JPH0332056A - Manufacture of cmis semiconductor device - Google Patents

Manufacture of cmis semiconductor device

Info

Publication number
JPH0332056A
JPH0332056A JP1167753A JP16775389A JPH0332056A JP H0332056 A JPH0332056 A JP H0332056A JP 1167753 A JP1167753 A JP 1167753A JP 16775389 A JP16775389 A JP 16775389A JP H0332056 A JPH0332056 A JP H0332056A
Authority
JP
Japan
Prior art keywords
film
polycrystalline
type
oxide film
silicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1167753A
Other languages
Japanese (ja)
Other versions
JP3049255B2 (en
Inventor
Masafumi Shinpo
新保 雅文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1167753A priority Critical patent/JP3049255B2/en
Publication of JPH0332056A publication Critical patent/JPH0332056A/en
Application granted granted Critical
Publication of JP3049255B2 publication Critical patent/JP3049255B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To make it high-speed by providing a gate oxide film, and stacking a polycrystalline Si film, and removing an oxide film, and accumulating a film of high melting point metal or silicide on the polycrystalline film, and forming a PMOS in a substrate and an NMOS in a p-well. CONSTITUTION:A p-well 11 is provided in an n-type Si substrate 10, and a field oxide film 5 for separation is formed, and gate oxide films 6 are accumulated on an active region 1 and the well, and then a polycrystalline Si film 20 is grown. With the diffusion source oxide film 7 as a mask, p-type impurities are selectively added to other mask 20 so as to form an n-type polycrystalline film 23 and a p-type polycrystalline film 24. Next, a silicide film 25 and the films 23 and 24 are etched en block so as to provide gate electrodes 21 and 22, consisting of polycides, and wiring. P and n polycrystalline films 123 and 124 are put in the form being connected by a silicide film 125, and n<+> source and drain regions 111 and 112 and p<+> source and drain regions 211 and 212 are provided so as to complete a CMOS consisting of an NMOS 100 and a PMOS 200. This way, the same pole gate structure can also be made by addition of a mask process of one time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、同極ゲート即ちPMO3にはp型ゲート電極
を、NMOSにはn型ゲート電極を有する構造の相補型
MOS (CMO3) 、−船釣には相補型絶縁ゲー)
(CMIS)半導体装置の製造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a complementary MOS (CMO3) having a homopolar gate, that is, a structure in which PMO3 has a p-type gate electrode and NMOS has an n-type gate electrode. Complementary insulation game for boat fishing)
(CMIS) Concerning the manufacture of semiconductor devices.

〔発明の概要〕[Summary of the invention]

本発明によるCMISの製造は、ゲート電極とするべき
多結晶5illに対し例えばn型不純物源となる酸化膜
で多結晶Stを選択的にn型化する一方、この酸化膜を
マスクにp型多結晶Slを選択形威し、n型とp型多結
晶の電気的接続は多結晶Sl上の高融点金属またはその
シリサイド膜で行うものである。
In manufacturing a CMIS according to the present invention, for example, polycrystalline St is selectively converted to n-type using an oxide film that serves as an n-type impurity source with respect to polycrystalline 5ill to be used as a gate electrode, and p-type polycrystalline St is selectively converted to n-type using this oxide film as a mask. Crystalline Sl is selectively used, and the electrical connection between the n-type and p-type polycrystals is made using a high melting point metal or its silicide film on the polycrystalline Sl.

〔従来の技術〕[Conventional technology]

従来CMISのゲート電極は、PMO3,NMO3共に
主にn型多結晶Siを用いてきたが、例えば0.5 V
以下の低いしきい値電圧のCMISを得るためには、同
極ゲート構造が有効になってきた。同極ゲート構造CM
ISを製造する上で、導電型の異なるゲー)!極の接続
がrJ1題となる。従来の金属配線で接続方法では集積
密度が犠牲になり、シリサイド技術を用いるには技術的
に不安定な点があった。
Conventionally, gate electrodes of CMIS have mainly used n-type polycrystalline Si for both PMO3 and NMO3, but for example, 0.5 V
In order to obtain a CMIS with a threshold voltage as low as below, a homopolar gate structure has become effective. Homopolar gate structure CM
When manufacturing IS, different conductivity types (games)! Connecting the poles becomes rJ1 problem. The conventional connection method using metal wiring sacrifices integration density, and the use of silicide technology is technically unstable.

〔発明が解決しようとするIN) 本発明は、上記の問題を既存の確立された技術を用いて
容易な方法で改善すべくなされたものである。
[Invention to be Solved by the Invention] The present invention has been made to improve the above-mentioned problems in a simple manner using existing and established techniques.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の同極ゲートCMIS半導体装置の製造方法は、
n型Si基板とpウェルの表面のそれぞれにゲート酸化
膜を設け、多結晶5illを堆積する工程と、例えばp
ウェル上の前記多結晶膜上に選択的にn型不純物を含む
酸化膜拡散源を形威する工程と、この酸化膜をマスクに
多結晶膜に選択的にp型不純物を添加する工程と、この
酸化膜を除去し多結晶膜上に高融点金属もしくはそのシ
リサイドの*Hを堆積する工程と、前記TRMおよび多
結晶膜の2層構造で各ゲート電極と配線を設ける工程と
、n型基板にPMO3をpウェルにNMO8を形成する
工程とから成る。
The method for manufacturing a homopolar gate CMIS semiconductor device of the present invention includes:
A step of providing a gate oxide film on each of the surfaces of the n-type Si substrate and the p-well, and depositing polycrystalline 5ill, for example,
forming an oxide film diffusion source containing n-type impurities selectively on the polycrystalline film on the well; and selectively adding p-type impurities to the polycrystalline film using the oxide film as a mask; A step of removing this oxide film and depositing *H of a high melting point metal or its silicide on the polycrystalline film, a step of providing each gate electrode and wiring in the two-layer structure of the TRM and the polycrystalline film, and an n-type substrate. This consists of a step of forming PMO3 and NMO8 in the p-well.

〔作用〕[Effect]

p型およびn型多結晶S1はその上の高融点金属もしく
はそのシリサイドの薄膜で自動的に結線され、従来の0
MO3と同等の集積密度が得られる。また、同極ゲート
構造も一回のマスク工程の追加でできる。
The p-type and n-type polycrystals S1 are automatically wired using a thin film of high-melting point metal or its silicide on top of the p-type and n-type polycrystals S1.
An integration density equivalent to that of MO3 can be obtained. Furthermore, a homopolar gate structure can be created by adding a single mask process.

〔実施例〕〔Example〕

以下に図面を用いて本発明を詳述する。 The present invention will be explained in detail below using the drawings.

(1)実施例1 (第1図および第2図)第1図は本発
明による0MO3の模式的平面図であり、第2図+al
〜fe)は製造工程に沿った第1図のA−A’線断面図
である。第2図(alは、通常のCMO3製造工程と同
様にn型St基板IOにpウェル11を設け、分離用フ
ィールド酸化l1I5を形威しゲート酸化膜6をn活性
領域1及びpウェル11上に堆積した後、多結晶Si膜
20を全面に成長した断面である。この場合、多結晶膜
20はアンドープもしくは低不純物密度である。第2図
(blは、pウェルti上の多結晶膜20をすべて被う
形でn型不純物例えばリンが添加された拡散源酸化膜7
を堆積し選択的に残し、この酸化!I7をマスクに他の
多結晶膜20にp型不純物例えばボロンを選択添加した
状態を示す、その結果、多結晶W920にはn型多結晶
膜23とp型多結晶膜24が選択形成される。
(1) Example 1 (Figures 1 and 2) Figure 1 is a schematic plan view of 0MO3 according to the present invention, and Figure 2 +al
~fe) is a sectional view taken along the line AA' in FIG. 1 along the manufacturing process. Figure 2 (al) shows that a p-well 11 is provided on an n-type St substrate IO as in the normal CMO3 manufacturing process, and a gate oxide film 6 is formed on the n-active region 1 and p-well 11 by forming isolation field oxide l1I5. This is a cross section of a polycrystalline Si film 20 grown on the entire surface after being deposited on the p-well ti.In this case, the polycrystalline film 20 is undoped or has a low impurity density. A diffusion source oxide film 7 doped with an n-type impurity, for example, phosphorus, so as to cover all of 20.
Deposit and selectively leave this oxidation! This shows a state in which a p-type impurity, such as boron, is selectively added to another polycrystalline film 20 using I7 as a mask. As a result, an n-type polycrystalline film 23 and a p-type polycrystalline film 24 are selectively formed in polycrystalline W920. .

拡散B酸化膜7には例えばリンを含有する5OG(Sp
in  On Glass)やドープト・オキサイドが
用いられ、必要に応じその上にCVD酸化膜も設けられ
る。ボロンの選択添加は、イオン注入やプリデポジショ
ンなどが適用される。リンやボロンの添加密度は例えば
1019〜5 XIO”am−’程度である。
The diffusion B oxide film 7 contains, for example, 5OG (Sp
In On Glass) or doped oxide is used, and if necessary, a CVD oxide film is also provided thereon. For selective addition of boron, ion implantation, pre-deposition, etc. are applied. The density of addition of phosphorus and boron is, for example, about 1019 to 5 XIO"am-'.

第2図(e)には、拡散源酸化膜7など多結晶膜23.
24上の酸化膜を除去した後に多結晶膜23.24上に
例えばシリサイド膜25を堆積した状態を示す、シリサ
イド膜25としては、例えばWSixやMo5lxのC
VD膜やスパッター膜が適用される。また、シリサイド
のかわりにWやMoなどの高融点金属も使用できる。第
2図(dlでは、例えば第1図の形状にシリサイド膜2
5と多結晶@23.24を一括選択エッチして、ポリサ
イド(Silicide、 poly Si2層構造)
から成るゲート電極21.22や配線(pn多結晶膜1
24,123とシリサイド膜125で構成)を設けてい
る*prn多結晶膜124,123はシリサイドH12
5で接続された形となっている。以下、第2図(elに
示すように通常のCMO3!%j造と同様にn゛ソース
ドレイン領域111.112およびp0ソース・ドレイ
ン領域211,212を設け、眉間絶縁膜8の堆積、コ
ンタクト開孔、各金属配vA101,102.201,
202.225形威工程を経て8MO3100と2MO
3200から成る0MO3が完成する。
FIG. 2(e) shows a polycrystalline film 23, such as a diffusion source oxide film 7.
For example, a silicide film 25 is deposited on the polycrystalline film 23.24 after removing the oxide film on the polycrystalline film 24. The silicide film 25 is, for example, C of WSix or Mo5lx.
A VD film or a sputtered film is applied. Furthermore, high melting point metals such as W and Mo can also be used instead of silicide. Figure 2 (dl), for example, a silicide film 2 in the shape of Figure 1.
5 and polycrystal @23.24 are selectively etched at once to form polycide (Silicide, polySi two-layer structure).
Gate electrodes 21, 22 and wiring (pn polycrystalline film 1
*prn polycrystalline films 124, 123 are composed of silicide H12
It is connected by 5. Hereinafter, as shown in FIG. Hole, each metal arrangement A101, 102.201,
8MO3100 and 2MO after 202.225 shape process
0MO3 consisting of 3200 is completed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、同極ゲート構造をもつ0
MO3が従来の製造工程に1マスク工程を追加して集積
密度の低下なしに実現される0本発明は、実施例で示し
た例にとどまらず各領域の導電型を逆転もできるし、D
DD構造やLDD構造にも応用できる。ゲート絶縁膜は
酸化膜に限らない意味で一般的にCMISに適用できる
ものである。さらに、本発明はシリサイドもしくは高融
点金属を配線の一部に用いているので、高速性にも優れ
ている。
As described above, according to the present invention, zero
MO3 can be realized without reducing the integration density by adding one mask process to the conventional manufacturing process.The present invention is not limited to the examples shown in the embodiments;
It can also be applied to DD and LDD structures. The gate insulating film is not limited to an oxide film, and can be generally applied to CMIS. Furthermore, since the present invention uses silicide or high-melting point metal for part of the wiring, it is also excellent in high-speed performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による0MO3の模式的平面図であり、
第2図(al〜(slは製造工程に沿った第1図のA−
A’線断面図である。 1.10・ 6 ・ ・ ・ 7 ・ ・ ・ 11・ ・ ・ 20・ ・ ・ 23・ ・ ・ 24・ ・ ・ ・n型領域 ・ゲート酸化膜 ・拡散源酸化膜 ・pウェル ・多結晶St ・−n型多結晶 ・p型多結晶 25.125・ ・シリサイド 100 ・ ・ ・ NMO5 200・ ・ ・ PMO3 以 上
FIG. 1 is a schematic plan view of 0MO3 according to the present invention,
Figure 2 (al~(sl is A- in Figure 1 along the manufacturing process)
It is an A' line sectional view. 1.10・ 6 ・ ・ ・ 7 ・ ・ 11・ ・ ・ 20・ ・ 23・ ・ 24・ ・ ・ ・ N-type region, gate oxide film, diffusion source oxide film, p-well, polycrystalline St ・- N-type polycrystalline/p-type polycrystalline 25.125・・Silicide 100・・・・NMO5 200・・・・PMO3 or more

Claims (1)

【特許請求の範囲】 同極ゲートCMIS半導体装置の製造において、一導電
型第1半導体領域と逆導電型第2半導体領域の表面のそ
れぞれにゲート絶縁膜を設けた後、多結晶半導体膜を堆
積する第1工程と、 少なくとも前記第1領域上の前記多結晶膜上に選択的に
逆導電型不純物を含む酸化膜を形成する第2工程と、 前記酸化膜をマスクに前記多結晶膜に選択的に一導電型
不純物を添加する第3工程と、 前記酸化膜を除去し、前記多結晶膜上に高融点金属もし
くはそのシリサイドの薄膜を堆積する第4工程と、 前記薄膜および前記多結晶膜を所定の形状に選択エッチ
し、各ゲート電極と配線を設ける第5工程と、 前記第1領域に逆導電チャンネルトランジスタを第2領
域に一導電チャンネルトランジスタを形成する第6工程
とから成るCMIS半導体装置の製造方法。
[Claims] In manufacturing a homopolar gate CMIS semiconductor device, after providing a gate insulating film on each of the surfaces of a first semiconductor region of one conductivity type and a second semiconductor region of opposite conductivity type, a polycrystalline semiconductor film is deposited. a second step of selectively forming an oxide film containing an opposite conductivity type impurity on at least the polycrystalline film on the first region; and selecting the polycrystalline film using the oxide film as a mask. a third step of adding impurities of one conductivity type to the polycrystalline film; a fourth step of removing the oxide film and depositing a thin film of a high melting point metal or its silicide on the polycrystalline film; A CMIS semiconductor comprising: a fifth step of selectively etching into a predetermined shape and providing each gate electrode and wiring; and a sixth step of forming a reverse conduction channel transistor in the first region and a single conductivity channel transistor in the second region. Method of manufacturing the device.
JP1167753A 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device Expired - Lifetime JP3049255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167753A JP3049255B2 (en) 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167753A JP3049255B2 (en) 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device

Publications (2)

Publication Number Publication Date
JPH0332056A true JPH0332056A (en) 1991-02-12
JP3049255B2 JP3049255B2 (en) 2000-06-05

Family

ID=15855461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167753A Expired - Lifetime JP3049255B2 (en) 1989-06-29 1989-06-29 Method for manufacturing CMIS semiconductor device

Country Status (1)

Country Link
JP (1) JP3049255B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322730A (en) * 2004-05-07 2005-11-17 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2007208166A (en) * 2006-02-06 2007-08-16 Sony Corp Manufacturing method of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322730A (en) * 2004-05-07 2005-11-17 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2007208166A (en) * 2006-02-06 2007-08-16 Sony Corp Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JP3049255B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP2591927B2 (en) DRAM cell manufacturing method
JPH0521726A (en) Bicmos device and manufacture thereof
US6903411B1 (en) Architecture for circuit connection of a vertical transistor
JPH0332056A (en) Manufacture of cmis semiconductor device
JPH0695528B2 (en) Method for manufacturing semiconductor device
JPS6242391B2 (en)
JPH07283329A (en) Semiconductor storage device and its manufacture
JPH01764A (en) semiconductor equipment
JP2000100972A (en) Semiconductor device
JPH01158765A (en) Manufacture of semiconductor device
JP2971083B2 (en) Semiconductor device
KR100322891B1 (en) Method For Manufacturing The Gate Electrode Of Semiconductor Device
JPH0927555A (en) Semiconductor device and its manufacture
JP3261697B2 (en) Method for manufacturing semiconductor device
JPH05251665A (en) Manufacture of semiconductor device
JPS63296368A (en) Complementary type mos semiconductor device
JPS5856450A (en) Complementary mos semiconductor device
JPS5975653A (en) Manufacture of semiconductor integrated circuit device
JPS616855A (en) Complementary type mos semiconductor device
JPH01147864A (en) Semiconductor device
TW201021162A (en) Inverter structure and method for fabricating the same
JPS63293858A (en) Manufacture of semiconductor device
JPH0529624A (en) Thin film transistor and manufacture thereof
JPS587883A (en) Semiconductor device
JPH11150238A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10