JPS6258675B2 - - Google Patents

Info

Publication number
JPS6258675B2
JPS6258675B2 JP57026241A JP2624182A JPS6258675B2 JP S6258675 B2 JPS6258675 B2 JP S6258675B2 JP 57026241 A JP57026241 A JP 57026241A JP 2624182 A JP2624182 A JP 2624182A JP S6258675 B2 JPS6258675 B2 JP S6258675B2
Authority
JP
Japan
Prior art keywords
film
hydrogen
amorphous
hydrogen concentration
hydrogenated silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57026241A
Other languages
Japanese (ja)
Other versions
JPS58142582A (en
Inventor
Yosha Takeda
Shinji Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57026241A priority Critical patent/JPS58142582A/en
Publication of JPS58142582A publication Critical patent/JPS58142582A/en
Publication of JPS6258675B2 publication Critical patent/JPS6258675B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/095Devices sensitive to infrared, visible or ultraviolet radiation comprising amorphous semiconductors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Image-Pickup Tubes, Image-Amplification Tubes, And Storage Tubes (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 本発明は、非晶質水素化シリコン光導電膜に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to amorphous hydrogenated silicon photoconductive films.

非晶質水素化シリコン作成方法には、CVD
法、プラスマCVD法、反応性スパツタ法、イオ
ンプレーテイング法等がある。非晶質水素化シリ
コンは化学的に活性な水素を含む反応によつて形
成される。このため、たとえば透明電極のような
水素に対して反応を示す基板では損傷(ダメー
ジ)が多く、多くの界面準位を発生したり、さら
にはピンホール、はがれ、表面の凹が発生する。
膜形成初期の損傷は後に形成される膜の特性に大
きく影響を与える。基板表面近くの膜は水素の量
が少ない膜の方が基板から受ける影響は小さい。
しかし、非晶質水素化シリコンはある程度の水素
量が膜内に入りこむことにより光導電等の特性が
良好となる。
CVD is a method for creating amorphous hydrogenated silicon.
method, plasma CVD method, reactive sputtering method, ion plating method, etc. Amorphous hydrogenated silicon is formed by reactions involving chemically active hydrogen. For this reason, substrates that react with hydrogen, such as transparent electrodes, are often damaged, resulting in the generation of many interface states, as well as pinholes, peeling, and surface depressions.
Damage during the initial stage of film formation greatly affects the properties of the film formed later. Films near the substrate surface that contain less hydrogen are less affected by the substrate.
However, amorphous hydrogenated silicon has good properties such as photoconductivity when a certain amount of hydrogen enters the film.

非晶質水素化シリコンの製造時における水素圧
力、基板温度とその特性の関係を反応性スパツタ
法による場合を例にして説明する。マグネトロン
形スパツタ装置においてSi多結晶をターゲツトと
し、Ar圧力5×10-3Torr放電パワー200Wとして
ガラス基板上のIo2O3に非晶質水素化シリコンを
形成する。このときの基板温度Tsと水素分圧PH
によるピンホールの発生の様子を第1図に示
す。基板温度Tsが高いほどピンホールの発生が
少なくなるのがわかる。基板温度Tsが高いと非
晶質水素化シリコン中の水素量は減少する。また
水素分圧が大きくなるとピンホールが発生しやす
くなる。
The relationship between hydrogen pressure, substrate temperature, and characteristics during the production of amorphous hydrogenated silicon will be explained using a reactive sputtering method as an example. Using a magnetron type sputtering device, amorphous silicon hydride is formed on I o 2 O 3 on a glass substrate using an Ar pressure of 5×10 -3 Torr and a discharge power of 200 W using a Si polycrystal as a target. Substrate temperature T s and hydrogen partial pressure P H at this time
FIG. 1 shows how pinholes occur due to No. 2 . It can be seen that the higher the substrate temperature T s , the fewer pinholes occur. As the substrate temperature T s increases, the amount of hydrogen in the amorphous hydrogenated silicon decreases. Furthermore, as the hydrogen partial pressure increases, pinholes are more likely to occur.

以上のことから、基板温度がTsが高いほど、
また水素分圧PH2小さいほどピンホールの発生が
なくなつてくることがわかる。このことは、膜中
の水素量が少ないほどピンホールの発生が少ない
ことを示している。
From the above, the higher the substrate temperature Ts , the
It can also be seen that the smaller the hydrogen partial pressure P H2 is, the less pinholes occur. This shows that the smaller the amount of hydrogen in the film, the fewer pinholes will occur.

本発明の非晶質水素化シリコン光導電膜は上記
の2点、すなわち非晶質水素化シリコンはある程
度の水素を含有しないと良好な光導電特性が得ら
れないこと、および水素の含有量が少ないほどピ
ンホール等の膜欠陥が少なくなること、を勘案し
てなされたものである。すなわち、本発明の非晶
質水素化シリコンは、膜欠陥に大きく影響する基
板側の第1の非晶質水素化シリコンの水素含有量
を、前記第1の非晶質水素化シリコン上に形成さ
れる第2の非晶質水素化シリコンの水素含有量よ
りも少なくしたものである。
The amorphous hydrogenated silicon photoconductive film of the present invention has the above-mentioned two points: the amorphous hydrogenated silicon cannot obtain good photoconductive properties unless it contains a certain amount of hydrogen; This was done taking into consideration that the smaller the number, the fewer film defects such as pinholes will occur. That is, the amorphous hydrogenated silicon of the present invention is formed on the first amorphous hydrogenated silicon by reducing the hydrogen content of the first amorphous hydrogenated silicon on the substrate side, which greatly affects film defects. The hydrogen content is lower than that of the second amorphous hydrogenated silicon.

本発明の実施例における非晶質水素化シリコン
光導電膜を用いて構成した撮像管ターゲツトのバ
ンド状態を第2図a,bに示す。第2図aは非晶
質水素化シリコンの水素濃度が基板上の透明電極
1から厚みDのところで、階段的に増加する場合
を示し、第2図bは非晶質水素化シリコンの水素
濃度が透明電極1より遠ざかるにつれて直線的に
増加する場合のバンド図を示す。なお、これらの
図において実線は透明電極1に正に印加をした場
合のバンド図を示し、点線は透明電極1に電圧印
加のない場合のバンド図を示している。第2図a
の場合、水素濃度の小さい非晶質水素化シリコン
2に比べて水素濃度の大なる第2の非晶質水素化
シリコン3をもうけることにより、電極4からの
電子の注入を阻止し、良好な特性の光導電膜とな
る。
The band states of an image pickup tube target constructed using an amorphous hydrogenated silicon photoconductive film in an embodiment of the present invention are shown in FIGS. 2a and 2b. Figure 2a shows the case where the hydrogen concentration of amorphous hydrogenated silicon increases stepwise at a thickness D from the transparent electrode 1 on the substrate, and Figure 2b shows the hydrogen concentration of amorphous hydrogenated silicon. A band diagram is shown in which the value linearly increases as the distance from the transparent electrode 1 increases. In these figures, the solid line shows a band diagram when a positive voltage is applied to the transparent electrode 1, and the dotted line shows a band diagram when no voltage is applied to the transparent electrode 1. Figure 2a
In this case, by providing a second amorphous silicon hydride 3 with a higher hydrogen concentration than the amorphous silicon hydride 2 with a lower hydrogen concentration, the injection of electrons from the electrode 4 is blocked and a good result is obtained. It becomes a photoconductive film with special characteristics.

また第2図bの場合、非晶質水素化シリコン5
の水素量を直線的に増加させているためバンドギ
ヤツプは徐々に増大し、光によつて光導電膜内に
励起された電子、正孔は内部電界によつて分離し
やすくなり、良好な光導電特性を示す。
In addition, in the case of FIG. 2b, amorphous hydrogenated silicon 5
Since the amount of hydrogen in the photoconductive film is linearly increased, the band gap gradually increases, and the electrons and holes excited in the photoconductive film by light are easily separated by the internal electric field, resulting in good photoconductivity. Show characteristics.

以上のようにあらかじめピンホールの発生しな
い水素濃度の非晶質水素化シリコンを形成し、そ
の後所望の水素量の非晶質シリコンを形成した非
晶質水素化シリコン光導電膜によりピンホールが
少なくかつ光導電特性のすぐれた撮像管ターゲツ
トが得られる。
As described above, amorphous silicon hydride is formed in advance with a hydrogen concentration that does not generate pinholes, and then amorphous silicon with a desired amount of hydrogen is formed on the amorphous silicon hydride photoconductive film, which results in fewer pinholes. Moreover, an image pickup tube target with excellent photoconductive properties can be obtained.

なお、第2図aのように表面側に水素濃度の大
きい層3をもうけることにより透明電極1と反対
側の電極4からのキヤリアの注入を阻止し、暗電
流を減少させることができる。さらに第2図bの
ように光導電膜内の水素濃度を透明電極1より遠
ざかるにつれて増加させることにより光導電膜内
に内部電界をつくり、励起された電子、正孔の分
離を良くし、光導電特性が良くなる。
By providing a layer 3 with a high hydrogen concentration on the surface side as shown in FIG. 2a, injection of carriers from the electrode 4 on the opposite side to the transparent electrode 1 can be prevented and dark current can be reduced. Furthermore, as shown in FIG. 2b, by increasing the hydrogen concentration within the photoconductive film as it moves away from the transparent electrode 1, an internal electric field is created within the photoconductive film, which improves the separation of excited electrons and holes. Improves conductive properties.

以下本発明の実施例をさらに具体的に示す。 Examples of the present invention will be described in more detail below.

実施例 1 第3図に示すようにマグネトロンスパツタ装置
でガラス基板31上の透明電極Io2O332上に基
板温度200℃アルゴン圧力PAr=5×10-3Torr、
放電電力200Wの条件で水素分圧PH2=2×
10-3Torrで10分間水素濃度の比較的小さい光導
電膜33の形成を行なつた後水素分圧PH2=8×
10-3Torrを導入して60分間水素濃度の比較的大
きい光導電膜34の形成を行なうとピンホールの
ない良好な光導電膜が1μmの厚さで得られた。
Example 1 As shown in FIG. 3, a transparent electrode I o2 O 3 32 on a glass substrate 31 is placed on a transparent electrode I o2 O 3 on a glass substrate 31 using a magnetron sputtering device at a substrate temperature of 200°C and an argon pressure P Ar =5×10 -3 Torr.
Under the condition of discharge power 200W, hydrogen partial pressure P H2 = 2×
After forming the photoconductive film 33 with a relatively low hydrogen concentration at 10 -3 Torr for 10 minutes, the hydrogen partial pressure P H2 =8×
When 10 -3 Torr was introduced and a photoconductive film 34 having a relatively high hydrogen concentration was formed for 60 minutes, a good photoconductive film with a thickness of 1 μm without pinholes was obtained.

実施例 2 同様に第3図に示すようにマグネトロンスパツ
タ装置でガラス基板31上の透明電極SnO232
上に基板温度及250℃、PAr=3×10-3Torr、PH
=1×10-3Torr、放電電力300Wの条件で70分間
非晶質水素化シリコン33を形成後、基板温度
200℃に低下して10分間水素濃度の大きい膜34
を形成する。最後に電極Sb2S335を形成して撮
像管ターゲツトを形成する。透明電極32を正に
して電圧を印加した場合の電圧―電流特性を第4
図に示す。同図より明らかなように、実施例2の
撮像管ターゲツトは従来の撮像管ターゲツトと比
べる光電流はわずかしか変化しないが、暗電流は
水素濃度の大きい光導膜34のある本実施例の場
合は、ない場合に比較して暗電流は減少してい
る。
Example 2 Similarly, as shown in FIG. 3, a transparent electrode SnO 2 32 was formed on a glass substrate 31 using a magnetron sputtering device.
Above is the substrate temperature and 250℃, P Ar = 3 × 10 -3 Torr, P H
After forming amorphous silicon hydride 33 for 70 minutes under conditions of 2 = 1 × 10 -3 Torr and discharge power of 300 W, the substrate temperature
Membrane 34 with high hydrogen concentration for 10 minutes after being lowered to 200℃
form. Finally, an electrode Sb 2 S 3 35 is formed to form an image pickup tube target. The voltage-current characteristics when voltage is applied with the transparent electrode 32 positive are shown in the fourth graph.
As shown in the figure. As is clear from the figure, in the image pickup tube target of Example 2, the photocurrent changes only slightly compared to the conventional image pickup tube target, but in the case of this example with the light guide film 34 having a high hydrogen concentration, the dark current changes. , the dark current is reduced compared to the case without it.

実施例 3 この実施例ではプラズマCVD法によつて傾斜
型にバンドギヤツプの変化する光導電膜を作る。
すなわち反応炉を真空にした後、SiH4とH2の混
合ガスを導入し、圧力1Torrとする。ここでPsiH
/(PsiH4+PH2)0.1、放電電力5Wとして非晶
質水素化シリコンの膜形成を行なう。このとき第
5図に示すように基板温度を高いところから低下
させる実線のプログラムAで膜形成を行なつた場
合と、基板温度をしだいに増加させるプログラム
Bで膜形成を行つた場合を比較した。基板温度を
しだいに増加させると基板側ほど光導電膜の水素
濃度が小さくなり堆積した膜からの水素の離脱が
あり、多くのピンホールが発生した。しかし、基
板温度を低下させて光導電膜の水素濃度を膜厚方
向にしだいに増加するようにして膜作成をすると
ピンホールフリーの良質の傾斜型バンドギヤツプ
を有する膜が得られた。
Example 3 In this example, a photoconductive film having a bandgap that changes in an inclined manner is produced by plasma CVD.
That is, after the reactor is evacuated, a mixed gas of SiH 4 and H 2 is introduced to bring the pressure to 1 Torr. Here P siH
4 /(P siH4 +P H2 )0.1 and a discharge power of 5 W to form a film of amorphous silicon hydride. At this time, as shown in Figure 5, a comparison was made between the case where film formation was performed using program A shown by the solid line, which lowers the substrate temperature from a high temperature, and the case where film formation was performed using program B, which gradually increases the substrate temperature. . When the substrate temperature was gradually increased, the hydrogen concentration in the photoconductive film became smaller toward the substrate, and hydrogen was removed from the deposited film, resulting in many pinholes. However, by lowering the substrate temperature and gradually increasing the hydrogen concentration in the photoconductive film in the direction of the film thickness, a pinhole-free film with a high quality inclined bandgap was obtained.

なお、実施例2のように水素濃度の小さい光導
電膜33に不純物、例えばリンPをドープしてP
層にした場合さらに、膜欠陥の発生を防止する効
果は大きくなる。
Note that, as in Example 2, the photoconductive film 33 with a low hydrogen concentration is doped with an impurity, for example, phosphorus P.
When formed into a layer, the effect of preventing film defects from occurring is even greater.

以上説明したように本発明の非晶質水素化シリ
コン光導電膜は、ピンホール等の膜欠陥を防止で
きかつ良好な光導電特性を示すものであり、撮像
管ターゲツトの形成に最適のものである。
As explained above, the amorphous hydrogenated silicon photoconductive film of the present invention can prevent film defects such as pinholes and exhibits good photoconductive properties, making it ideal for forming image pickup tube targets. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は水素圧力、基板温および非晶質水素化
シリコン光導電膜のピンホール発生度合いの関係
を示す図、第2図a,bはそれぞれ本発明の実施
例における非晶質水素化シリコン光導電膜のエネ
ルギーバンドを示す図、第3図は本発明の実施例
における非晶質水素化シリコン光導電膜を用いた
撮像管ターゲツトの断面図、第4図は本発明の実
施例における撮像管ターゲツトの電圧―電流特性
を示す図、第5図は基板温度によつて光導電膜の
水素濃度を変化させる方法を示す図である。 31…ガラス基板、1,32…透明電極、2,
33…水素濃度の小さい光導電膜、3,34…水
素濃度の大きい光導電膜、4…電極。
FIG. 1 is a diagram showing the relationship between hydrogen pressure, substrate temperature, and the degree of pinhole generation in an amorphous hydrogenated silicon photoconductive film, and FIG. A diagram showing energy bands of a photoconductive film, FIG. 3 is a cross-sectional view of an image pickup tube target using an amorphous hydrogenated silicon photoconductive film in an embodiment of the present invention, and FIG. 4 is a diagram showing an image pickup in an embodiment of the present invention. FIG. 5 is a diagram showing the voltage-current characteristics of the tube target, and is a diagram showing a method of changing the hydrogen concentration of the photoconductive film depending on the substrate temperature. 31... Glass substrate, 1, 32... Transparent electrode, 2,
33... Photoconductive film with low hydrogen concentration, 3, 34... Photoconductive film with high hydrogen concentration, 4... Electrode.

Claims (1)

【特許請求の範囲】 1 基板上の透明電極上に形成され、前記透明電
極に接触して形成された第1の非晶質水素化シリ
コンと前記第1の非晶質水素化シリコン上に形成
され前記第1の非晶質水素化シリコンより水素濃
度が大きい第2の非晶質水素化シリコンとからな
ることを特徴とする非晶質水素化シリコン光導電
膜。 2 非晶質水素化シリコン膜の水素濃度が厚み方
向にそつて線形に増加することを特徴とする特許
請求の範囲第1項記載の非晶質水素化シリコン光
導電膜。
[Scope of Claims] 1. A first amorphous silicon hydride formed on a transparent electrode on a substrate and in contact with the transparent electrode, and a first amorphous silicon hydride formed on the first amorphous silicon hydride. and a second amorphous silicon hydride having a higher hydrogen concentration than the first amorphous silicon hydride. 2. The amorphous hydrogenated silicon photoconductive film according to claim 1, wherein the hydrogen concentration of the amorphous hydrogenated silicon film increases linearly along the thickness direction.
JP57026241A 1982-02-19 1982-02-19 Amorphous silicon hydride photo conductive film Granted JPS58142582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57026241A JPS58142582A (en) 1982-02-19 1982-02-19 Amorphous silicon hydride photo conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57026241A JPS58142582A (en) 1982-02-19 1982-02-19 Amorphous silicon hydride photo conductive film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63233012A Division JPH01164074A (en) 1988-09-16 1988-09-16 Manufacture of amorphous silicon photoconductive film

Publications (2)

Publication Number Publication Date
JPS58142582A JPS58142582A (en) 1983-08-24
JPS6258675B2 true JPS6258675B2 (en) 1987-12-07

Family

ID=12187800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57026241A Granted JPS58142582A (en) 1982-02-19 1982-02-19 Amorphous silicon hydride photo conductive film

Country Status (1)

Country Link
JP (1) JPS58142582A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090342A (en) * 1983-10-25 1985-05-21 Matsushita Electric Ind Co Ltd Production of photoconductor
US4855950A (en) * 1987-04-17 1989-08-08 Kanegafuchi Chemical Industry Company, Limited Optical storage apparatus including a reversible, doping modulated, multilayer, amorphous element
JP2535184B2 (en) * 1987-10-29 1996-09-18 松下電器産業株式会社 Photoelectric conversion device

Also Published As

Publication number Publication date
JPS58142582A (en) 1983-08-24

Similar Documents

Publication Publication Date Title
US5336623A (en) Process for producing integrated solar cell
KR860001163B1 (en) Thin solar cell
KR100659044B1 (en) Solar cell with zinc oxide thin film and fabricating method thereof
EP0117980B1 (en) Process for forming passivation film on photoelectric conversion device and the device produced thereby
US5419783A (en) Photovoltaic device and manufacturing method therefor
US4339470A (en) Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer
Isomura et al. Device-grade amorphous silicon prepared by high-pressure plasma
JPS6258675B2 (en)
US4531015A (en) PIN Amorphous silicon solar cell with nitrogen compensation
JPH01201968A (en) Photoelectric conversion device
US4451538A (en) High hydrogen amorphous silicon
US4680607A (en) Photovoltaic cell
US5278015A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film
JP2550888B2 (en) Solar cell
JPH0458192B2 (en)
JPH0312973A (en) Amorphous thin film solar cell
JP2775460B2 (en) Manufacturing method of amorphous solar cell
JPH0364973A (en) Photovoltaic element
JPH022183A (en) Photocell applicable at low light level
KR930011356B1 (en) Amorphous silicon solar battery and making method thereof
JP2822358B2 (en) Manufacturing method of thin film solar cell
JPH01161777A (en) Manufacture of amorphous semiconductor solar cell
JPH0548127A (en) Amorphous silicon solar battery and its manufacture
JPH0445991B2 (en)
US5258207A (en) Amorphous silicon film, its production and photo semiconductor device utilizing such a film