JP3049255B2 - Method for manufacturing CMIS semiconductor device - Google Patents

Method for manufacturing CMIS semiconductor device

Info

Publication number
JP3049255B2
JP3049255B2 JP1167753A JP16775389A JP3049255B2 JP 3049255 B2 JP3049255 B2 JP 3049255B2 JP 1167753 A JP1167753 A JP 1167753A JP 16775389 A JP16775389 A JP 16775389A JP 3049255 B2 JP3049255 B2 JP 3049255B2
Authority
JP
Japan
Prior art keywords
film
oxide film
polycrystalline
conductivity type
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1167753A
Other languages
Japanese (ja)
Other versions
JPH0332056A (en
Inventor
雅文 新保
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP1167753A priority Critical patent/JP3049255B2/en
Publication of JPH0332056A publication Critical patent/JPH0332056A/en
Application granted granted Critical
Publication of JP3049255B2 publication Critical patent/JP3049255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、同極ゲート即ちPMOSにはp型ゲート電極
を、NMOSにはn型ゲート電極を有する構造の相補型MOS
(CMOS)、一般的には相補型絶縁ゲート(CMIS)半導体
装置の製造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a complementary MOS having a structure in which a same-polarity gate, that is, a PMOS has a p-type gate electrode and an NMOS has an n-type gate electrode.
(CMOS), generally, the manufacture of complementary insulated gate (CMIS) semiconductor devices.

〔発明の概要〕[Summary of the Invention]

本発明によるCMISの構造は、ゲート電極とするべき多
結晶Si膜に対し例えばn型不純物源となる酸化膜で多結
晶Siを選択的にn型化する一方、この酸化膜をマスクに
p型多結晶Siを選択形成し、n型とp型多結晶の電気的
接続は多結晶Si上の高融点金属またはそのシリサイド膜
で行うものである。
In the structure of the CMIS according to the present invention, for example, an oxide film serving as an n-type impurity source selectively converts polycrystalline Si to an n-type with respect to a polycrystalline Si film to be used as a gate electrode. Polycrystalline Si is selectively formed, and the electrical connection between the n-type and p-type polycrystals is made by using a refractory metal on the polycrystalline Si or a silicide film thereof.

〔従来の技術〕[Conventional technology]

従来CMISのゲート電極は、PMOS,NMOS共に主にn型多
結晶Siを用いてきたが、例えば0.5V以下の低いしきい値
電圧のCMISを得るためには、同極ゲート構造が有効にな
ってきた。同極ゲート構造CMISを製造する上で、導電型
の異なるゲート電極の接続が問題となる。従来の金属配
線で接続方法では集積密度が犠牲になり、シリサイド技
術を用いるには技術的に不安定な点があった。
Conventionally, the gate electrode of CMIS has been mainly made of n-type polycrystalline Si for both PMOS and NMOS.However, in order to obtain CMIS with a low threshold voltage of, for example, 0.5 V or less, a unipolar gate structure is effective. Have been. In manufacturing the same polarity gate structure CMIS, connection of gate electrodes having different conductivity types becomes a problem. In the connection method using the conventional metal wiring, the integration density is sacrificed, and the use of the silicide technology has been technically unstable.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は、上記の問題を既存の確立された技術を用い
て容易な方法で改善すべくなされたものである。
The present invention has been made to solve the above problems in an easy manner using existing established techniques.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の同極ゲートCMIS半導体装置の製造方法は、n
型Si基板とpウエルの表面のそれぞれにゲート酸化膜を
設け、多結晶Si膜を堆積する工程と、例えばpウエル上
の前記多結晶膜上に選択的にn型不純物を含む酸化膜拡
散源を形成する工程と、この酸化膜をマスクに多結晶膜
を選択的にp型不純物を添加する工程と、この酸化膜を
除去し多結晶膜上に高融点金属もしくはそのシリサイド
の薄膜を堆積する工程と、前記薄膜および多結晶膜の2
層構造で各ゲート電極と配線を設ける工程と、n型基板
にPMOSをpウエルにNMOSを形成する工程とから成る。
The method of manufacturing the same-polarity gate CMIS semiconductor device according to the present invention comprises:
Providing a gate oxide film on each of the surface of the p-type silicon substrate and the p-well and depositing a polycrystalline Si film, for example, an oxide film diffusion source selectively containing an n-type impurity on the polycrystalline film on the p-well Forming a polycrystalline film using the oxide film as a mask, selectively adding a p-type impurity to the polycrystalline film, removing the oxide film, and depositing a thin film of a refractory metal or a silicide thereof on the polycrystalline film. Process and the thin film and the polycrystalline film
It comprises a step of providing each gate electrode and wiring in a layered structure, and a step of forming a PMOS on an n-type substrate and an NMOS on a p-well.

〔作用〕[Action]

p型およびn型多結晶Siはその上の高融点金属もしく
はそのシリサイドの薄膜で自動的に結線され、従来のCM
OSと同等の集積密度が得られる。また、同極ゲート構造
も一回のマスク工程の追加でできる。
The p-type and n-type polycrystalline Si are automatically connected with a thin film of a refractory metal or a silicide on it, and the conventional CM
The same integration density as OS can be obtained. In addition, the same-polarity gate structure can be formed by adding a single mask process.

〔実施例〕〔Example〕

以下に図面を用いて本発明を詳述する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

(1) 実施例1(第1図および第2図) 第1図は本発明によるCMOSの模式的平面図であり、第
2図(a)〜(e)は製造工程に沿った第1図のA−
A′線断面図である。第2図(a)は、通常のCMOS製造
工程と同様にn型Si基板10にpウエル11を設け、分離用
フィールド酸化膜5を形成しゲート酸化膜6をn活性領
域1及びpウエル11上に堆積した後、多結晶Si膜20を全
面に成長した断面である。この場合、多結晶膜20はアン
ドープもしくは低不純物密度である。第2図(b)は、
pウエル11上の多結晶膜20をすべて被う形でn型不純物
例えばリンが添加された拡散源酸化膜7を堆積し選択的
に残し、この酸化膜7をマスクに他の多結晶膜20にp型
不純物例えばボロンを選択添加した状態を示す。その結
果、多結晶膜20にはn型多結晶膜23とp型多結晶膜24が
選択形成される。拡散源酸化膜7には例えばリンを含有
するSOG(Spin On Glass)やドープト・オキサイドが
用いられ、必要に応じその上にCVD酸化膜も設けられ
る。ボロンの選択添加は、イオン注入やプリデポジショ
ンなどが適用される。リンやボロンの添加密度は例えば
1019〜5×1020cm-3程度である。第2図(c)には、拡
散源酸化膜7など多結晶膜23,24上の酸化膜を除去した
後に多結晶膜23,24上に例えばシリサイド膜25を堆積し
た状態を示す。シリサイド膜25としては、例えばWSixや
MoSixのCVD膜やスパッター膜が適用される。また、シリ
サイドのかわりにWやMoなどの高融点金属も使用でき
る。第2図(d)では、例えば第1図の形状にシリサイ
ド膜25と多結晶膜23,24を一括選択エッチして、ポリサ
イド(Silicide,poly Si2層構造)から成るゲート電極2
1,22や配線(p,n多結晶膜124,123とシリサイド膜125で
構成)を設けている。p,n多結晶膜124,123はシリサイド
膜125で接続された形となっている。以下、第2図
(e)に示すように通常のCMOS製造と同様にn+ソース・
ドレイン領域111,112およびp+ソース・ドレイン領域21
1,212を設け、層間絶縁膜8の堆積、コンタクト開孔、
各金属配線101,102,201,202,225形成工程を経てNMOS100
とPMOS220から成るCMOSが完成する。
(1) Example 1 (FIGS. 1 and 2) FIG. 1 is a schematic plan view of a CMOS according to the present invention, and FIGS. A-
It is A 'line sectional drawing. FIG. 2 (a) shows that an n-type Si substrate 10 is provided with a p-well 11, a separation field oxide film 5 is formed, and a gate oxide film 6 is formed in an n-type active region 1 and a p-well 11 in the same manner as in a normal CMOS manufacturing process. This is a cross-section in which a polycrystalline Si film 20 has been grown on the entire surface after being deposited thereon. In this case, the polycrystalline film 20 is undoped or has a low impurity density. FIG. 2 (b)
A diffusion source oxide film 7 to which an n-type impurity, for example, phosphorus is added, is deposited so as to entirely cover the polycrystalline film 20 on the p well 11, and is selectively left, and the other polycrystalline film 20 is masked using the oxide film 7 as a mask. Shows a state in which a p-type impurity such as boron is selectively added. As a result, an n-type polycrystalline film 23 and a p-type polycrystalline film 24 are selectively formed as the polycrystalline film 20. As the diffusion source oxide film 7, for example, SOG (Spin On Glass) or doped oxide containing phosphorus is used, and a CVD oxide film is provided thereon as necessary. For the selective addition of boron, ion implantation, pre-deposition, or the like is applied. For example, the density of phosphorus or boron
It is about 10 19 to 5 × 10 20 cm −3 . FIG. 2C shows a state in which, for example, a silicide film 25 is deposited on the polycrystalline films 23 and 24 after removing an oxide film on the polycrystalline films 23 and 24 such as the diffusion source oxide film 7. Examples of the silicide film 25 include WSix and
A MoSix CVD film or a sputtered film is applied. Also, a high melting point metal such as W or Mo can be used instead of silicide. In FIG. 2D, for example, the silicide film 25 and the polycrystalline films 23 and 24 are collectively selectively etched in the shape of FIG. 1 to form a gate electrode 2 made of polycide (Silicide, poly Si2 layer structure).
1, 22 and wiring (composed of p, n polycrystalline films 124, 123 and silicide film 125) are provided. The p and n polycrystalline films 124 and 123 are connected by a silicide film 125. Thereafter, as shown in FIG. 2 (e), the n + source
Drain regions 111 and 112 and p + source / drain region 21
1,212 are provided, an interlayer insulating film 8 is deposited, contact holes are formed,
After forming each metal wiring 101, 102, 201, 202, 225, NMOS 100
And a CMOS consisting of PMOS 220 is completed.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、同極ゲート構造をもつ
CMOSが従来の製造工程に1マスク工程を追加して集積密
度の低下なしに実現される。本発明は、実施例で示した
例にとどまらず各領域の導電型を逆転もできるし、DDD
構造やLDD構造にも応用できる。ゲート絶縁膜は酸化膜
に限らない意味で一般的にCMISに適用できるものであ
る。さらに、本発明はシリサイドもしくは高融点金属を
配線の一部に用いているので、高速性にも優れている。
As described above, according to the present invention, it has a unipolar gate structure.
CMOS is realized without reducing the integration density by adding one mask process to the conventional manufacturing process. The present invention is not limited to the example shown in the embodiment, and the conductivity type of each region can be reversed.
It can also be applied to structures and LDD structures. The gate insulating film is not limited to an oxide film, but is generally applicable to CMIS. Further, since the present invention uses a silicide or a high melting point metal for a part of the wiring, the present invention is also excellent in high-speed operation.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明によるCMOSの模式的平面図であり、第2
図(a)〜(e)は製造工程に沿った第1図のA−A′
線断面図である。 1,10……n型領域 6……ゲート酸化膜 7……拡散源酸化膜 11……pウエル 20……多結晶Si 23……−n型多結晶 24……p型多結晶 25,125……シリサイド 100……NMOS 200……PMOS
FIG. 1 is a schematic plan view of a CMOS according to the present invention, and FIG.
1A to 1E show AA 'of FIG. 1 along the manufacturing process.
It is a line sectional view. 1,10 n-type region 6 gate oxide film 7 diffusion oxide film 11 p-well 20 polycrystalline Si 23 n-type polycrystalline 24 p-type polycrystalline 25,125 Silicide 100 …… NMOS 200 …… PMOS

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型の第1半導体領域と逆導電型の第
2半導体領域の表面のそれぞれにゲート絶縁膜を設け、
前記第1半導体領域と前記第2半導体領域を分離する分
離用フィールド酸化膜を形成した後、多結晶半導体膜を
全面に堆積する第1工程と、 前記第1工程に引き続き、前記第1半導体領域、及び前
記第1半導体領域と連続して前記フィールド絶縁膜の一
部の領域で、前記多結晶半導体膜直上に選択的に、逆導
電型不純物を含む酸化膜と、更に前記酸化膜上にCVDに
よるCVD酸化膜とを形成する第2工程と、 前記第2工程に引き続き、前記逆導電型不純物を含む酸
化膜及び前記CVD酸化膜をマスクに前記多結晶半導体膜
に選択的に一導電型不純物を添加する第3工程と、 前記第3工程に引き続き、前記逆導電型不純物を含む酸
化膜及び前記CVD酸化膜を除去し、前記多結晶半導体膜
上に高融点金属もしくはそのシリサイドの薄膜を堆積す
る第4工程と、 前記第4工程に引き続き、前記薄膜および前記多結晶半
導体膜を所定の形状に選択エッチし、各ゲート電極と前
記フィールド酸化膜上の配線を設ける第5工程と、 前記第5工程に引き続き、前記第1半導体領域に逆導電
チャネルトランジスタを第2半導体領域に一導電チャネ
ルトランジスタを形成する第6工程とからなる同極ゲー
トCMIS半導体装置の製造方法。
1. A gate insulating film is provided on each of the surfaces of a first semiconductor region of one conductivity type and a second semiconductor region of a reverse conductivity type,
A first step of forming a field oxide film for separating the first semiconductor region and the second semiconductor region and then depositing a polycrystalline semiconductor film over the entire surface; and, following the first step, the first semiconductor region And an oxide film containing an impurity of the opposite conductivity type selectively on the polycrystalline semiconductor film in a part of the field insulating film continuously with the first semiconductor region; and CVD on the oxide film. A second step of forming a CVD oxide film by the following step; and, subsequent to the second step, selectively using the oxide film containing the opposite conductivity type impurity and the CVD oxide film as a mask to selectively form one conductivity type impurity in the polycrystalline semiconductor film. And removing the oxide film containing the opposite conductivity type impurity and the CVD oxide film, and depositing a thin film of a high melting point metal or a silicide thereof on the polycrystalline semiconductor film. And the fourth step A fifth step of selectively etching the thin film and the polycrystalline semiconductor film into a predetermined shape to provide each gate electrode and a wiring on the field oxide film, following the fourth step; Forming a reverse conductive channel transistor in the first semiconductor region and a single conductive channel transistor in the second semiconductor region.
【請求項2】前記逆導電型不純物は、リンである請求項
1記載のCMIS半導体装置の製造方法。
2. The method of manufacturing a CMIS semiconductor device according to claim 1, wherein said impurity of the opposite conductivity type is phosphorus.
JP1167753A 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device Expired - Lifetime JP3049255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167753A JP3049255B2 (en) 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167753A JP3049255B2 (en) 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device

Publications (2)

Publication Number Publication Date
JPH0332056A JPH0332056A (en) 1991-02-12
JP3049255B2 true JP3049255B2 (en) 2000-06-05

Family

ID=15855461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167753A Expired - Lifetime JP3049255B2 (en) 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device

Country Status (1)

Country Link
JP (1) JP3049255B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322730A (en) * 2004-05-07 2005-11-17 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP4760414B2 (en) * 2006-02-06 2011-08-31 ソニー株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH0332056A (en) 1991-02-12

Similar Documents

Publication Publication Date Title
KR900008207B1 (en) Semiconductor memory device
JPH02166762A (en) Compact cmos device and
JPH0355984B2 (en)
JP2591927B2 (en) DRAM cell manufacturing method
KR20000062573A (en) Mis field effect transistor and manufacturing method
JPH0644603B2 (en) Semiconductor device and its manufacturing method
US4985746A (en) Semiconductor device and method of production
US5882965A (en) Process for manufacturing an integrated CMOS circuit
JPH08213481A (en) Formation method of gate electrode of cmos device
CA1191973A (en) Process for making complementary transistors
KR940008219B1 (en) CMOS manufacturing method
JP3049255B2 (en) Method for manufacturing CMIS semiconductor device
JPH02246264A (en) Semiconductor device and manufacture thereof
JP2003007841A (en) Method of manufacturing semiconductor device
JPH03169022A (en) Semiconductor integrated circuit device
JPH01264265A (en) Semiconductor device and its manufacture
KR100224757B1 (en) Semiconductor device and method for manafacturing thereof
JPH07161947A (en) Semiconductor device using soi substrate and its manufacture
JPH1117028A (en) Semiconductor memory
JP2001308322A (en) Method of manufacturing semiconductor integrated circuit device
KR100192470B1 (en) Structure of cmos inverter and manufacturing method thereof
JP3261697B2 (en) Method for manufacturing semiconductor device
JP2971083B2 (en) Semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JPH03283565A (en) Mos type semiconductor integrated circuit

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10