JPS62128542A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62128542A
JPS62128542A JP26965085A JP26965085A JPS62128542A JP S62128542 A JPS62128542 A JP S62128542A JP 26965085 A JP26965085 A JP 26965085A JP 26965085 A JP26965085 A JP 26965085A JP S62128542 A JPS62128542 A JP S62128542A
Authority
JP
Japan
Prior art keywords
diffusion layer
oxide film
isolation diffusion
thick oxide
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26965085A
Other languages
Japanese (ja)
Inventor
Yoshiaki Toyoshima
豊島 義明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26965085A priority Critical patent/JPS62128542A/en
Publication of JPS62128542A publication Critical patent/JPS62128542A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To increase the concentration of an isolation diffusion layer as source- drain withstanding voltage is left as it is maintained by separating and forming source-drain regions and the isolation diffusion layer without damaging the self-alignment properties of a thick oxide film and the isolation diffusion layer. CONSTITUTION:A wall body 26 consisting of polycrystalline silicon is shaped to the side surface of the inner circumference of an opening section 24 in an silicon nitride film 23, boron ions are implanted and activated to form a p-type isolation diffusion layer 27 on the surface of an silicon substrate 21, and a thick oxide film 28 is shaped in a self-alignment manner with the p-type isolation diffusion layer 27 through selective oxidation while the end sections of the thick oxide film 28 and the end sections of the diffusion layer 27 can be formed at desired distances. Accordingly, since source-drain regions 29, 30 are shaped, using the thick oxide film 28 as a mask and the isolation diffusion layer 27 can be separated, the concentration of the isolation diffusion layer 27 can be increased independently while source-drain withstanding voltage is left as it is kept, thus allowing fining without damaging transistor characteristics.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特に高耐圧の素
子分離領域を有するMIS型半導体集檀回路の製造方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a MIS type semiconductor integrated circuit having a high voltage isolation region.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

MIS型半導体集積回路においては、集積回路を構成す
る各素子間を屯気的に分離するために厚い絶縁膜と、そ
の下部の半導体基板表面の不純物濃度の高めた分離拡散
層とからなる素子分離領域を形成している。厚い絶縁膜
と分離拡散層は素子分離の目的からある許容範囲におい
て整合して形成する必要がある。
In MIS type semiconductor integrated circuits, element isolation consists of a thick insulating film and an isolation diffusion layer with a high impurity concentration on the surface of the semiconductor substrate below the insulating film in order to isolate each element that makes up the integrated circuit. forming an area. The thick insulating film and the isolation diffusion layer must be formed in alignment within a certain tolerance for the purpose of device isolation.

上述した素子分離領域は従来より次のような方法によっ
て形成されている。即ち、半導体基板(例えばp型シリ
コン基板)上に耐酸化性膜を堆積した後、素子分離領域
に対応するfit酸化性膜を選択的て除去して開孔部を
形成する。つづいて、耐酸化性膜をマスクとして基板と
同→電型の不純物を前記開孔部を通した基板にドーピン
グした後、同耐酸化性膜をマスクとし、て熱酸化処理を
施し、前記開孔部に対応する基板表面に厚い酸化膜を形
成する。こうした方法によシ、第2図に示すようKp型
シリコン基板1に素子分離領域となる厚い酸化膜2及び
p型分離拡散層3が互に自己整合的く形成される。
The above-mentioned element isolation region has conventionally been formed by the following method. That is, after depositing an oxidation-resistant film on a semiconductor substrate (for example, a p-type silicon substrate), the fit oxidation film corresponding to the element isolation region is selectively removed to form an opening. Next, using the oxidation-resistant film as a mask, impurities of the same → electrical type as the substrate are doped into the substrate through the openings, and then thermal oxidation treatment is performed using the oxidation-resistant film as a mask, and then A thick oxide film is formed on the substrate surface corresponding to the hole. By this method, as shown in FIG. 2, a thick oxide film 2 serving as an element isolation region and a p-type isolation diffusion layer 3 are formed on a Kp-type silicon substrate 1 in a mutually self-aligned manner.

ところで、素子の微細化【伴ない素子分離領域も微細化
され、分離性能を維持する目的で分離拡散層のa度を更
に高くする必要が生じる。
By the way, with the miniaturization of elements, the element isolation regions are also miniaturized, and it becomes necessary to further increase the a degree of the isolation diffusion layer in order to maintain isolation performance.

しかしながら、前述し丸方法で素子分離領域を形成した
後、同第2図に示すように厚い酸化膜2をマスクとして
n 型のソース、ドレイン領域4,5を形成するため、
ソース、ドレイン領域4,5とp型の分離拡散層3とが
接して接合6を形成する。この時、分離拡散層30a度
を高めると、接合6の耐圧が低下するため、分離拡散層
3の濃度はソース、ドレイン領域4,5の1度に対して
独立【高めることができない。
However, after forming the element isolation regions using the circular method described above, the n-type source and drain regions 4 and 5 are formed using the thick oxide film 2 as a mask as shown in FIG.
The source and drain regions 4 and 5 are in contact with the p-type isolation diffusion layer 3 to form a junction 6. At this time, if the isolation diffusion layer 30a is increased by 1 degree, the breakdown voltage of the junction 6 is lowered, so that the concentration of the isolation diffusion layer 3 cannot be increased independently with respect to 1 degree of the source and drain regions 4 and 5.

このようなことから、第3図(jt s (b+に示す
方法が提案されている(%公昭59−47471号)。
For this reason, the method shown in FIG. 3 has been proposed (% Publication No. 59-47471).

まず、p型シリコン基板11上に酸化膜12を介して耐
酸化性膜13t−堆積した後、写真蝕刻法により除去し
て第1の開孔部14を形成する。つづいて、再度、写真
蝕刻法により第1の開孔部I4から露出する酸化FJX
12を除去して前記開孔部14の内側面よシ所定距離は
なれた第2の開孔部I5を形成する(第3fJ(a1図
示)。次いで、耐酸化性膜13及び酸化膜12をマスク
としてp型不純物を第2の開孔部15を通して基板1ノ
にドーピングした後、耐酸化性膜13をマスクとして熱
酸化して厚い酸化膜16を形成すると共に、p型分離拡
散層17を形成する。この後、耐酸化性1413及び酸
化膜12を除去し、厚い酸化膜16をマスクとしてn型
不純物を基板11にドーピングすることによシ同図(b
)に示すようにp型分離拡散層17と離間したn 型の
ソース、ドレイン領域18゜19を形成する。しかしな
がら、かかる方法は2回の写真蝕刻法を採用するため、
前述した選択酸化法の特徴の一つである厚い酸化膜16
と分離拡散層17との自己整合性が犠牲になる欠点があ
る。
First, an oxidation-resistant film 13t is deposited on a p-type silicon substrate 11 via an oxide film 12, and then removed by photolithography to form a first opening 14. Next, the oxidized FJX is exposed from the first opening I4 by photolithography again.
12 is removed to form a second opening I5 spaced a predetermined distance from the inner surface of the opening 14 (3fJ (a1 shown)).Then, the oxidation-resistant film 13 and the oxide film 12 are masked. After doping p-type impurities into the substrate 1 through the second opening 15, a thick oxide film 16 is formed by thermal oxidation using the oxidation-resistant film 13 as a mask, and a p-type isolation diffusion layer 17 is formed. After that, the oxidation resistance 1413 and the oxide film 12 are removed, and the substrate 11 is doped with n-type impurities using the thick oxide film 16 as a mask.
), n-type source and drain regions 18 and 19 are formed separated from the p-type isolation diffusion layer 17. However, since this method employs two photo-etching methods,
The thick oxide film 16 is one of the characteristics of the selective oxidation method described above.
There is a drawback that self-alignment between the layer and the isolation diffusion layer 17 is sacrificed.

〔発明の目的〕[Purpose of the invention]

本発明は、厚い酸化膜と分離拡散層との自己整合性を損
なうことなく、ソース、ドレイン領域と前記分離拡散層
を離間して形成し、ソース。
According to the present invention, the source and drain regions and the isolation diffusion layer are formed apart from each other without impairing the self-alignment between the thick oxide film and the isolation diffusion layer.

ドレイン耐圧を維持したまま分離拡散層の211度を高
めることを可能とし、更に選択酸化時において所定の厚
い酸化膜を形成し得る半導体装置の製造方法を提供しよ
うとするものである。
It is an object of the present invention to provide a method for manufacturing a semiconductor device that makes it possible to increase the temperature of the isolation diffusion layer by 211 degrees while maintaining the drain breakdown voltage, and also makes it possible to form a predetermined thick oxide film during selective oxidation.

〔発明の概要〕[Summary of the invention]

本発明は、第14屯型の半導体基板上に酸化膜を介して
耐酸化性膜を堆積する工程と、この耐酸化性@を選択的
に除去して開孔部を形成する工程と、との開孔部の内側
面に多結晶シリコンの壁体を形成する工程と、前記耐酸
化性膜と壁体をマスクとして第1導1型の不純物を前記
半導体&板にドーピングする工程と、前記壁体を除去し
た後、耐酸化性膜が存在する領域を除く半導体基板表面
を選択酸化して厚い酸化aを形成する工程と、前記耐酸
化性膜を除去した後、厚い酸化膜をマスクとして前記半
導体基板表面に第2導゛(型の不純物をドーピングして
ソース。
The present invention includes a step of depositing an oxidation-resistant film on a 14th layer type semiconductor substrate via an oxide film, and a step of selectively removing the oxidation-resistant film to form an opening. forming a polycrystalline silicon wall on the inner surface of the opening; doping the semiconductor and board with a first conductive type 1 impurity using the oxidation-resistant film and the wall as a mask; After removing the wall, selectively oxidizing the surface of the semiconductor substrate except for the area where the oxidation-resistant film is present to form a thick oxide a, and after removing the oxidation-resistant film, using the thick oxide film as a mask. The surface of the semiconductor substrate is doped with a second conductive type impurity to form a source.

ドレイン領域を形成する工程とを具備したことを%徹と
するものである。かかる本発明によれば、厚い酸化膜と
5+離拡散層との自己整合性を損なうことなく、ソース
、ドレイン領域と剖記分離拡散層を離間して形成し、ソ
ース、ドレイン耐圧を維持したま゛ま分眉拡敬層の濃度
を高めることを可能とし、更に選択酸化時において所定
の厚い酸化膜を形成し得る。
The method is characterized in that it includes a step of forming a drain region. According to the present invention, the source and drain regions and the anatomical isolation diffusion layer are formed apart from each other without impairing the self-alignment between the thick oxide film and the 5+ isolation diffusion layer, and the source and drain breakdown voltages are maintained. This makes it possible to increase the concentration of the eyebrow expanding layer, and furthermore, it is possible to form a predetermined thick oxide film during selective oxidation.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図f、1〜(c+を多照し
て説明する。
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1f and 1 to (c+).

まず、p型シリコン基板2)を順化して、その表面に例
えばノソさ100OA  の酸化膜22を形成した後、
全面に例えば厚さ2000A’の耐酸化性膜としてシリ
コン窒化膜23を堆積した。つづいて、フォトエツチン
グ技術によりシリコン窒化膜23を選択的に除去して開
孔部24を形成した後、全面に例えば厚さ3500八〇
の多結晶シリコン膜25を堆石費し之(第1図(a)図
示)。
First, after acclimating the p-type silicon substrate 2) and forming an oxide film 22 with a thickness of, for example, 100 OA on its surface,
A silicon nitride film 23 was deposited as an oxidation-resistant film to a thickness of, for example, 2000 A' over the entire surface. Subsequently, the silicon nitride film 23 is selectively removed using photoetching technology to form an opening 24, and then a polycrystalline silicon film 25 with a thickness of, for example, 3,500 mm is deposited on the entire surface (first step). Figure (a) shown).

次いで、多結晶シリコン胆25をリアクティブイオンエ
ツチング等の異方性エツチングを行なうととてよシリコ
ン窒化膜23の開孔部内周側面にg3sooA’の多結
晶シリコンからなる壁体26を形成した。つづいて、シ
リコン窒化EM23及び壁体26をマスクとしてゾロン
をイオン注入し、活性化して濃度IQ”CIrL−”の
p型分離拡散層27を形成した(同図(b)図示)。
Next, the polycrystalline silicon layer 25 was subjected to anisotropic etching such as reactive ion etching to form a wall 26 made of polycrystalline silicon of g3sooA' on the inner peripheral side surface of the opening of the silicon nitride film 23. Subsequently, zolon was ion-implanted using the silicon nitride EM 23 and the wall 26 as a mask, and was activated to form a p-type isolation diffusion layer 27 with a concentration IQ "CIrL-" (as shown in FIG. 12(b)).

次いで、多結晶シリコンの壁体26t−ケミカルドライ
エツチング等の等方性エツチングにより除去した後、シ
リコン窒化膜23t−耐酸化性マスクとして露出するシ
リコン墓仮2Iを選択酸化して淳い酸化膜28t−形成
した。つづいて、図示しないダート酸化膜、ダート磁極
を形成した後、該ダート電極及び厚い酸化膜28をマス
クとしてn型不純物、例えば砒素を基板21にイオン注
入し、活性化してn 型のソース、ドレイン領域29,
3θを形成しMOS)ランジスタを製造した(同IN(
C)図示)0しかして、本発明によればシリコン窒化膜
23の開孔部24内周側面に多結晶シリコンの壁体26
を形成し、該シリコン窒化膜23及び壁体26をマスク
としてボロンのイオン注入、活性化によりシリコン基板
21表面にp型分離拡散l1i27を形成し、しかる後
壁体26の除去、シリコン窒化膜23をマスクとした選
択酸化することにより、p型分離拡散層27と自己整置
的に厚い酸化膜28を形成すると共に、該厚い酸化膜2
8の端部と拡散層27の端部を所望距離はなれてそれら
を形成できる。つまり、それら端部間を壁体26の約幅
分はなれさせることができる。その結果、厚い酸化膜2
8をマスクとして形成したソース、ドレイン領域29 
、30と分離拡散層27とを離間できるため、ソース。
Next, after removing the polycrystalline silicon wall 26t by isotropic etching such as chemical dry etching, the silicon nitride film 23t and the silicon grave 2I exposed as an oxidation-resistant mask are selectively oxidized and removed, and the oxide film 28t is removed. - formed. Subsequently, after forming a dirt oxide film and a dirt magnetic pole (not shown), using the dirt electrode and thick oxide film 28 as a mask, n-type impurities such as arsenic are ion-implanted into the substrate 21 and activated to form n-type sources and drains. Area 29,
A 3θ MOS) transistor was manufactured (the same IN(
C) As shown) According to the present invention, the polycrystalline silicon wall 26 is formed on the inner peripheral side of the opening 24 of the silicon nitride film 23.
Using the silicon nitride film 23 and the wall 26 as a mask, boron ions are implanted and activated to form a p-type isolation diffusion l1i27 on the surface of the silicon substrate 21, and then the wall 26 is removed and the silicon nitride film 23 is removed. By performing selective oxidation using .
8 and the end of the diffusion layer 27 can be separated from each other by a desired distance. In other words, the ends can be separated by about the width of the wall 26. As a result, a thick oxide film 2
Source and drain regions 29 formed using 8 as a mask
, 30 and the separation diffusion layer 27 can be separated from each other.

ドレイン耐圧を維持し九まま、分離拡散fi12vの濃
度を独立して高めることができるため、トランジスタ特
性を損なうことなく微細化できる。
Since the concentration of the isolation diffusion fi12v can be increased independently while maintaining the drain breakdown voltage, miniaturization can be achieved without impairing the transistor characteristics.

また、壁体26を多結晶シリコンからなり、分離拡散層
27の形成後のエツチング除去に際し、シリコン窒化膜
23の開孔部24周辺のエツチングを招くことなく選択
的に除去できるため、シリコン窒化膜23を耐酸化性マ
スクとして選択酸化することにより、所期寸法の厚い酸
化膜28を精度よく、かつ再現性よく形成できる。
Further, since the wall body 26 is made of polycrystalline silicon and can be selectively removed without causing etching around the opening 24 of the silicon nitride film 23 during etching removal after the separation diffusion layer 27 is formed, the silicon nitride film By performing selective oxidation using 23 as an oxidation-resistant mask, a thick oxide film 28 having a desired size can be formed with high precision and high reproducibility.

なお、シリコン窒化膜の厚ざは上記数値(2000A’
)に限定されず、1000〜3000A0の範囲にすれ
ばよい。この理由は、シリコン窒化膜の厚さを100O
A°未滴にすると、耐酸化性マスクとして機能が不充分
となり、かといって3000A0t−越えると酸化時に
おいてシリコン基板に加わる応力歪が大きくなる。
Note that the thickness of the silicon nitride film is based on the above value (2000A'
), but may be in the range of 1000 to 3000A0. The reason for this is that the thickness of the silicon nitride film is 100O
If A° is not dropped, the function as an oxidation-resistant mask will be insufficient, and on the other hand, if it exceeds 3000A0t-, the stress strain applied to the silicon substrate during oxidation will increase.

また、多結晶シリコン膜の厚さは分離拡散層の端部と厚
い酸化膜の端部との離間距離を決定する壁体の幅に相当
するため、トランジスタの設計寸法に応じて例えば10
00〜5000Aの範囲に設定すればよい。
In addition, since the thickness of the polycrystalline silicon film corresponds to the width of the wall that determines the distance between the end of the isolation diffusion layer and the end of the thick oxide film, it is necessary to
What is necessary is just to set it in the range of 00-5000A.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればソース。 As detailed above, according to the present invention, the sauce.

ドレイン耐圧を維持したまま、高性能、微細な素子分離
領域を有する半導体装IXの!A造方法を提供できる。
Semiconductor device IX with high performance and fine element isolation area while maintaining drain breakdown voltage! We can provide A construction method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(C)は本発明の実施例におけるMOS
トランジスタの製造工程?示す断面図、第2図は従来法
によシJIiIaさQ fcM OS )ランジスタの
断面図、第3図(a) 、 (blは従来の他のMOS
)ランジスタの製造工程を示す断面図である。 21・・・p 型’i ’Jコン基板、23・・・シリ
コン窒化膜、24・・・開孔部、26・・・壁体、27
・・・p型分離波紋領域、28・・・厚い酸化膜、29
.30・・・ソース、ドレイン領域。 出願人代理人  弁理士 鈴 江 武 彦C) 第2図 手続補正書(方式) 1、事件の表示 特願昭60−269650号 2、発明の名称 半導体装置の製造方法 3、 捕1ビをすると゛ 71i:件との関係特許出願人 ・ (307)  株式会社 東芝 4、代理人 住す1 東京都港区虎ノ門1丁1.I261Tr 5 
’;  第17森ビル〒105   電話0:((!’
102) :(l 81 (大代表)昭和61年2月2
5日 6、i+市正の勾′父 図面        、1t) 7、補正の内容 図面第3図の図番号を別紙に未配したように訂正する。 °1
FIG. 1 (al to (C)) shows MOS in the embodiment of the present invention.
Transistor manufacturing process? Figure 2 is a cross-sectional view of a conventional MOS transistor, Figure 3 (a), (bl is another conventional MOS
) FIG. 2 is a cross-sectional view showing the manufacturing process of the transistor. 21... P type 'i' J-con board, 23... Silicon nitride film, 24... Opening part, 26... Wall body, 27
... p-type isolation ripple region, 28 ... thick oxide film, 29
.. 30... Source, drain region. Applicant's representative Patent attorney Takehiko Suzue C) Figure 2 Procedural amendment (method) 1. Indication of the case Japanese Patent Application No. 1983-269650 2. Name of the invention Method for manufacturing semiconductor devices 3. Arrest 1 Related Patent Applicant: (307) Toshiba Corporation 4, Agent Residence 1 1-1 Toranomon, Minato-ku, Tokyo. I261Tr 5
'; 17th Mori Building 〒105 Telephone 0: ((!'
102) :(l 81 (Major Representative) February 2, 1986
5th, 6, i + Ichimasa's original drawing, 1t) 7. Contents of the amendment The figure number of Figure 3 of the drawing is corrected so that it is not attached to the attached sheet. °1

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板上に酸化膜を介して耐酸化性膜
を堆積する工程と、この耐酸化性膜を選択的に除去して
開孔部を形成する工程と、この開孔部の内側面に多結晶
シリコンからなる壁体を形成する工程と、前記耐酸化性
膜と壁体をマスクとして第1導電型の不純物を前記半導
体基板にドーピングする工程と、前記壁体を除去した後
、耐酸化性膜が存在する領域を除く半導体基板表面を選
択酸化して厚い酸化膜を形成する工程と、前記耐酸化性
膜を除去した後、厚い酸化膜をマスクとして前記半導体
基板表面に第2導電型の不純物を選択的にドーピングし
てソース、ドレイン領域を形成する工程とを具備したこ
とを特徴とする半導体装置の製造方法。
A step of depositing an oxidation-resistant film on a semiconductor substrate of a first conductivity type via an oxide film, a step of selectively removing the oxidation-resistant film to form an opening, and a step of forming an opening in the opening. a step of forming a wall made of polycrystalline silicon on an inner surface; a step of doping the semiconductor substrate with an impurity of a first conductivity type using the oxidation-resistant film and the wall as a mask; and after removing the wall. , forming a thick oxide film by selectively oxidizing the surface of the semiconductor substrate except for the region where the oxidation-resistant film is present; 1. A method of manufacturing a semiconductor device, comprising the step of selectively doping impurities of two conductivity types to form source and drain regions.
JP26965085A 1985-11-30 1985-11-30 Manufacture of semiconductor device Pending JPS62128542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26965085A JPS62128542A (en) 1985-11-30 1985-11-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26965085A JPS62128542A (en) 1985-11-30 1985-11-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62128542A true JPS62128542A (en) 1987-06-10

Family

ID=17475302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26965085A Pending JPS62128542A (en) 1985-11-30 1985-11-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62128542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259384A (en) * 1992-02-28 1993-10-08 Nec Corp Semiconductor device
JPH05283519A (en) * 1992-03-31 1993-10-29 Nec Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05259384A (en) * 1992-02-28 1993-10-08 Nec Corp Semiconductor device
JPH05283519A (en) * 1992-03-31 1993-10-29 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JP2002176173A (en) Semiconductor device and manufacturing method therefor
JP2730535B2 (en) Method for manufacturing semiconductor device
KR100232197B1 (en) Method of manufacturing semiconductor device
JPS62128542A (en) Manufacture of semiconductor device
JPH08181223A (en) Manufacture of semiconductor device
JPH11186401A (en) Manufacture of semiconductor device
US6013554A (en) Method for fabricating an LDD MOS transistor
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH06216333A (en) Manufacture of semiconductor storage device
JPS5866358A (en) Semiconductor device and manufacture thereof
JP3226252B2 (en) Method for manufacturing semiconductor device
JPH05343419A (en) Semiconductor device
JPH0410564A (en) Semiconductor integrated circuit device and manufacture thereof
JPS6156448A (en) Manufacture of complementary semiconductor device
JP2556618B2 (en) Method for manufacturing field effect semiconductor device
JPH07201967A (en) Manufacture of semiconductor device
JPH09260590A (en) Semiconductor device and manufacture thereof
JPS6254959A (en) Manufacture of mis semiconductor device
JP3279827B2 (en) Method for manufacturing MOS type semiconductor device
JPS61166154A (en) Manufacture of mis type semiconductor device
JPS61170064A (en) Manufacture of mis type field transistor
JPS63308385A (en) Manufacture of buried-gate field-effect transistor
JPH06188259A (en) Manufacture of semiconductor device
JPH04113632A (en) Manufacture of semiconductor device
JPS62293636A (en) Manufacture of semiconductor device