JPS5975653A - Manufacture of semiconductor integrated circuit device - Google Patents

Manufacture of semiconductor integrated circuit device

Info

Publication number
JPS5975653A
JPS5975653A JP57185621A JP18562182A JPS5975653A JP S5975653 A JPS5975653 A JP S5975653A JP 57185621 A JP57185621 A JP 57185621A JP 18562182 A JP18562182 A JP 18562182A JP S5975653 A JPS5975653 A JP S5975653A
Authority
JP
Japan
Prior art keywords
oxide film
diffusion layer
silicon oxide
phosphorus
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57185621A
Other languages
Japanese (ja)
Inventor
Osamu Kudo
修 工藤
Isami Sakai
勲美 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57185621A priority Critical patent/JPS5975653A/en
Publication of JPS5975653A publication Critical patent/JPS5975653A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the degree of integration of the device using a CMOS element by boring a contact opening, introducing boron to the whole surface of a polycrystalline silicon film formed to the whole surface of a main surface, selectively removing a silicon oxide film formed to the whole surface and introducing phosphorus only to the contact opening section of an n type diffusion layer section while using the oxide film as a mask. CONSTITUTION:The contact openings are formed protruded from the edges of impurity diffusion layers 106, 107. The polycrystalline silicon film 110 in 1,000Angstrom is grown on the whole surface of the main surface, and boron is introduced to the whole surface. Boron is introduced to both contact opening sections of the p and n type impurity diffusion layers through the polycrystalline silicon film 110. The non-doped silicon oxide film 113 is grown on the whole surface of the main surface, the silicon oxide film 113 is removed selectively by using a photoetching method, the polycrystalline silicon film 110 of the n type diffusion layer section is exposed, and phosphorus is introduced to the whole surface through a thermal diffusion method at 900 deg.C. The silicon oxide film 113 functions as a mask on the diffusion of phosphorus to prevent the introduction of phosphorus in the opening section to the p type diffusion layer, and a novel p type diffusion layer 112 is formed.

Description

【発明の詳細な説明】 この発明は、絶縁ゲート電界効果(MOS)型素子特に
相補型絶縁ゲー)・電界効果(0MO8)型素子を用い
た半導体集積回路装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit device using an insulated gate field effect (MOS) type device, particularly a complementary insulated gate field effect (MOS) type device.

近年、pおよびnチャンネルの両方のMOS トランジ
スタを用いた所謂CMO8集積回路装置が、低消費電力
高速動作の面から注目されている。しかしながら、集積
度の点では、0MO8素子を用いた装置は、n−チャン
ネルMO8素子のみ(又はp−チャンネルMOB 素子
のみ)を用いた装置と比較して著しく劣るという欠点を
もっていた。特に金属配線と拡散層とを結線するだめの
コンタクト開口については、開口部と拡散層の縁が接近
した場合でも、開口を通して不純物を導入することによ
りp−n接合の破壊を防ぐ所謂[外抜きコンタクト法」
を用いることがn−グヤンネルMO8素子のみ(又はp
−ヲヤンネルMO8素子のみ)を用いた装置では可能で
集積度の向上が図れるのに反して、0MO8素子を用い
た装置では、拡散層がp型n型の2f!類あるため[外
抜きコンタクト法」の適用が難しく、コンタクトル1口
と拡散層との目合せ余裕を大きくとる必要があり集積度
の低下を招くという欠点があった。
In recent years, so-called CMO8 integrated circuit devices using both p- and n-channel MOS transistors have attracted attention from the standpoint of low power consumption and high-speed operation. However, in terms of the degree of integration, devices using 0MO8 devices have the disadvantage of being significantly inferior to devices using only n-channel MO8 devices (or only p-channel MOB devices). In particular, for contact openings used to connect metal wiring and diffusion layers, even if the edges of the opening and the diffusion layer are close to each other, impurities are introduced through the opening to prevent destruction of the p-n junction. Contact method”
It is possible to use only n-gyannel MO8 elements (or p
However, in a device using 0 MO8 elements, the diffusion layer is p-type and n-type 2f! It is difficult to apply the "external punching contact method" because there are similar types, and it is necessary to have a large margin for alignment between one contact hole and the diffusion layer, which has the disadvantage of causing a decrease in the degree of integration.

この発明の目的は、CMO8累子を用いた半導体集ff
f回路装置の集積度の向上および信頼性の増大さらには
動作速度の向上を実現する製造方法を提供することにあ
る。
The purpose of this invention is to develop a semiconductor assembly using CMO8 elements.
It is an object of the present invention to provide a manufacturing method that realizes an improvement in the degree of integration and reliability of an f-circuit device, as well as an improvement in operating speed.

この発明によるC0M5集積回路装置の製造方法は、金
員配線と不純物拡散層とを結線するだめのコンタクト開
口後、主表面全面に多結晶シリコン膜を成長し、全面に
ほう素をイオン注入法で導入する工程と全mJにシリコ
ン酸化膜を成長し、写真蝕刻法によl)n型不純物拡散
層部の前記シリコン酸化膜を選択的に除去する工程と前
記シリコン酸化膜をマスクとしてn型拡散層部のコンタ
クト翔口部のみにリン(P)を熱拡散法またはイオン注
入法によシ導入する工程とを含むことを特徴としでいる
The method for manufacturing a C0M5 integrated circuit device according to the present invention is to grow a polycrystalline silicon film over the entire main surface after opening a contact for connecting a metal wiring and an impurity diffusion layer, and then implant boron over the entire surface by ion implantation. (1) selectively removing the silicon oxide film in the n-type impurity diffusion layer portion using the silicon oxide film as a mask; and n-type diffusion using the silicon oxide film as a mask. The method is characterized in that it includes a step of introducing phosphorus (P) only into the contact opening portion of the layer portion by thermal diffusion or ion implantation.

この発明には、p型拡散層部の開口部にははう素が導入
され、n型拡散層部の開口部にはほう素リン濃度を適切
に選ぶことによシ、−回の写真蝕刻法によhp型および
11型拡散層へのコンタクト開口部を新たに開口を通し
てそれぞれp型およびn型拡散層を伺加することができ
る。したがってCMO8素子を用いた集積回路において
も、[外抜きコンタクト法」が可能とな勺、開口と拡散
層との目合せ余裕を実質的になくすることができ著]〜
い集積度の向上および信頼性の向上さらには動作速度の
向上を実現できる。
In this invention, boron is introduced into the opening of the p-type diffusion layer, and the concentration of boron and phosphorus is appropriately selected into the opening of the n-type diffusion layer. By using the method, contact openings to the HP type and 11 type diffusion layers can be newly opened to add p type and n type diffusion layers, respectively. Therefore, even in integrated circuits using CMO8 elements, the [external contact method] is possible, and the margin for alignment between the opening and the diffusion layer can be virtually eliminated.
It is possible to realize higher integration, higher reliability, and even higher operating speed.

次に図面全参考にしながら、この発明の一実施例につい
て説明する。第1図は、通常のCMOSプロセスを用い
て、金属配#j!を行うためのコンタクト開口後の装置
の断面図である。図中101はn型シリコン基板、10
2はpウェル、103はフィールド酸化膜、104はゲ
ート酸化膜、105は「l型不純物を添加された多結晶
シリコンゲート電極、106はn型不純物拡散層、10
7はp型不純物拡散層、108は層間絶縁膜、109は
コンタクト開口である。この実施例においては、コンタ
クト開口は不純物拡散層106.107の縁よシd、み
だして形成されておシ、この状態で金属配線が形成され
るとpウェル102とn型不純物拡散層106およびn
型シリコン基板101とp型不純物拡散層1070間で
形成されるp −n接合が破壊され、装置の動作が防げ
られる。この発明は第1図の様にコンタクトが開口され
た場合も信頼性R〈動作する製造法全提供しようとする
もので、第2図以降にその具体例を示す。第2図は、ひ
きつづき主表面全面に100OXの多結晶シリコン膜1
10を成長した後、全面にほう素(B)をイオン注入法
によ#) lXl0 /crI?導入した時の断面図で
ある□pおよびn型不純物拡散層の両方のコンタクト開
口部には、多結晶シリコン膜110を通してほう素(B
)が導入されている。ひきつづき主表面全面に気相成長
法によジノンドープシリコン酸化膜113(c−0,5
μm成長し、写真蝕刻法を用いて、前記シリコン酸化膜
113を選択的に除去し、n型拡散層部の多結晶シリコ
ン膜110を露出させだ後・全…Jに900°Cの熱拡
散法によシリン(P)を導入したのが第3図である。こ
の場合p型拡散層への開口部には、リン拡散時はシリコ
ン酸化膜113がマスクとなってリンの導入が阻止され
るため、はう素のみが開口を通して新たなp型拡散層1
12を形成する。まだn型拡散層への開口部には、多結
晶シリコン110を通してほう素およびリンが連続的に
導入されるがこの実施例で示した場合のように導入され
るリンの濃度がほう素の濃度に比較して2桁以上高い場
合には、導入されたはう素の効果は、はとんどリンに打
ち消され、新たなn型拡散層111のみが形成される。
Next, an embodiment of the present invention will be described with reference to all the drawings. FIG. 1 shows the metal layout #j! using a normal CMOS process. FIG. 3 is a cross-sectional view of the device after contact opening for performing the process. In the figure, 101 is an n-type silicon substrate, 10
2 is a p-well, 103 is a field oxide film, 104 is a gate oxide film, 105 is a polycrystalline silicon gate electrode doped with l-type impurities, 106 is an n-type impurity diffusion layer, 10
7 is a p-type impurity diffusion layer, 108 is an interlayer insulating film, and 109 is a contact opening. In this embodiment, the contact openings are formed to protrude from the edges of the impurity diffusion layers 106 and 107. When metal wiring is formed in this state, the p-well 102 and the n-type impurity diffusion layers 106 and n
The p-n junction formed between the p-type silicon substrate 101 and the p-type impurity diffusion layer 1070 is destroyed, and the operation of the device is prevented. The present invention is intended to provide a manufacturing method that operates with reliability even when a contact is opened as shown in FIG. 1, and specific examples thereof are shown in FIGS. 2 and subsequent figures. Figure 2 shows a polycrystalline silicon film 1 of 100 OX on the entire main surface.
After growing 10, boron (B) is ion-implanted onto the entire surface #) lXl0 /crI? □This is a cross-sectional view when introducing boron (B) into the contact openings of both the p- and n-type impurity diffusion layers through the polycrystalline silicon film 110.
) has been introduced. Subsequently, a dinon-doped silicon oxide film 113 (c-0,5
After the silicon oxide film 113 is selectively removed using photolithography to expose the polycrystalline silicon film 110 in the n-type diffusion layer, thermal diffusion is performed at 900°C over the entire surface. Figure 3 shows the introduction of Sirin (P) by the method. In this case, during phosphorus diffusion, the silicon oxide film 113 acts as a mask to prevent the introduction of phosphorus into the opening to the p-type diffusion layer, so only boron flows through the opening into the new p-type diffusion layer 1.
form 12. Boron and phosphorus are still introduced continuously into the opening to the n-type diffusion layer through the polycrystalline silicon 110, but as in the case shown in this example, the concentration of the introduced phosphorus is lower than that of boron. If it is two or more orders of magnitude higher than , the effect of the introduced boron is almost canceled out by the phosphorus, and only a new n-type diffusion layer 111 is formed.

しかる後、弗酸溶液中で残されたシリコン酸化膜113
を除去し、全曲に多結晶シリコン膜110を露出したり
、アルミニウム配、%l# 114を1,0μm蒸着す
る。写真蝕刻法を再び用いて、所望の配線形状に、アル
ミニウム配線114および多結晶シリコン膜110を除
去し、第4図に示すように装置は完成する。
After that, the silicon oxide film 113 left in the hydrofluoric acid solution
is removed to expose a polycrystalline silicon film 110 over the entire track, and an aluminum layer %l# 114 is deposited to a thickness of 1.0 μm. Using photolithography again, the aluminum wiring 114 and polycrystalline silicon film 110 are removed into a desired wiring shape, and the device is completed as shown in FIG.

この実施例によれば、1回の写真蝕刻法を用いるだけで
、p型拡散層1if1口部には、開口を通して粕たにp
型拡散層112を伺加でき、n型拡散層開口部には、開
口を通して新たlcn型拡散拡散層111加できる。し
たがって開口を拡散層との目合せ余裕を実質的になくす
る「外抜きコンタクト法」を0MO8素子に適用できる
ため、0MO8素子を用いた装置の著しい集積度の同士
、信頼性の向上さらには動作速度の向上ケ実現できる。
According to this embodiment, by using only one photolithographic process, the opening of the p-type diffusion layer 1if1 is exposed to the sludge through the opening.
A type diffusion layer 112 can be added, and a new LCN type diffusion layer 111 can be added to the n type diffusion layer opening through the opening. Therefore, the "outside contact method" that virtually eliminates the alignment margin between the opening and the diffusion layer can be applied to the 0MO8 element, which significantly improves the degree of integration, reliability, and operation of devices using the 0MO8 element. It is possible to improve speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は、この発明の一実施例を示す装置の
各製造工程ての断面図である。 図中、101・・ n型シリコン基板、102・・・ 
pウェル、103・・・・・フィールド酸化膜、104
 ・・・ゲート酸化膜、105 ・ 多結晶シリコンゲ
ート電極、106 ・n型不純物拡散層、107・・・
・・・n型不純物拡散層、108・・・・・層間絶縁膜
、109・・・・ コンタクト開口、110・・・・・
・多結晶シリコン膜、111  付加されたn型不純物
拡散層、112・・・・・・付加されたn型不純物拡散
層、113・・・・・シリコン酸化膜、114・・・ア
ルミニウム配線・である。
FIGS. 1 to 4 are sectional views showing each manufacturing process of an apparatus showing an embodiment of the present invention. In the figure, 101... n-type silicon substrate, 102...
P well, 103...Field oxide film, 104
...Gate oxide film, 105 - Polycrystalline silicon gate electrode, 106 - N-type impurity diffusion layer, 107...
... n-type impurity diffusion layer, 108 ... interlayer insulating film, 109 ... contact opening, 110 ...
・Polycrystalline silicon film, 111 Added n-type impurity diffusion layer, 112... Added n-type impurity diffusion layer, 113... Silicon oxide film, 114... Aluminum wiring. be.

Claims (1)

【特許請求の範囲】[Claims] 相補型絶縁ゲート電界効果素子を用いた半導体集積回路
装置の製造工程において、金属配線と不純物拡散層とを
結線するためのコンタクト開口部、主表面全面に多結晶
シリコン膜を成長する工程と、続いて全面に?’! り
 素()3)をイオン注入法で導入する工程と、続いて
全面に気相成長法にょシリコン酸化膜を成長し、写真蝕
刻法によpn型不純物拡散層部の前言L:シリコン酸化
膜を選択的に除去する工程と続いて前記シリコン酸化膜
をマスクとしてn型拡散部の開口部のみにリン(P)を
熱拡散法またはイオン注入法にょシ導入する工程とを含
むことを重機とする半導体集積回路装置の製造方法。
In the manufacturing process of a semiconductor integrated circuit device using a complementary insulated gate field effect element, a contact opening for connecting a metal wiring and an impurity diffusion layer, a process of growing a polycrystalline silicon film over the entire main surface, and a subsequent process. All over? '! A process of introducing phosphorus (3) by ion implantation, followed by growing a silicon oxide film on the entire surface by vapor phase growth, and forming a pn type impurity diffusion layer part L: silicon oxide film by photolithography. and a step of selectively removing phosphorus (P) using the silicon oxide film as a mask and introducing phosphorus (P) only into the opening of the n-type diffusion region by thermal diffusion or ion implantation. A method for manufacturing a semiconductor integrated circuit device.
JP57185621A 1982-10-22 1982-10-22 Manufacture of semiconductor integrated circuit device Pending JPS5975653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57185621A JPS5975653A (en) 1982-10-22 1982-10-22 Manufacture of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57185621A JPS5975653A (en) 1982-10-22 1982-10-22 Manufacture of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5975653A true JPS5975653A (en) 1984-04-28

Family

ID=16173992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57185621A Pending JPS5975653A (en) 1982-10-22 1982-10-22 Manufacture of semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5975653A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128661A (en) * 1986-11-18 1988-06-01 Sanyo Electric Co Ltd Manufacture of cmos semiconductor device
JPS63128660A (en) * 1986-11-18 1988-06-01 Sanyo Electric Co Ltd Manufacture of cmos semiconductor device
JPH0273628A (en) * 1988-09-08 1990-03-13 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63128661A (en) * 1986-11-18 1988-06-01 Sanyo Electric Co Ltd Manufacture of cmos semiconductor device
JPS63128660A (en) * 1986-11-18 1988-06-01 Sanyo Electric Co Ltd Manufacture of cmos semiconductor device
JPH0273628A (en) * 1988-09-08 1990-03-13 Oki Electric Ind Co Ltd Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0348457A (en) Semiconductor device and manufacture thereof
JPH0824144B2 (en) Method for manufacturing semiconductor device
JPS61242064A (en) Manufacture of complementary type semiconductor device
JPH0193159A (en) Manufacture of bicmos element
JP2001291786A (en) Semiconductor device and method for manufacturing the same
JPS5975653A (en) Manufacture of semiconductor integrated circuit device
JP2917918B2 (en) Method for manufacturing semiconductor device
JPH03191564A (en) Manufacture of semiconductor integrated circuit
JPS6244862B2 (en)
JP3097095B2 (en) Method for manufacturing semiconductor device
JPS63181378A (en) Manufacture of semiconductor device
JP2000164727A (en) Manufacture of semiconductor device
JPH03262154A (en) Manufacture of bicmos type semiconductor integrated circuit
JPH07254645A (en) Fabrication of semiconductor device
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH1092949A (en) Semiconductor integrated circuit device and manufacture thereof
JP3521921B2 (en) Method for manufacturing semiconductor device
JPH01248555A (en) Semiconductor device
JPH0113230B2 (en)
JPS62112376A (en) Semiconductor device
JPH039558A (en) Manufacture of cmos type semiconductor device
JPS6286752A (en) Manufacture of semiconductor integrated circuit
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH0575033A (en) Semiconductor integrated circuit device and manufacture thereof
JPH03101264A (en) Manufacture of complementary field effect transistor