JP2550888B2 - Solar cell - Google Patents

Solar cell

Info

Publication number
JP2550888B2
JP2550888B2 JP5264611A JP26461193A JP2550888B2 JP 2550888 B2 JP2550888 B2 JP 2550888B2 JP 5264611 A JP5264611 A JP 5264611A JP 26461193 A JP26461193 A JP 26461193A JP 2550888 B2 JP2550888 B2 JP 2550888B2
Authority
JP
Japan
Prior art keywords
layer
electrode
solar cell
amorphous
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5264611A
Other languages
Japanese (ja)
Other versions
JPH07122761A (en
Inventor
謙 筒井
猛志 渡辺
信一 村松
克 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5264611A priority Critical patent/JP2550888B2/en
Publication of JPH07122761A publication Critical patent/JPH07122761A/en
Application granted granted Critical
Publication of JP2550888B2 publication Critical patent/JP2550888B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光電変換素子の一つであ
る太陽電池に係り、特に、優れた発電特性を示す太陽電
池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell which is one of photoelectric conversion elements, and more particularly to a solar cell which exhibits excellent power generation characteristics.

【0002】[0002]

【従来の技術】従来のSi系非晶質太陽電池の例として
は、特開平1‐211980号公報に見られるように、
基板上に第1の電極を備え、この上にn、i、pの順に
半導体を形成し、さらに第2の電極を備えた太陽電池が
ある。非晶質シリコンを用いた従来の典型的な太陽電池
の断面構造を図2に示す。まず、基板1上にテクスチャ
構造が形成された電極2、その上に光反射率の良好な電
極4として例えば銀電極を形成する。ここで、銀は下地
への接着力が小さいので、接着層として、電極2と電極
4との間に電極3例えばCr、Ti、Moなどを挿入す
る。次に、半導体中に銀が混入することを防ぐため、電
極5例えば酸化錫あるいは酸化亜鉛など透明な導電膜を
形成する。この上に、n層7さらにi層9及びp層10
をプラズマCVD(以下、P‐CVDと略称する)によ
って成膜する。さらに、この上に第2の電極22として
酸化錫などの透明導電膜を形成して太陽電池が作製され
る。
2. Description of the Related Art As an example of a conventional Si-based amorphous solar cell, as disclosed in Japanese Unexamined Patent Publication No. 1-211980,
There is a solar cell including a first electrode on a substrate, a semiconductor formed on the substrate in the order of n, i, and p, and further including a second electrode. Conventional typical solar cell using amorphous silicon
The cross-sectional structure of is shown in FIG. First, the texture on the board 1
The electrode 2 having a structure formed thereon, and the electrode having a good light reflectance on the electrode 2.
For example, a silver electrode is formed as the pole 4. Where silver is the base
Since the adhesive strength to the
Insert electrode 3 such as Cr, Ti, Mo between 4 and
It Next, in order to prevent silver from entering the semiconductor,
Pole 5 A transparent conductive film such as tin oxide or zinc oxide
Form. On top of this, the n layer 7, the i layer 9 and the p layer 10 are formed.
By plasma CVD (hereinafter abbreviated as P-CVD)
To form a film. Further, as a second electrode 22 on this
A solar cell is manufactured by forming a transparent conductive film such as tin oxide.
It

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来構
成の太陽電池においては、特性が不十分であったり、動
作寿命中に特性の劣化を生じるなどの問題点があった。
However, the solar cell having the conventional structure has problems such as insufficient characteristics and deterioration of characteristics during the operating life.

【0004】従来から、n層は低抵抗であることが望ま
れ、そのために、n層を微結晶化することが推奨されて
きた。そのため、P‐CVD法による非晶質シリコン太
陽電池では微結晶n層を用いて特性の向上を図ってきて
いる。n層の微結晶化は、P‐CVDにおいては、例え
ばモノシランにホスフィンと水素とを混合した気相中で
成膜する方法が採られていた。特に微結晶化のために
は、気相中の水素を多くすることと、印加するRF電力
を大きくすることが必要である。すなわち、還元性雰囲
気中でその反応をより激しくするように大電力を投入す
ることが行われる。この際、電極4及び電極5が微結晶
n層中に混入する。電極5は本来電極4が微結晶n層中
に混入することを防ぐものであるが、微結晶n層の成膜
条件が強い還元性であることから、酸化錫あるいは酸化
亜鉛などが還元され、錫あるいは亜鉛がn層中に混入す
るものである。さらに、電極5はその光学的膜厚を制御
しており、通常80nm程度の膜厚で極めて薄く、電極
4の完全な被覆は困難で、銀もn層中に混入するという
問題が、従来の太陽電池の特性を不十分なものとしてい
た。また、微結晶膜あるいはCVD膜では凹凸が激しい
と膜に微細なクラックが発生しやすく、これが漏洩電流
を生じ、特性の低下を招く結果となっていた。本発明の
目的は、上記従来技術の有していた課題を解決して、優
れた発電特性を示す太陽電池を提供することにある。
Conventionally, it is desired that the n layer has a low resistance.
Therefore, it is recommended to microcrystallize the n-layer.
Came. Therefore, the amorphous silicon layer formed by the P-CVD method is used.
In the positive battery, we have tried to improve the characteristics by using a microcrystalline n-layer.
I have. Micro-crystallization of n-layer is an example in P-CVD.
For example, in a gas phase in which monosilane is mixed with phosphine and hydrogen.
The method of forming a film has been adopted. Especially for microcrystallization
Increase the amount of hydrogen in the gas phase and the applied RF power
It is necessary to increase. That is, a reducing atmosphere
Apply high power to make the reaction more intense in the air
Is done. At this time, the electrodes 4 and 5 are microcrystalline.
It is mixed in the n-layer. The electrode 5 is originally the electrode 4 in the microcrystalline n layer.
The formation of microcrystalline n layer
Since the conditions are strongly reducing, tin oxide or
Zinc is reduced and tin or zinc is mixed in the n layer.
It is something. Furthermore, the electrode 5 controls its optical thickness.
The thickness of the electrode is usually about 80 nm and is extremely thin.
It is difficult to completely cover 4 and silver is also mixed in the n-layer.
The problem is that the characteristics of conventional solar cells are insufficient.
It was In addition, the microcrystalline film or the CVD film has severe irregularities.
It is easy for minute cracks to occur in the film and this is the leakage current.
Occurs, resulting in deterioration of characteristics. An object of the present invention is to solve the problems of the above-mentioned conventional techniques and to provide a solar cell exhibiting excellent power generation characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的は、基板上に第
1の電極を備え、該電極上にn、i、pの順に半導体層
を形成し、さらに第2の電極を設けてなり、かつ上記第
1の電極は上記基板側からテクスチャ電極、接着層、銀
電極および透明電極が積層した構造を有するSi系非晶
質太陽電池において、上記n層が、上記第1の電極に接
する部分では非晶質n層であり、その上に微結晶n層を
形成し、さらにその上に非晶質n層を形 してなる層で
る太陽電池とすることによって達成することができ
る。
SUMMARY OF THE INVENTION The above object is provided with a first electrode on a substrate, a semiconductor layer formed n, i, in the order of p on the electrode, Ri further name provided second electrode , And above
The first electrode is a textured electrode, an adhesive layer, and silver from the above substrate side.
In a Si-based amorphous solar cell having a structure in which an electrode and a transparent electrode are laminated , the n layer is an amorphous n layer in a portion in contact with the first electrode, and a microcrystalline n layer is formed on the amorphous n layer. and it can be achieved by a further amorphous n-layer shape formed by a layer comprising <br/> Oh Ru solar cell thereon.

【0006】[0006]

【作用】発明においては(図3参照)、微結晶n層の
成膜の前に、弱い還元性雰囲気の下で非晶質n層6を成
膜し、これが、電極5の還元を防ぐとともに、電極5と
相補的に電極4がn層中に混入することを防いでいる。
非晶質n層6の成膜条件は例えばモノシランとホスフィ
ンと水素の混合した気相中ではあるが、印加電力は特に
低電力で成膜できるため、弱い還元性雰囲気中でn層が
形成される。また、非晶質であることから、滑らかな膜
が形成されるため、下地の被覆はより完全になされる。
そのため、この上に堆積される膜にはクラックの生じる
ことがなく漏洩電流を低減することができる。この上に
微結晶n層7を形成し、併せてn層とすることで、n層
中への電極材料の混入を防ぐとともに、低抵抗n層を形
成することができ、特性の優れた太陽電池を実現するこ
とができる。さらには、微結晶n層7ではホスフィンか
ら取り入れられた燐が過剰にあり、この上にi層9を成
膜すると、僅かではあるが、i層9中に燐が拡散してく
る。本発明では、微結晶n層7とi層9との間に非晶質
n層8を挿入して、i層9中に燐が拡散することを防
でいる。
In the present invention (see FIG. 3) , the amorphous n-layer 6 is formed under a weak reducing atmosphere before forming the microcrystalline n-layer, which prevents the reduction of the electrode 5. At the same time, the electrode 4 and the electrode 4 are prevented from being mixed in the n layer in a complementary manner.
The film formation condition of the amorphous n layer 6 is, for example, in a gas phase in which monosilane, phosphine, and hydrogen are mixed, but since the applied power can be particularly low, the n layer is formed in a weak reducing atmosphere. It Further, since it is amorphous, a smooth film is formed, so that the underlying coating is more complete.
Therefore, a crack is not generated in the film deposited thereon, and the leakage current can be reduced. By forming the microcrystalline n layer 7 on this and also forming the n layer, it is possible to prevent the mixture of the electrode material into the n layer and to form the low resistance n layer, which is a solar cell with excellent characteristics. A battery can be realized. Further , in the microcrystalline n-layer 7, phosphorus taken in from phosphine is excessive, and when the i-layer 9 is formed on this, phosphorus diffuses into the i-layer 9 though it is slight. In the present invention, by inserting the amorphous n-layer 8 between the microcrystalline n-layer 7 and the i layer 9, anti physician that phosphorus is diffused into the i layer 9
In.

【0007】なお、非晶質n層の好ましい膜厚は、電極
材料の還元防止及び電極材料の半導体中への混入防止の
上からは、少なくとも2nmは必要である。さらに、漏
洩電流低減のためにはより厚い方が、微細なクラック発
生を防ぐ効果があり、好ましい。しかし、膜厚が厚くな
るに従い非晶質n層の膜厚方向の電気抵抗が大きくなり
過ぎることにより太陽電池の特性低下を招くことから、
膜厚の上限は30nmである。
The preferable thickness of the amorphous n-layer is at least 2 nm in order to prevent the reduction of the electrode material and the mixing of the electrode material into the semiconductor. Furthermore, in order to reduce the leakage current, a thicker layer is preferable because it has an effect of preventing the generation of fine cracks. However, as the film thickness increases, the electrical resistance in the film thickness direction of the amorphous n-layer becomes too large, which causes deterioration of the characteristics of the solar cell.
The upper limit of the film thickness is 30 nm.

【0008】[0008]

【実施例】以下、本発明構成の太陽電池について、実施
例によって具体的に説明する。
EXAMPLES Hereinafter, the solar cell having the constitution of the present invention will be specifically described with reference to Examples.

【0009】〔実施例1 発明太陽電池の実施例について、図3を用いて説明
する。
[0009] An embodiment of Example 1 the present invention the solar cell will be described with reference to FIG.

【0010】まず、サンプル基板1上に酸化錫による凹
凸膜を作り、テクスチャ電極2を形成した。次に、電子
線加熱蒸着法によってTiを、さらに連続して銀を、そ
れぞれ膜厚100nm及び1μm堆積して電極3と電極
4とを形成した。さらに、電子線蒸着法により酸化亜鉛
を80nm堆積して透明電極5を形成した。これで、電
極2、3、4及び5によって第1の電極21を構成し
た。次に、この試料について、P‐CVD法により、ま
ずモノシランを1ccm、濃度0.1%のホスフィン
(水素ベース)を60ccmそれぞれを真空チャンバに
流し、圧力が60Paになるように制御しながら、基板
を250℃に加熱し、RF電力を平方センチ当り20m
Wの電力密度で印加して、膜厚10nmの非晶質n層6
を形成した。引続き、モノシランを1ccm、濃度0.
1%ホスフィン(水素ベース)を50ccm、水素を5
0ccmそれぞれを真空チャンバへ流し、圧力が60P
aになるように制御しながら、基板を250℃に加熱
し、RF電力を平方センチ当り0.5Wの電力密度で印
加して、微結晶n層7を膜厚30nm堆積した。
First, a textured electrode 2 was formed by forming an uneven film of tin oxide on the sample substrate 1. Then, electrodes 3 and 4 were formed by depositing Ti and silver successively in a thickness of 100 nm and 1 μm by an electron beam heating vapor deposition method, respectively. Further, a transparent electrode 5 was formed by depositing zinc oxide to a thickness of 80 nm by an electron beam evaporation method. Thus, the electrodes 2, 3, 4 and 5 constitute the first electrode 21. Next, with respect to this sample, by using P-CVD, monosilane of 1 ccm and phosphine (hydrogen base) having a concentration of 0.1% of 60 ccm were flown into the vacuum chamber, respectively, while controlling the pressure to 60 Pa, Is heated to 250 ° C and the RF power is 20m per square centimeter.
Amorphous n layer 6 having a film thickness of 10 nm is applied at a power density of W.
Was formed. Subsequently, monosilane was added at a concentration of 1 ccm and a concentration of 0.
1% phosphine (hydrogen base) 50 ccm, hydrogen 5
Flowing 0 ccm each into the vacuum chamber, pressure is 60P
While controlling the temperature to be a, the substrate was heated to 250 ° C. and RF power was applied at a power density of 0.5 W per square centimeter to deposit the microcrystalline n layer 7 with a film thickness of 30 nm.

【0011】引続き、モノシランを1ccm、濃度0.
1%ホスフィン(水素ベース)を60ccmそれぞれを
真空チャンバに流し、圧力が60Paになるように制御
しながら、基板を250℃に加熱し、RF電力を平方セ
ンチ当り20mWの電力密度で印加して、膜厚5nmの
非晶質n層8を形成した。次に、P‐CVDにより、モ
ノシランを10ccm流し、圧力が20Paになるよう
に制御しながら、基板を200℃になるように加熱し、
RF電力を平方センチ当り10mWの電力密度で印加し
て、i層9を堆積した。次に、通常のP‐CVD法によ
りP層10を形成し、さらにこの上に電子線蒸着法によ
り酸化錫を80nm堆積して透明な第2の電極22を形
成した。
Subsequently, monosilane was added at 1 ccm and a concentration of 0.
60% of 1% phosphine (hydrogen base) was flown into the vacuum chamber, the substrate was heated to 250 ° C. while controlling the pressure to 60 Pa, and RF power was applied at a power density of 20 mW per square centimeter, An amorphous n layer 8 having a film thickness of 5 nm was formed. Next, by P-CVD, monosilane was caused to flow at 10 ccm and the substrate was heated to 200 ° C. while controlling the pressure to 20 Pa,
RF power was applied at a power density of 10 mW per square centimeter to deposit i-layer 9. Next, a P layer 10 was formed by a normal P-CVD method, and tin oxide was deposited thereon to a thickness of 80 nm by an electron beam evaporation method to form a transparent second electrode 22.

【0012】このようにして、図3に示したような太陽
電池を完成した。得られた太陽電池の特性を測定した結
果、良好な特性を示した。
In this way, the solar cell as shown in FIG. 3 was completed. As a result of measuring the characteristics of the obtained solar cell, good characteristics were shown.

【0013】次に、本発明の参考例として、非晶質n層
を2層とせず第1の電極21側にのみに形成し、かつそ
の膜厚を2nmとした場合および30nmとした場合の
太陽電池を、各々参考例1,2として示す。
Next, as a reference example of the present invention, an amorphous n-layer
Is formed only on the first electrode 21 side without forming two layers, and
The film thickness of 2 nm and 30 nm
The solar cells are shown as Reference Examples 1 and 2, respectively.

【0014】〔参考例1参考例1の 太陽電池について図1を用いて説明する。[0014] Reference Example 1 with the solar cell of Example 1 will be described with reference to FIG.

【0015】まず、サンプル基板上に酸化錫による凹凸
膜を作り、テクスチャ電極2を形成した。次に、電子線
加熱蒸着法によってTiを、さらに連続して銀をそれぞ
れ膜厚50nm及び1μm堆積して電極3と電極4とを
形成した。さらに、電子線蒸着法により酸化亜鉛を80
nm堆積して透明電極5を形成した。これで、電極2、
3、4及び5によって第1の電極21を構成した。次
に、この試料について、P‐CVD法により、モノシラ
ンを1ccm、濃度0.1%のホスフィン(水素ベー
ス)40ccmを真空チャンバへ流し、圧力が50Pa
になるように制御しながら、基板を200℃に加熱し、
RF電力を平方センチ当り20mWの電力密度で印加し
て、非晶質n層6(a‐Si(n))を2nmの膜厚に
形成した。引き続き、モノシランを1ccm、濃度0.
1%ホスフィン(水素ベース)を20ccm、水素を4
0ccmそれぞれを真空チャンバへ流し、圧力が50P
aになるように制御しながら、基板を200℃に加熱
し、RF電力を平方センチ当り0.4Wの電力密度で印
加して、微結晶n層7を膜厚30nm堆積した。次に、
P‐CVDにより、モノシランを10ccm流し、圧力
が20Paになるように制御しながら、基板を200℃
に加熱し、RF電力を平方センチ当り10mWの電力密
度で印加して、i層9を膜厚400nm堆積した。次
に、通常のP‐CVD法によりp層10を形成し、さら
にこの上に電子線蒸着法により酸化錫を80nm堆積し
て、透明な第2の電極22を形成した。
First, a textured electrode 2 was formed by forming an uneven film of tin oxide on a sample substrate. Next, the electrode 3 and the electrode 4 were formed by depositing Ti and silver successively in a film thickness of 50 nm and 1 μm respectively by an electron beam heating vapor deposition method. In addition, zinc oxide is added to 80 by electron beam evaporation method.
nm to form a transparent electrode 5. Now the electrode 2,
The first electrode 21 was composed of 3, 4 and 5. Next, with respect to this sample, 1 ccm of monosilane and 40 ccm of phosphine (hydrogen base) having a concentration of 0.1% were caused to flow into the vacuum chamber by the P-CVD method, and the pressure was 50 Pa.
Heating the substrate to 200 ° C.
RF power was applied at a power density of 20 mW / cm 2 to form an amorphous n layer 6 (a-Si (n)) with a film thickness of 2 nm. Subsequently, monosilane was added at 1 ccm and a concentration of 0.
1% phosphine (hydrogen base) 20 ccm, hydrogen 4
Flowing each 0 ccm into the vacuum chamber, pressure is 50P
While controlling the temperature to be a, the substrate was heated to 200 ° C. and RF power was applied at a power density of 0.4 W per square centimeter to deposit a microcrystalline n layer 7 with a film thickness of 30 nm. next,
The substrate is heated to 200 ° C while controlling the pressure to 20 Pa by flowing monosilane by 10 ccm by P-CVD.
Then, the i layer 9 was deposited to a thickness of 400 nm by applying RF power at a power density of 10 mW per square centimeter. Next, a p-layer 10 was formed by a normal P-CVD method, and tin oxide was deposited thereon to a thickness of 80 nm by an electron beam evaporation method to form a transparent second electrode 22.

【0016】このようにして、図1に示したような太陽
電池を完成した。この後、モジュールにするため、必要
に応じて、外部に電気エネルギを取り出すための引出電
極などを形成するが、本発明の主旨とは関連が薄いので
説明は省略する。このようにして得られた太陽電池に疑
似太陽光を照射して特性を測定した結果、良好な特性を
示した。
In this way, the solar cell as shown in FIG. 1 was completed. Thereafter, in order to form a module, an extraction electrode or the like for extracting electric energy to the outside is formed if necessary, but the description is omitted because it is not related to the gist of the present invention. As a result of irradiating the solar cell thus obtained with pseudo sunlight and measuring the characteristics, good characteristics were shown.

【0017】〔参考例2参考例2の 太陽電池について、図1を用いて説明する。[0017] Reference Example 2 with the solar cell of Example 2 will be described with reference to FIG.

【0018】まず、サンプル基板1上に酸化錫による凹
凸膜を作り、テクスチャ電極2を形成した。次に、電子
線加熱蒸着法によってTiを、さらに連続して銀を、そ
れぞれ膜厚50nm及び1μm堆積して電極3と電極4
とを形成した。さらに、電子線蒸着法により酸化亜鉛を
80nm堆積して透明な電極5を形成した。これで、電
極2、3、4及び5によって第1の電極21を構成し
た。次に、この試料をP‐CVD法により、まずモノシ
ランを1ccm、濃度0.1%ホスフィン(水素ベー
ス)を40ccmそれぞれを真空チャンバへ流し、圧力
が50Paになるように制御しながら、基板を200℃
に加熱し、RF電力を平方センチ当り20mWの電力密
度で印加して、膜厚30nmの非晶質n層6を形成し
た。続いて、モノシランを1ccm、濃度0.1%ホス
フィン(水素ベース)を20ccm、水素を40ccm
それぞれを真空チャンバへ流し、圧力が50Paになる
ように制御しながら、基板を200℃に加熱し、RF電
力を平方センチ当り0.4Wの電力密度で印加して、微
結晶n層7を堆積した。次に、ECR‐CVDにより、
モノシランを10ccm流し、圧力が5Paになるよう
に制御しながら、基板を250℃に加熱し、RF電力を
平方センチ当り2Wの電力密度で印加して、i層9を堆
積した。次に、通常のP‐CVD法によりp層10を形
成し、さらにこの上に電線蒸着法により酸化錫を80n
m堆積して透明な第2の電極22を形成した。
First, a textured electrode 2 was formed by forming an uneven film of tin oxide on the sample substrate 1. Next, electrode 3 and electrode 4 were formed by depositing Ti and silver successively by electron beam heating vapor deposition to a thickness of 50 nm and 1 μm, respectively.
And formed. Further, a transparent electrode 5 was formed by depositing zinc oxide to a thickness of 80 nm by an electron beam evaporation method. Thus, the electrodes 2, 3, 4 and 5 constitute the first electrode 21. Next, this sample was subjected to P-CVD method by flowing monosilane at 1 ccm and phosphine (hydrogen base) at a concentration of 0.1% at 40 ccm respectively into a vacuum chamber, and controlling the pressure to 50 Pa, and the substrate was heated to 200 ℃
Then, RF power was applied at a power density of 20 mW / cm 2 to form an amorphous n-layer 6 having a film thickness of 30 nm. Then, 1 ccm of monosilane, 20 ccm of phosphine (hydrogen base) with a concentration of 0.1%, and 40 ccm of hydrogen.
Flowing each into a vacuum chamber, heating the substrate to 200 ° C. while controlling the pressure to 50 Pa, and applying RF power at a power density of 0.4 W per square centimeter to deposit the microcrystalline n-layer 7. did. Next, by ECR-CVD,
The monolayer was flown at 10 ccm, the substrate was heated to 250 ° C. while controlling the pressure to 5 Pa, and RF power was applied at a power density of 2 W per square centimeter to deposit the i layer 9. Next, a p-layer 10 is formed by a normal P-CVD method, and tin oxide of 80 n is further formed on the p-layer 10 by an electric wire evaporation method.
Then, a transparent second electrode 22 was formed.

【0019】このようにして、図1に示した太陽電池を
完成した。得られた太陽電池に疑似太陽光を照射して特
性を測定した結果、良好な特性を示した
Thus, the solar cell shown in FIG. 1 was completed. As a result of irradiating the obtained solar cell with pseudo-sunlight and measuring the characteristics, good characteristics were shown .

【0020】[0020]

【発明の効果】以上述べてきたように、太陽電池を本発
明構成の太陽電池とすることによって、従来技術の有し
ていた課題を解決して、優れた発電特性を示す太陽電池
を提供することができた
As described above, by using a solar cell having the constitution of the present invention as a solar cell, the problems of the prior art are solved and a solar cell exhibiting excellent power generation characteristics is provided. I was able to .

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明太陽電池の参考例の構成を示す断面図。FIG. 1 is a sectional view showing the configuration of a reference example of a solar cell of the present invention.

【図2】従来の太陽電池の構成を示す断面図。FIG. 2 is a cross-sectional view showing the configuration of a conventional solar cell.

【図3】本発明太陽電池の実施例の構成を示す断面
3 is a cross-sectional view showing the structure of an embodiment of the present invention the solar cell.

【符号の説明】[Explanation of symbols]

1…基板、2、3、4、5…電極、6…非晶質n層、7
…微結晶n層 8…非晶質n層、9…i層、10…p層、21…第1の
電極、22…第2の電極。
1 ... Substrate, 2, 3, 4, 5 ... Electrode, 6 ... Amorphous n layer, 7
Microcrystalline n layer 8 Amorphous n layer, 9 i layer, 10 p layer, 21 first electrode, 22 second electrode.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 克 茨城県日立市大みか町七丁目1番1号 株式会社日立製作所日立研究所内 (56)参考文献 特開 平2−218175(JP,A) 特開 昭61−135167(JP,A) 特開 昭61−224368(JP,A) 特開 昭63−194372(JP,A) 特開 昭62−35680(JP,A) 特開 昭61−292377(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsura Tamura 7-1-1, Omika-cho, Hitachi-shi, Ibaraki Hitachi Research Laboratory, Hitachi, Ltd. (56) Reference JP-A-2-218175 (JP, A) Kai 61-135167 (JP, A) JP 61-224368 (JP, A) JP 63-194372 (JP, A) JP 62-35680 (JP, A) JP 61-292377 (JP JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に第1の電極を備え、該電極上に
n、i、pの順に半導体層を形成し、さらに第2の電極
を設けてなり、かつ上記第1の電極は上記基板側からテ
クスチャ電極、接着層、銀電極および透明電極が積層し
た構造を有するSi系非晶質太陽電池において、上記n
層が、上記第1の電極に接する部分では非晶質n層であ
り、その上に微結晶n層を形成し、さらにその上に非晶
質n層を形成してなる層であることを特徴とする太陽電
池。
1. A first electrode is provided on a substrate, and the first electrode is provided on the electrode.
A semiconductor layer is formed in the order of n, i, p, and a second electrode is formed.
And the first electrode is connected to the substrate from the substrate side.
Cu electrode, adhesive layer, silver electrode and transparent electrode
In a Si-based amorphous solar cell having a different structure
The layer is an amorphous n-layer in the portion in contact with the first electrode.
A microcrystalline n layer is formed on the
Characterized by forming a high quality n layer
pond.
JP5264611A 1993-10-22 1993-10-22 Solar cell Expired - Fee Related JP2550888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5264611A JP2550888B2 (en) 1993-10-22 1993-10-22 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5264611A JP2550888B2 (en) 1993-10-22 1993-10-22 Solar cell

Publications (2)

Publication Number Publication Date
JPH07122761A JPH07122761A (en) 1995-05-12
JP2550888B2 true JP2550888B2 (en) 1996-11-06

Family

ID=17405736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5264611A Expired - Fee Related JP2550888B2 (en) 1993-10-22 1993-10-22 Solar cell

Country Status (1)

Country Link
JP (1) JP2550888B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3294097B2 (en) * 1996-02-14 2002-06-17 三菱重工業株式会社 Amorphous semiconductor solar cell
WO2005109526A1 (en) * 2004-05-12 2005-11-17 Kaneka Corporation Thin film photoelectric converter
JP5400322B2 (en) * 2008-05-30 2014-01-29 株式会社カネカ Silicon-based thin film solar cell and method for manufacturing the same
JP2012124395A (en) * 2010-12-10 2012-06-28 Fuji Electric Co Ltd Method and apparatus of manufacturing thin film solar cell, and thin film solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61135167A (en) * 1984-12-05 1986-06-23 Sharp Corp Thin-film solar cell
JPS61224368A (en) * 1985-03-28 1986-10-06 Sharp Corp Semiconductor device
JPS61292377A (en) * 1985-06-19 1986-12-23 Nippon Denso Co Ltd Amorphous silicon photo-cell
JPS6235680A (en) * 1985-08-09 1987-02-16 Toa Nenryo Kogyo Kk Amorphous silicon solar battery and manufacture of the same
JPS63194372A (en) * 1987-02-09 1988-08-11 Fuji Electric Co Ltd Amorphous photoelectric conversion device
JP2735862B2 (en) * 1989-02-17 1998-04-02 三洋電機株式会社 Photovoltaic element

Also Published As

Publication number Publication date
JPH07122761A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
JP6980079B2 (en) Solar cell
US6566159B2 (en) Method of manufacturing tandem thin-film solar cell
JP4032610B2 (en) Non-single crystal thin film solar cell manufacturing method
WO2005109526A1 (en) Thin film photoelectric converter
JP2550888B2 (en) Solar cell
CN218788382U (en) High-efficiency heterojunction solar cell
CN114171623A (en) Heterojunction solar cell and manufacturing method thereof
JP4903940B2 (en) Method for manufacturing tandem thin film solar cell
CN212848452U (en) Heterojunction solar cell
JP2675754B2 (en) Solar cell
JP4562220B2 (en) Thin film solar cell
CN114171633A (en) Heterojunction solar cell and manufacturing method thereof
JP4618694B2 (en) Method for manufacturing tandem thin film solar cell
CN114156361A (en) Heterojunction solar cell and manufacturing method thereof
CN212848451U (en) Heterojunction solar cell
CN213184315U (en) Heterojunction solar cell
CN212725337U (en) Heterojunction solar cell
CN212648257U (en) Heterojunction solar cell
CN217606831U (en) High-efficiency heterojunction solar cell
JP2002237609A (en) Method of manufacturing tandem thin-film solar cell
CN212648258U (en) Heterojunction solar cell
JP4220014B2 (en) Method for forming thin film solar cell
CN212783485U (en) Heterojunction solar cell
TW202337041A (en) Solar cell and method for forming the same
JP2000208787A (en) Solar battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees