly composed of silicon and a high melting point metal or a second high melting point metal compound film, and at least one of the source electrode and the drain electrode is connected to at least the buried contact. Only the region is made of a laminated film of the first high melting point metal compound film and the high melting point metal or the second high melting point metal compound film,
By using a 1 m laminated layer (polysalide structure) of phosphorous-containing polycrystalline silicon and a high-melting point metal for the gate electrode, buried contacts are possible in N-type and P-type MOS field effect transistors, allowing for greater freedom in interconnection. This has the effect that the complementary MOS type field effect transistor integrated circuit, which is stable against repeated ions, can be made more compact. Furthermore, since the molybdenum silicide film, which is the second high melting point metal compound film, is connected to the silicon substrate via the first high melting point metal compound film, titanium silicate film, which is a compound with the silicon substrate, molybdenum silicide This has the effect of reducing the contact resistance between the film and the silicon substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の半導体装置の一実施例を示す主要断
面図。 01 02 03 04 05 06 07 08 N形シリコン基板 シリコン酸化膜 ゲート酸化膜 N型多結晶シリコン膜 硅化チタニウム膜 硅化モリブデン膜 P膨拡散層 眉間絶縁膜 09 アルミニウム配線月莫 以 上
FIG. 1 is a main sectional view showing an embodiment of a semiconductor device of the present invention. 01 02 03 04 05 06 07 08 N-type silicon substrate Silicon oxide film Gate oxide film N-type polycrystalline silicon film Titanium silicide film Molybdenum silicide film P-swelled diffusion layer Insulating film between the eyebrows 09 Aluminum wiring Over the moon

Claims (3)

【特許請求の範囲】[Claims] (1)ゲート電極が、シリコンを主成分とする膜と、第
1の高融点金属化合物膜と、高融点金属あるいは第2の
高融点金属化合物膜の積層膜、あるいは、シリコンを主
成分とする膜と、高融点金属あるいは第2の高融点金属
化合物膜の積層膜からなり、ソース電極、あるいはドレ
イン電極の少なくとも一方の電極が、少なくとも埋め込
みコンタクト領域のみ、前記第1の高融点金属化合物膜
と、高融点金属あるいは第2の高融点金属化合物膜の積
層膜からなるMOS型電界効果トランジスタを含むこと
を特徴とする半導体装置。
(1) The gate electrode is a laminated film of a film whose main component is silicon, a first high-melting point metal compound film, and a high-melting point metal or a second high-melting point metal compound film, or whose main component is silicon. and a high melting point metal or a second high melting point metal compound film, and at least one of the source electrode and the drain electrode is connected to the first high melting point metal compound film at least in the buried contact region. 1. A semiconductor device comprising a MOS field effect transistor made of a laminated film of a high melting point metal or a second high melting point metal compound film.
(2)前記シリコンを主成分とする膜は、燐を含んでい
る多結晶シリコン膜であることを特徴とする請求項1記
載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the film containing silicon as a main component is a polycrystalline silicon film containing phosphorus.
(3)前記第1の高融点金属化合物膜は、高融点金属と
シリコン基板との化合物である硅化高融点金属膜である
ことを特徴とする請求項1記載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the first high-melting point metal compound film is a silicided high-melting point metal film that is a compound of a high-melting point metal and a silicon substrate.
JP418690A 1990-01-11 1990-01-11 Semiconductor device Pending JPH03209773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP418690A JPH03209773A (en) 1990-01-11 1990-01-11 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP418690A JPH03209773A (en) 1990-01-11 1990-01-11 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03209773A true JPH03209773A (en) 1991-09-12

Family

ID=11577676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP418690A Pending JPH03209773A (en) 1990-01-11 1990-01-11 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03209773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230044292A (en) 2020-08-13 2023-04-03 도쿄엘렉트론가부시키가이샤 Electrode part of semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230044292A (en) 2020-08-13 2023-04-03 도쿄엘렉트론가부시키가이샤 Electrode part of semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JPS638622B2 (en)
JPH0564456B2 (en)
JPH01128568A (en) Semiconductor device
US5106782A (en) Method of manufacturing a semiconductor device
JPS6360549B2 (en)
JPS6251216A (en) Manufacture of semiconductor device
JPH03209773A (en) Semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JPS6197975A (en) Manufacture of semiconductor device
JP3049255B2 (en) Method for manufacturing CMIS semiconductor device
JPS61150376A (en) Semiconductor device
JP2004534401A (en) Method of manufacturing semiconductor device having a plurality of MOS transistors having gate oxides of different thickness
JP2001308322A (en) Method of manufacturing semiconductor integrated circuit device
JPH03225963A (en) High-breakdown-strength mis transistor
JPS5836505B2 (en) Method for manufacturing semiconductor memory device
JP3147374B2 (en) Semiconductor device
KR940010919B1 (en) Manufacturing method of ldd type mosfet
JPH03209772A (en) Semiconductor device
JPH01110761A (en) Manufacture of semiconductor device
JPH02203565A (en) Semiconductor device and its manufacture
JPH06132523A (en) Manufacture of mos transistor
JPH0346272A (en) Manufacture of semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JPH0230145A (en) Manufacture of semiconductor device