JPS63128661A - Manufacture of cmos semiconductor device - Google Patents

Manufacture of cmos semiconductor device

Info

Publication number
JPS63128661A
JPS63128661A JP61274641A JP27464186A JPS63128661A JP S63128661 A JPS63128661 A JP S63128661A JP 61274641 A JP61274641 A JP 61274641A JP 27464186 A JP27464186 A JP 27464186A JP S63128661 A JPS63128661 A JP S63128661A
Authority
JP
Japan
Prior art keywords
source
contact
conductivity type
barrier layer
drain regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61274641A
Other languages
Japanese (ja)
Other versions
JP2760493B2 (en
Inventor
Giichi Hirose
広瀬 義一
Toshio Wada
和田 俊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61274641A priority Critical patent/JP2760493B2/en
Publication of JPS63128661A publication Critical patent/JPS63128661A/en
Application granted granted Critical
Publication of JP2760493B2 publication Critical patent/JP2760493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0927Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To decrease the number of photo resist processes for masking both MOS transistors one time and to obtain good contact resistance in a fine contact area by a method wherein the whole surface of a substrate is coated with a barrier layer after contact holes are formed, an impurity is ion-implanted in the whole surface and moreover, an impurity is ion-implanted masking the MOS transistor on one side. CONSTITUTION:P<+> source and drain regions 5 and 6 and N<+> source and drain regions 7 and 8 are respectively formed in a substrate 1 and a well region 2. Contact holes 12 are formed in an insulating film 13 on the source and drain regions 5-8 of both MOS transistors 9 and 10. Then, a thin barrier layer 20 is adhered on the whole surface of the insulating film 13. An impurity to give one conductivity type or an inverse conductivity type to the surfaces of the source and drain regions 5-8 of both MOS transistors 9 and 10 is ion-implanted in the whole surface of the substrate without using a mask layer from over the barrier layer 20 through the contact holes 12 and contact regions 14 and 15 are formed. Then, the upper part of the MOS transistor 9 of a P channel is covered with a mask layer and an ion-implantation of arsenic As<+> is performed in the source and drain regions 7 and 8 of the MOS transistor 10 of an N channel.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はCMO5半導体装置の製造方法、特に微細化き
れたコンタクトが得られるCMO3半導体装置の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a method of manufacturing a CMO5 semiconductor device, and more particularly to a method of manufacturing a CMO3 semiconductor device that allows finer contacts to be obtained.

(ロ)従来の技術 従来のCMOS半導体装置では大きなソースドレイン領
域で形成していたためソースドレイン領域へのコンタク
ト孔を形成するときにも位置ずれに対して余裕があった
(B) Prior Art Since a conventional CMOS semiconductor device is formed with a large source/drain region, there is a margin for misalignment when forming a contact hole to the source/drain region.

しかしながら、CMOS半導体装置の高集積化を図るた
めにMOSトランジスタの微細化が行なわれ、これに伴
いMOSトランジスタのソースドレイン領域も手許く形
成されて来た。このためにコンタクト孔の位置ずれの余
裕度も大幅に減少し、コンタクト孔がソースドレイン領
域からはみ出して形成される場合があり、このときはソ
ースドレイン電極から基板あるいはPウェル領域にリー
ク電流を発生することになる。
However, in order to achieve higher integration of CMOS semiconductor devices, MOS transistors have been miniaturized, and as a result, source and drain regions of MOS transistors have also been formed more easily. For this reason, the margin for misalignment of the contact hole is greatly reduced, and the contact hole may be formed protruding from the source/drain region. In this case, leakage current is generated from the source/drain electrode to the substrate or P-well region. I will do it.

これを防止する方法として特開昭52−60571号公
報に示されている様にコンタクト孔をセルファラインに
より形成する方法と、コンタクト孔に不純物をイオン注
入する方法とがある。
As methods for preventing this, there are a method of forming a contact hole using self-alignment as shown in Japanese Unexamined Patent Publication No. 52-60571, and a method of implanting impurity ions into the contact hole.

第2図A乃至第2図Eに上述した後者の方法を詳述する
The latter method described above is detailed in FIGS. 2A to 2E.

先ず第2図Aに示す如く、半導体基板(21)内に周知
の方法でPチャンネルMOSトランジスタ(27〉およ
びNfヤンネルMO3)ランジスタ(30)を形成する
。(21)はN型のシリコン半導体基板、(22)はイ
オン注入で形成したP型ウェル領域、(23)は選択酸
化により形成されたフィールド酸化膜、(24)はポリ
シリコンより成るゲート電極、(25)(26)はPチ
ャンネルMO3I−ランジスタ(27)のP“型ソース
ドレイン領域、(28)(29)はNチャンネルMOS
トランジスタ(30)のN+型ソースドレイン領域であ
る。
First, as shown in FIG. 2A, a P channel MOS transistor (27) and an Nf channel MO3 transistor (30) are formed in a semiconductor substrate (21) by a well-known method. (21) is an N-type silicon semiconductor substrate, (22) is a P-type well region formed by ion implantation, (23) is a field oxide film formed by selective oxidation, (24) is a gate electrode made of polysilicon, (25) (26) are P" type source drain regions of P channel MO3I-transistor (27), (28) and (29) are N channel MOS
This is the N+ type source/drain region of the transistor (30).

次に第2図Bに示す如く、PチャンネルMOSトランジ
スタ(27)およびNチャンネルMO8)ランジスタ(
30)の各ソースドレイン領域(25)(26)(28
)(29)上の酸化膜(31)にコンタクト孔(32)
・・・(32)を形成する。本工程は周知のホトエツチ
ングを用いて各コンタクト孔(32)・・・(32)を
同時に形成する。なお本工程で各コンタクト孔(32)
・・・(32)は各ソースドレイン領域(25)(26
)(28)(29)からはみ出しても良い。
Next, as shown in FIG. 2B, a P-channel MOS transistor (27) and an N-channel MO8 transistor (
30) each source drain region (25) (26) (28
) (29) Contact hole (32) in oxide film (31) on top
...(32) is formed. In this step, the contact holes (32), . . . (32) are simultaneously formed using well-known photoetching. In this process, each contact hole (32)
...(32) represents each source/drain region (25) (26)
)(28) May protrude from (29).

次に第2図Cに示す如く、NチャンネルMOSトランジ
スタ〈30)上をホトレジストJl(33)でマスクし
てPチャンネルMOSトランジスタ(27)上にボロン
をイオン注入する。本工程ではコンタクト孔(32) 
(32)を介してその開口部にP型のコンタクト領域(
34)(35)が形成される。
Next, as shown in FIG. 2C, boron ions are implanted onto the P-channel MOS transistor (27) while masking the N-channel MOS transistor (30) with a photoresist J1 (33). In this process, the contact hole (32)
(32) to its opening via a P-type contact region (
34) (35) are formed.

次に第2図りに示す如く、PチャンネルMOSトランジ
スタ(27)上をホトレジスト層(36)でマスクして
NチャンネルMOSトランジスタ(30)上にヒ素をイ
オン注入す、る。本工程でもコンタクト孔(32)(3
2)を介してその開口部にN型のコンタクト領域(37
)(38)が形成される。
Next, as shown in the second diagram, arsenic ions are implanted onto the N-channel MOS transistor (30) while masking the P-channel MOS transistor (27) with a photoresist layer (36). In this process, the contact hole (32) (3
2) into the opening through the N-type contact region (37
)(38) is formed.

更に第2図Eに示す如く、半導体基板(21)全面に金
属電極材料であるアルミニウムJl(39)をスパッタ
する。アルミニウム層(39)はスパッタ後ホトエツチ
ングにより所望のソースドレイン電極を形成する。
Furthermore, as shown in FIG. 2E, aluminum Jl (39), which is a metal electrode material, is sputtered over the entire surface of the semiconductor substrate (21). The aluminum layer (39) is sputtered and then photo-etched to form the desired source/drain electrodes.

斯上した方法に依れば、ソースドレイン電極が接触する
コンタクト孔(32)・・・(32)下には必ずP型あ
るいはN型のコンタクト領域(34)(35)(37>
(38)があり、ソースドレイン電極はコンタクト孔(
32)・・・(32)の位置ずれによる基板(21)あ
るいはウェル領域(22)との接触が防止できる。
According to the method described above, there is always a P-type or N-type contact region (34) (35) (37>
(38), and the source and drain electrodes are connected to contact holes (
32) It is possible to prevent contact with the substrate (21) or the well region (22) due to positional deviation of (32).

(ハ)発明が解決しようとする問題点 しかしながら斯上した従来のCMOS半導体装置の製造
方法に依れば、コンタクト領域(34)(35)(37
)(38)を形成するイオン注入に行うに際して、マス
クとして用いる2回のホトレジスト工程を必要とする問
題点があった。
(c) Problems to be Solved by the Invention However, according to the above-mentioned conventional method for manufacturing a CMOS semiconductor device, contact regions (34), (35), and
) When performing ion implantation to form (38), there was a problem in that two photoresist steps were required to be used as a mask.

仲)問題点を解決するための手段 本発明は斯上した問題点に鑑みてなされ、一方のMOS
トランジスタのコンタクト領域の形成をマスク層を用い
ないでイオン注入することにより、従来よりホトレジス
ト工程を1回減少させたCMO3半導体装置の製造方法
を提供するものである。
Means for solving the problems The present invention has been made in view of the above problems, and is based on one MOS
The present invention provides a method for manufacturing a CMO3 semiconductor device in which the number of photoresist steps is reduced by one compared to the conventional method by forming a contact region of a transistor by ion implantation without using a mask layer.

更に本発明ではイオン注入をバリア層を介して行うこと
により微小コンタクト面積でも良好なコンタクト抵抗が
得られるCMO5半導体装置の製造方法を提供するもの
である。
Furthermore, the present invention provides a method for manufacturing a CMO5 semiconductor device in which good contact resistance can be obtained even with a small contact area by performing ion implantation through a barrier layer.

(ホ)作用 本発明に依れば、コンタクト孔形成後に基板全面をバリ
ア層で被覆し全面に不純物をイオン注入し、更に一方の
MOSトランジスタをマスクして不純物をイオン注入す
ることにより両MO8)ランジスタのコンタクト孔下に
コンタクト領域を形成しているので、マスクのためのホ
トレジスト工程を1回に減少でき、またバリア層で金属
電極層とコンタクト領域の直接接触をなくしているので
、コンタクト領域にシリコンの析出を防止できる。
(E) Function According to the present invention, after forming the contact hole, the entire surface of the substrate is covered with a barrier layer, impurity ions are implanted over the entire surface, and one of the MOS transistors is further masked and impurity ions are implanted, so that both MO8) Since the contact area is formed under the contact hole of the transistor, the photoresist process for the mask can be reduced to one time.Also, since the barrier layer eliminates direct contact between the metal electrode layer and the contact area, the contact area can be Prevents silicon precipitation.

(へ)実施例 本発明の一実施例を第1図A乃至第1図Eを参照して詳
述する。
(F) Embodiment An embodiment of the present invention will be described in detail with reference to FIGS. 1A to 1E.

本発明の第1の工程は第1図Aに示すように、一導電型
の半導体基板(1)に逆導電チャンネルのMOSトラン
ジスタ(9)を形成する逆導電型のソースドレイン領域
(5)(6)を形成し、半導体基板(1)表面に設けた
逆導電型のウェル領域(2)に−導電チャンネルのMO
3I−ランジスタ(10)を形成する一導電型のソース
ドレイン領域(7)(8)を形成することにある。
As shown in FIG. 1A, the first step of the present invention is to form a reverse conductivity type source/drain region (5) on a semiconductor substrate (1) of one conductivity type to form a reverse conductivity channel MOS transistor (9). 6) and a conductive channel MO in the well region (2) of the opposite conductivity type provided on the surface of the semiconductor substrate (1).
The purpose is to form source and drain regions (7) and (8) of one conductivity type forming a 3I-transistor (10).

本工程は従来周知のCMOSプロセスを用いて製造され
る。N型シリコン半導体基板(1)にP型のウェル領域
(2)をイオン注入で形成し、基板(1)およびウェル
領域(2)表面のフィールド領域上には選択酸化法によ
り厚い埋め込み型のフィールド酸化膜(3)が形成され
る。基板(1)およびウェル領域(2)上にはゲート酸
化膜(11)を介してリンドープされたポリシリコンよ
り成るゲート電極(4)が形成され、このゲート電極(
4)をマスクとしてセルファラインを利用して基板(1
)にP1型のソースドレイン領域(5)(6)、ウェル
領域(2)にN4型のソースドレイン領域(7)(8)
が形成きれる。
This step is manufactured using a conventionally well-known CMOS process. A P-type well region (2) is formed on an N-type silicon semiconductor substrate (1) by ion implantation, and a thick buried field is formed on the field region on the surface of the substrate (1) and the well region (2) by selective oxidation. An oxide film (3) is formed. A gate electrode (4) made of phosphorus-doped polysilicon is formed on the substrate (1) and the well region (2) via a gate oxide film (11).
4) as a mask and use Selfa Line to attach the substrate (1).
) P1 type source/drain regions (5) (6), and N4 type source/drain regions (7) (8) in the well region (2).
can be formed.

本発明の第2の工程は第1図Bに示すように、半導体基
板(1)表面を被覆する絶縁膜(13)の両MOSトラ
ンジスタ(9)(10)のソースドレイン領域(5)(
6)(7)(8)上にコンタクト孔(12)・・・(1
2)を形成することにある。
The second step of the present invention, as shown in FIG. 1B, is the source/drain regions (5) (
6) Contact hole (12)...(1) on (7) (8)
2).

本工程は従来周知のホトエツチングを用いて行い、両M
O3I−ランジスタ(9)(10)のソースドレイン領
域(5)(6)(7)(8)上の絶縁膜(13)にコン
タクト孔(12)・・・(12)を形成する。この際コ
ンタクト孔(12)・・・(12)は径が1〜2μmと
微細であり、コンタクト孔(12)・・・(12)はマ
スクずれにより両MOSトランジスタ(9)(10)の
ソースドレイン領域(5)(6)<7)(8)からずれ
て形成される場合もある。
This process is performed using conventionally well-known photoetching, and both M
Contact holes (12) (12) are formed in the insulating film (13) on the source/drain regions (5) (6) (7) (8) of the O3I transistors (9) (10). At this time, the contact holes (12)...(12) are minute, with a diameter of 1 to 2 μm, and the contact holes (12)...(12) are the sources of both MOS transistors (9) and (10) due to mask misalignment. The drain region (5) (6) <7) (8) may be formed offset from the drain region (5) (6) <7) (8).

本発明の第3の工程は第1図Cに示すように、絶縁膜(
13)上にバリア層(20)を付着することにある。
The third step of the present invention is to form an insulating film (
13) depositing a barrier layer (20) on top.

本工程は本発明の特徴とする工程であり、絶縁膜(13
)上全面に薄いバリアJl(20)を付着している。バ
リア層(20)としてはポリシリコンやTiSi。
This step is a characteristic step of the present invention, and is an insulating film (13
) A thin barrier Jl (20) is attached to the entire upper surface. The barrier layer (20) is made of polysilicon or TiSi.

T慴等のシリサイドを用いる。本工程ではノンドープの
ポリシリコン層を1000Å以下の厚みに減圧CVD法
で付着した。このポリシリコン層は金属電極層と基板と
が直接接触するのを防止する働きと、後工程でのイオン
注入のときの基板表面の保護の働きとを有している。
Silicide such as T-kei is used. In this step, a non-doped polysilicon layer was deposited to a thickness of 1000 Å or less by low pressure CVD. This polysilicon layer has the function of preventing direct contact between the metal electrode layer and the substrate, and the function of protecting the substrate surface during ion implantation in a subsequent process.

本発明の第4の工程は同様に第1図Cに示すように、バ
リア層(20)上からコンタクト孔(12)・・・(1
2〉を介して両MO8)ランジスタ(9)(10)のソ
ースドレイン領域(5)(6)(7)(8)表面に一導
電型あるいは逆導電型を与える不純物をイオン注入しコ
ンタクト領域(14>(15)を形成することにある。
Similarly, in the fourth step of the present invention, as shown in FIG. 1C, the contact holes (12)...(1
2), an impurity giving one conductivity type or an opposite conductivity type is ion-implanted into the surfaces of the source and drain regions (5) (6) (7) (8) of both MO8) transistors (9) (10), and the contact regions ( 14>(15).

本工程は本発明の特徴とする工程であり、コンタクト領
域(14)(15)を形成するイオン注入を基板(1)
全面にマスク層なしで行うことにある。即ち、コンタク
ト孔(12)・・・(12)を形成した状態でボロン(
B+)のイオン注入を行う。このイオン注入は加速電圧
40KeV、ドーズ量I X I Q ”cm−”で行
い、PチャンネルMOSトランジスタ(9)のソースド
レイン領域(5バ6)上にコンタクト孔(12)C12
)を介してP1型のコンタクト領域(14)(15)が
形成される。このときNチャンネルMO3I−ランジス
タ(10)のソースドレイン領域(7)(8)上にもコ
ンタクト孔(12)(12)を介してボロンが注入され
るが、ソースドレイン領域(7)(8)が高濃度である
ので表面がP型化するおそれはない。
This step is a characteristic step of the present invention, in which ions are implanted into the substrate (1) to form the contact regions (14) and (15).
The purpose is to perform the process without a mask layer on the entire surface. That is, with the contact holes (12)...(12) formed, boron (
B+) ion implantation is performed. This ion implantation was performed at an acceleration voltage of 40 KeV and a dose of I
) P1 type contact regions (14) and (15) are formed through the contact regions (14) and (15). At this time, boron is also implanted into the source and drain regions (7) and (8) of the N-channel MO3I-transistor (10) through the contact holes (12) and (12). Since the concentration of is high, there is no risk of the surface becoming P-type.

なお本工程ではバリア層(20)にもボロンがイオン注
入されるので、全面的にポリシリコンはボロンドープさ
れる。またバリア層(20)の存在によりイオン注入の
不純物濃度のピークをコンタクト領域(14)(15)
表面に位置させることができ、コンタクト抵抗の低減を
図れる。
Note that in this step, boron ions are also implanted into the barrier layer (20), so the entire polysilicon is doped with boron. Also, due to the presence of the barrier layer (20), the peak of the impurity concentration during ion implantation is reduced to the contact regions (14) and (15).
It can be placed on the surface, reducing contact resistance.

本発明の第5の工程は第1図りに示すように、−−bの
MOSトランジスタのソースドレイン領域上のコンタク
ト孔(12>(12)をマスク層(16)で被覆し、他
方のMOSトランジスタのソースドレイン領域上のコン
タクト孔(12)(12)を介して逆導電型あるいは一
導電型を与える不純物をバリア層(20)上からイオン
注入してコンタクト領域を形成することにある。
As shown in the first diagram, the fifth step of the present invention is to cover the contact hole (12>(12)) on the source/drain region of the MOS transistor -b with a mask layer (16), and The purpose is to form contact regions by ion-implanting impurities imparting opposite conductivity type or one conductivity type from above the barrier layer (20) through contact holes (12) (12) on the source and drain regions of the barrier layer (20).

本工程ではPf〜ンネルMOSトランジスタ(9)上を
ホトレジストよりなるマスク層(16)で被覆し、Nチ
ャンネルMOSトランジスタ(10)のソースドレイン
領域(7)(8)にコンタクト孔(12)(12)を介
してヒ素(As”)のイオン注入を行う。このイオン注
入は加速電圧80KeV、  ドーズ量lX1018σ
−2で行い、Nチ〜ンネルMO9トランジスタフ10)
のソースドレイン領域(7)(8)上にもコンタクト孔
(12)(12)を介してN+型のコンタクト領域(1
7)(18)が形成される。前工程でNfwンネルMO
Sトランジスタク10)のコンタクト孔(12)(12
)下にボロンがイオン注入されるが、本工程で十分にヒ
素をイオン注入することによりボロンのイオン注入を補
償できる。
In this step, the Pf channel MOS transistor (9) is covered with a mask layer (16) made of photoresist, and the contact holes (12) (12 ) ion implantation of arsenic (As”) is carried out using an accelerating voltage of 80 KeV and a dose of 1×1018σ.
-2, N-channel MO9 transistor off 10)
N+ type contact regions (1) are also formed on the source and drain regions (7) and (8) of the
7) (18) is formed. Nfw tunnel MO in the previous process
Contact hole (12) (12) of S transistor tank 10)
), but boron ion implantation can be compensated for by sufficiently implanting arsenic ions in this step.

また本工程では露出きれたNチャンネルMOSトランジ
スタ(10)上のバリアJ!?(20)であるポリシリ
コンはヒ素ドープされて、前工程で注入されたボロンを
打消してN型にドープされる。またバリア層(20)の
存在によりイオン注入の不純物濃度のピークをコンタク
ト領域(17)(18)表面に位置させてコンタクト抵
抗を低減きせる。
Also, in this process, the barrier J! on the N-channel MOS transistor (10) which is completely exposed! ? The (20) polysilicon is doped with arsenic to cancel out the boron implanted in the previous step and to be N-type doped. Further, due to the presence of the barrier layer (20), the impurity concentration peak of ion implantation is located on the surfaces of the contact regions (17) and (18), thereby reducing contact resistance.

本発明の第6の工程は第1図Eに示すように、基板(1
)上の絶縁膜(13)上のバリア層(20)上に導電金
属層(19)をスパッタすることにある。
In the sixth step of the present invention, as shown in FIG.
) on the barrier layer (20) on the insulating film (13).

本工程は周知の電極形成方法を利用し、基板(1)上(
7)バリア層(20)全面にアルミニウム!(19)を
スパッタして付着する。従ってアルミニウム層(19)
はバリア層(20)をはさんでコンタクト孔(12)・
・・(12)を介して各MO8)ランジスタ(9)(1
0)のソースドレイン領域(5)(6)(7)(8)と
オーミック接触する。特にコンタクト孔(12)・・・
(12)がマスクずれにより各MO3)ランジスタ(9
)Do)のソースドレイン領域(5>(6>(7)(8
)よりはみ出して形成されても、コンタクト孔(12)
・・・(12)下には必ずセルファラインによりコンタ
クト領域(14)(15)(17)(18)が形成され
ているので、アルミニウム層(19)は必ず各MOSト
ランジスタ(9)(10)のソースドレイン領域(5)
(6)(7)(8)と接続される。
This step utilizes a well-known electrode formation method and is performed on the substrate (1) (
7) Barrier layer (20) Aluminum all over! (19) is attached by sputtering. Therefore the aluminum layer (19)
are the contact holes (12) with the barrier layer (20) in between.
...(12) to each MO8) transistor (9) (1
It makes ohmic contact with the source/drain regions (5), (6), (7), and (8) of 0). Especially the contact hole (12)...
(12) due to mask shift, each MO3) transistor (9)
)Do) source drain region (5>(6>(7)(8
) even if it is formed protruding from the contact hole (12).
...(12) Since the contact regions (14), (15), (17), and (18) are always formed under the self-alignment lines, the aluminum layer (19) is always connected to each MOS transistor (9), (10). source drain region (5)
(6) (7) (8) are connected.

また本工程では金属電極層(19)として通常シリコン
を1重量%含有するアルミニウムを用いるので、コンタ
クト領域(14)< 15)(17)(18)に直接付
着させるとアルミニウム中のシリコンがコンタクト領域
(14)(15)(17)(18)表面に析出してコン
タクト抵抗が増大する傾向があった。しかし本実施例で
はバリアW (20)でアルミニウム層(19)とコン
タクト領域(14)(15)(17)(18)との直接
接触することを防止しているので、アルミニウム層(1
9)中のシリコンが析出してコンタクト抵抗を上昇させ
るおそれはない。従ってコンタクト孔(12)・・・(
12)の径を1.2μm程度でも良好なコンタクトを形
成できる。
Also, in this process, aluminum containing 1% by weight of silicon is normally used as the metal electrode layer (19), so if it is directly deposited on the contact area (14) < 15) (17) (18), the silicon in the aluminum will spread to the contact area. (14) (15) (17) (18) There was a tendency for contact resistance to increase due to precipitation on the surface. However, in this example, the barrier W (20) prevents direct contact between the aluminum layer (19) and the contact regions (14), (15), (17), and (18).
9) There is no risk that the silicon inside will precipitate and increase the contact resistance. Therefore, the contact hole (12)...(
Even if the diameter of 12) is about 1.2 μm, a good contact can be formed.

本発明の他の実施例を説明する。前述した第4の工程(
第1図C)で全面にヒ素(As”>をイオン注入し、N
チャンネルMOSトランジスタ(10)のソースドレイ
ン領域(7)(8)上にコンタクト領域(17)(18
)を形成する。その後前述した第5の工程(第1図D)
でNチャンネルMOSトランジスタ(10)をマスク層
(16)で被覆してPチャンネルMOSトランジスタ(
9)のソースドレイン領域(5)(6)上にコンタクト
孔(12) (12)を介してボロン(B+)をイオン
注入してコンタクト領域(14)(15)を形成する。
Another embodiment of the present invention will be described. The fourth step mentioned above (
In Fig. 1 C), arsenic (As”) is ion-implanted over the entire surface, and N
Contact regions (17) (18) are formed on the source/drain regions (7) (8) of the channel MOS transistor (10).
) to form. After that, the fifth step mentioned above (Fig. 1D)
Then, the N-channel MOS transistor (10) is covered with a mask layer (16) to form a P-channel MOS transistor (
Contact regions (14) and (15) are formed by implanting boron (B+) ions onto the source and drain regions (5) and (6) of 9) through the contact holes (12) and (12).

なお残る工程は前述と同じである。The remaining steps are the same as described above.

(ト)発明の効果 本発明に依れば、第1に各MOSトランジスタ(9)(
10)のコンタクト孔(12)・・・(12)下にセル
ファラインによりコンタクト領域(14)(15)(1
7)(18)を形成するに際し、全面的にイオン注入す
ることにより、イオン注入のマスク層(16)を1回の
ホトレジスト工程で実現でき、従来より簡便なCMOS
半導体装置の製造方法を実現できる利点を有する。
(G) Effects of the Invention According to the present invention, firstly, each MOS transistor (9) (
Contact areas (14) (15) (1
7) When forming (18), by performing ion implantation over the entire surface, the mask layer (16) for ion implantation can be realized in one photoresist process, making CMOS simpler than conventional CMOS.
It has the advantage of being able to implement a method for manufacturing semiconductor devices.

第2に各MOSトランジスタ(9)(1o)のコンタク
ト孔(12)・・・(12)下にセルファラインにより
コンタクト領域(14)(15)(17)(18)を形
成しているので、金属電極層(19)と基板(1)ある
いはウェル領域(2)とのショートはなくなり、コンタ
クト孔(12)・・・(12)の径をノjNd<できる
とともにソースドレイン領域(5)(6)(7)(8)
の大きさも小さくでき、極めて微細化できるCMOS半
導体装置の製造方法を実現できる利点を有する。
Second, since contact regions (14), (15), (17), and (18) are formed by self-alignment lines under the contact holes (12), ... (12) of each MOS transistor (9), (1o), There is no short circuit between the metal electrode layer (19) and the substrate (1) or the well region (2), and the diameter of the contact holes (12) can be reduced to less than )(7)(8)
This has the advantage that the size of the CMOS semiconductor device can be reduced, and a method for manufacturing a CMOS semiconductor device that can be extremely miniaturized can be realized.

第3にバリア層(20)を介在させることにより金属電
極層(19)とコンタクト領域(14)(15)(17
)(18)との直接接触をなくすことができ、金属電極
層(19)からのシリコン析出を抑制できコンタクト抵
抗の小さい微細化されたコンタクトを実現できる利点を
有する。
Thirdly, by interposing the barrier layer (20), the metal electrode layer (19) and the contact regions (14), (15), and (17)
) (18) can be eliminated, silicon precipitation from the metal electrode layer (19) can be suppressed, and a miniaturized contact with low contact resistance can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図A乃至第1図Eは本発明に依るCMOS半導体装
置の製造方法を説明する断面図、第2図A乃至第2図E
は従来のCMO5半導体装置の製造方法を説明する断面
図である。 (1)は半導体基板、 (2)はウェル領域、 (5)
(6)<7)(8)はソースドレイン領域、  (9)
はPfキャンルMOSトランジスタ、(10)はNチャ
ンネルMOSトランジスタ、(12)・・・(12)は
コンタクト孔、  (14)(Is)(17)(18)
はコンタクト領域、(19)は金属電極層、 (20)
はバリア層である。 出願人 三洋電機株式会社外1名 代理人 弁理士 西野卓嗣 外1名 第1図A 第1図B 14  ソ  ]コ       履 第1図り 第1図E 第2図A 第2図B lt      30 第2図り 第2図E
1A to 1E are cross-sectional views illustrating a method for manufacturing a CMOS semiconductor device according to the present invention, and FIGS. 2A to 2E
1 is a cross-sectional view illustrating a conventional method of manufacturing a CMO5 semiconductor device. (1) is a semiconductor substrate, (2) is a well region, (5)
(6)<7) (8) is the source/drain region, (9)
is a Pf cancel MOS transistor, (10) is an N-channel MOS transistor, (12)...(12) is a contact hole, (14) (Is) (17) (18)
is the contact region, (19) is the metal electrode layer, (20)
is a barrier layer. Applicant Sanyo Electric Co., Ltd. and one other agent Patent attorney Takuji Nishino and one other person Fig. 1 A Fig. 1 B 14 So] Co First drawing Fig. 1 E Fig. 2 A Fig. 2 B lt 30 Fig. 2 Diagram 2 E

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板に逆導電チャンネルのMO
Sトランジスタを形成する逆導電型のソースドレイン領
域を形成し、前記半導体基板表面に設けた逆導電型のウ
ェル領域に一導電チャンネルのMOSトランジスタを形
成する一導電型のソースドレイン領域を形成する工程と
、 前記半導体基板表面を被覆する絶縁膜の前記両MOSト
ランジスタのソースドレイン領域上にコンタクト孔を形
成する工程と、 前記絶縁膜上にバリア層を付着する工程と、前記コンタ
クト孔を介して前記バリア層上から前記両MOSトラン
ジスタのソースドレイン領域表面に一導電型あるいは逆
導電型を与える不純物をイオン注入しコンタクト領域を
形成する工程と、 前記一方のMOSトランジスタのソースドレイン領域上
の前記コンタクト孔をマスク層で被覆し、前記他方のM
OSトランジスタのソースドレイン領域上の前記コンタ
クト孔を介して前記バリア層上から逆導電型あるいは一
導電型を与える不純物をイオン注入してコンタクト領域
を形成する工程と、 前記半導体基板上の前記バリア層上に導電金属をスパッ
タする工程とを具備することを特徴としたCMOS半導
体装置の製造方法。
(1) MO of opposite conductivity channel on semiconductor substrate of one conductivity type
A step of forming a source drain region of opposite conductivity type to form an S transistor, and forming a source drain region of one conductivity type to form a MOS transistor of one conductivity channel in a well region of opposite conductivity type provided on the surface of the semiconductor substrate. forming contact holes on the source and drain regions of both the MOS transistors in an insulating film covering the surface of the semiconductor substrate; depositing a barrier layer on the insulating film; forming a contact region by ion-implanting an impurity giving one conductivity type or an opposite conductivity type into the surface of the source and drain regions of both MOS transistors from above the barrier layer; and forming the contact hole on the source and drain region of one of the MOS transistors. is coated with a mask layer, and the other M
forming a contact region by ion-implanting an impurity imparting opposite conductivity type or one conductivity type from above the barrier layer through the contact hole on the source/drain region of the OS transistor; and the barrier layer on the semiconductor substrate. A method for manufacturing a CMOS semiconductor device, comprising the step of sputtering a conductive metal thereon.
JP61274641A 1986-11-18 1986-11-18 Method for manufacturing CMOS semiconductor device Expired - Lifetime JP2760493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61274641A JP2760493B2 (en) 1986-11-18 1986-11-18 Method for manufacturing CMOS semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61274641A JP2760493B2 (en) 1986-11-18 1986-11-18 Method for manufacturing CMOS semiconductor device

Publications (2)

Publication Number Publication Date
JPS63128661A true JPS63128661A (en) 1988-06-01
JP2760493B2 JP2760493B2 (en) 1998-05-28

Family

ID=17544535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61274641A Expired - Lifetime JP2760493B2 (en) 1986-11-18 1986-11-18 Method for manufacturing CMOS semiconductor device

Country Status (1)

Country Link
JP (1) JP2760493B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208961A (en) * 1989-02-08 1990-08-20 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH08186264A (en) * 1994-12-28 1996-07-16 Seiko Epson Corp Thin-film transistor and its production

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975653A (en) * 1982-10-22 1984-04-28 Nec Corp Manufacture of semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5975653A (en) * 1982-10-22 1984-04-28 Nec Corp Manufacture of semiconductor integrated circuit device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02208961A (en) * 1989-02-08 1990-08-20 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH08186264A (en) * 1994-12-28 1996-07-16 Seiko Epson Corp Thin-film transistor and its production

Also Published As

Publication number Publication date
JP2760493B2 (en) 1998-05-28

Similar Documents

Publication Publication Date Title
US5047358A (en) Process for forming high and low voltage CMOS transistors on a single integrated circuit chip
US4235011A (en) Semiconductor apparatus
US5169796A (en) Process for fabricating self-aligned metal gate field effect transistors
US5571753A (en) Method for forming a wiring conductor in semiconductor device
JPS63128661A (en) Manufacture of cmos semiconductor device
JPH01259560A (en) Semiconductor integrated circuit device
JPH02153538A (en) Manufacture of semiconductor device
JPS63128660A (en) Manufacture of cmos semiconductor device
JPS62203363A (en) Manufacture of semiconductor device
KR100269613B1 (en) Manufacturing Method of Semiconductor Device
JP2847790B2 (en) Method of manufacturing complementary MOS transistor
JP3043791B2 (en) Method for manufacturing semiconductor device
JPH07161826A (en) Manufacture of semiconductor device
JP3241914B2 (en) Method for manufacturing semiconductor device
JPH06224379A (en) Manufacture of semiconductor device
JPH02151064A (en) Manufacture of semiconductor device
KR920000832B1 (en) Method of fabricating bicmos transistor
JP2003092401A (en) Method for manufacturing semiconductor device
JPH02267943A (en) Manufacture of mis type semiconductor device
JPS58135672A (en) Semiconductor device
JPS59121877A (en) Manufacture of mis type transistor
JPS6337642A (en) Semiconductor integrated circuit device
JPH0964361A (en) Manufacture of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH02174236A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term