JPS63194372A - Amorphous photoelectric conversion device - Google Patents

Amorphous photoelectric conversion device

Info

Publication number
JPS63194372A
JPS63194372A JP62027906A JP2790687A JPS63194372A JP S63194372 A JPS63194372 A JP S63194372A JP 62027906 A JP62027906 A JP 62027906A JP 2790687 A JP2790687 A JP 2790687A JP S63194372 A JPS63194372 A JP S63194372A
Authority
JP
Japan
Prior art keywords
layer
type
back electrode
electrode
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62027906A
Other languages
Japanese (ja)
Inventor
Takashi Yoshida
隆 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP62027906A priority Critical patent/JPS63194372A/en
Publication of JPS63194372A publication Critical patent/JPS63194372A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To take an ohmic contact excellently between a photoelectric conversion layer and a back electrode even when the back electrode is formed by a printed electrode, cost of which is low, by forming a back electrode layer by printing and baking conductive paste and interposing a crystallite semiconductor layer between the back electrode layer and an armophous semiconductor layer. CONSTITUTION:A transparent conductive film 2 is shaped onto a glass light- transmitting substrate 1, a p-type a-SiC:H layer 34 to which boron is doped, an i-type a-Si:H layer 32 and an n-type a-Si:H layer 33 to which phosphorus is doped are formed onto the film 2 in succession, and an n-type muc-Si:H layer 7, in a film of which microcrystalline particles are included and which has excellent conductivity, is shaped onto the layer 33 as a contact layer. A first printed electrode layer 81 through the printing and baking of carbon paste is formed onto the n-type muc-Si:H layer 7 as a first conductive film layer shaping a back electrode, and a second printed electrode layer 82 through printing and backing by using silver paste is formed onto the layer 81. Accordingly, a contact resistance component is lowered by interposing the microcrystalline semiconductor layer between the printed electrode and the amorphous semiconductor layer, thus reducing cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透光性基板上に、透明電極層、光電変換層、裏
面電極層を順次積層して成り、光電変換層において非晶
質半導体を用いて吸収した光を電気に変換する非晶質光
電変換装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention consists of sequentially laminating a transparent electrode layer, a photoelectric conversion layer, and a back electrode layer on a transparent substrate, and an amorphous semiconductor is used in the photoelectric conversion layer. The present invention relates to an amorphous photoelectric conversion device that converts absorbed light into electricity using an amorphous photoelectric conversion device.

〔従来の技術〕[Conventional technology]

この種の非晶質光電変換装置の従来例を第2図に示す、
すなわち、透光性基板1の上に透明電極としての透明溝
’t#2が、さらにその上に光電変換層が形成されてい
る。この光電変換層は、非晶質シリコンa−St:Hの
p形層31.  i Iii’32. n形層33より
構成され、この上部に裏面電極層4を、また同時に透明
電極層2の露出部に端子電極5を形成したものが知られ
ている。この裏面電極層4は、Aj、 Cr、 Ag等
の金属よりなる。
A conventional example of this type of amorphous photoelectric conversion device is shown in FIG.
That is, a transparent groove 't#2 as a transparent electrode is formed on the transparent substrate 1, and a photoelectric conversion layer is further formed thereon. This photoelectric conversion layer is a p-type layer 31. of amorphous silicon a-St:H. i III'32. It is known that the device is composed of an n-type layer 33, on which a back electrode layer 4 is formed, and at the same time, a terminal electrode 5 is formed on the exposed portion of the transparent electrode layer 2. This back electrode layer 4 is made of metal such as Aj, Cr, and Ag.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の非晶質充電変換装置の裏面電極を形成する際には
、蒸着、スパフタリング等の真空形成技術を用いるため
、コスト高になるという欠点があった。そこで、この裏
面電極を導電性ペーストによる厚膜にすることによって
、印刷形成等の技術を用いることも検討されているが、
この場合には、光電変換装置の光起電力1−V特性は、
第3図の実線61で示すように金属電極を用いた場合の
特性62と明らかな差があり、a −St層と印刷電極
の間でオーム性接触が取れていないという欠点があった
When forming the back electrode of a conventional amorphous charge conversion device, vacuum forming techniques such as vapor deposition and sputtering are used, which has the disadvantage of high cost. Therefore, it is being considered to use techniques such as printing to make this back electrode a thick film made of conductive paste.
In this case, the photovoltaic power 1-V characteristic of the photoelectric conversion device is
As shown by the solid line 61 in FIG. 3, there was a clear difference in the characteristics 62 from the case of using metal electrodes, and there was a drawback that ohmic contact was not established between the a-St layer and the printed electrode.

本発明の目的は、上述の欠点を除去し、裏面電極を安価
な印刷電極で形成しても、光電変換層と裏面電極の間に
オーム性接触が良好に取れる非晶質光電変換装置を提供
することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide an amorphous photoelectric conversion device in which good ohmic contact can be made between the photoelectric conversion layer and the back electrode even when the back electrode is formed with an inexpensive printed electrode. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成するために、本発明は、透光性基板上
に透明電極層、非晶質半導体層を含む光電変換層および
裏面電極層を順次積層してなる非晶質光電変換装置にお
いて、裏面電極層が導電性ペーストの印刷、焼成により
なり、その裏面電極層と非晶質半導体層の間に微結晶半
導体層が介在するものとする。
In order to achieve the above object, the present invention provides an amorphous photoelectric conversion device in which a transparent electrode layer, a photoelectric conversion layer including an amorphous semiconductor layer, and a back electrode layer are sequentially laminated on a transparent substrate. , the back electrode layer is formed by printing and baking a conductive paste, and a microcrystalline semiconductor layer is interposed between the back electrode layer and the amorphous semiconductor layer.

〔作用〕[Effect]

非晶質半導体層と裏面電極層の間に少なくとも10Å以
上の厚さの微結晶半導体層を設けることにより、導電性
ペーストの印刷、焼成により形成される電極層と非晶質
半導体層との直接接触の際に発生する接触抵抗成分を大
幅に低減させることができる。
By providing a microcrystalline semiconductor layer with a thickness of at least 10 Å between the amorphous semiconductor layer and the back electrode layer, direct contact between the electrode layer formed by printing and baking a conductive paste and the amorphous semiconductor layer is achieved. The contact resistance component generated during contact can be significantly reduced.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示し、第2図と共通の部分
には同一の符号が付されている0通常ガラス板を用いる
透光性基板1の上に透明導電膜2を形成し、この透明導
電膜上にほう素をドープしたp形アモルファスシリコン
カーバイト (p形a−5iC: H)層34.真性半
導体層であるl形アモルファスシリコン(i形a−5t
:H)層32.りんをドープしたn形アモルファスシリ
コン(n形a−5i:H)層33を順次形成し、この上
に微結晶粒を膜中に含み導電性が良好なn形微結晶シリ
コン(n形μe−5t:H)層7をコンタクト層として
形成する*+’c  Si:Hはa−5t:H層と同様
にシランガスを用いたプラズマCVD法で形成するが、
a−5t:Hの場合10倍である水素によるシランガス
の稀釈率を20倍とし、成膜パワーをa−St:Hの場
合の2倍にする。このコンタクト層を構成するμc−5
l : Hは、膜厚が10Å以上あれば効果を発揮しは
じめ、好ましくは、30人〜10000人、最も好まし
くは、50人〜5000人の間に制御することが望まし
い、このn形μc−3t : H層7上に、裏面電極を
形成する第一導電膜層として炭素ペーストの印刷焼成に
よる第一印刷電極層81が形成される。
FIG. 1 shows an embodiment of the present invention, in which parts common to those in FIG. Then, on this transparent conductive film, a p-type amorphous silicon carbide (p-type a-5iC: H) layer 34 doped with boron. L-type amorphous silicon (I-type A-5T) which is an intrinsic semiconductor layer
:H) layer 32. An n-type amorphous silicon (n-type a-5i:H) layer 33 doped with phosphorus is sequentially formed, and on top of this a layer 33 of n-type microcrystalline silicon (n-type μe- 5t:H) layer 7 is formed as a contact layer *+'c Si:H is formed by the plasma CVD method using silane gas like the a-5t:H layer, but
The dilution rate of silane gas with hydrogen is increased to 20 times, which is 10 times in the case of a-5t:H, and the film-forming power is increased to twice that in the case of a-St:H. μc-5 constituting this contact layer
l:H begins to exhibit its effect when the film thickness is 10 Å or more, and is preferably controlled between 30 and 10,000, most preferably between 50 and 5,000. 3t: On the H layer 7, a first printed electrode layer 81 is formed by printing and baking a carbon paste as a first conductive film layer forming a back electrode.

この第一層重極層は、主にn形μc−5t:H層7との
間の接触抵抗を低減することを目的とするため横方向O
it性は重要ではない、接触抵抗の抵抗値は、光電変換
素子を流れる電流密度によりその許容限界値が決まる。
The purpose of this first heavy pole layer is mainly to reduce the contact resistance with the n-type μc-5t:H layer 7, so the lateral direction O
The resistance value of the contact resistance is not important, and its permissible limit value is determined by the current density flowing through the photoelectric conversion element.

炭素ペーストを用いた場合の接触抵抗はl−当たり3Ω
以下とすることが可能であるが、これで不十分な場合に
は、炭素ペースト中に添加剤として、In+ Mg、 
P、b+ Zn、 Sn、 Sb。
Contact resistance when using carbon paste is 3Ω per liter
The following can be used, but if this is insufficient, In+Mg,
P, b+ Zn, Sn, Sb.

Ga、 kl、 Ing03.5n02.  I To
のうちから少なくとも一つ以上を炭素ペースト中に添加
することにより、接触抵抗を1cIJ当たり1Ω以下と
することも可能である。前記第一印刷電極層81上に銀
ペーストを用いて印刷焼成によって第二印刷型i層82
が形成される。この第二電極は、横方向の導電性を確保
するために形成されシート11抗が5Ω/口以下が望ま
しいが、銀ペーストを用いるとこの値は十分に満足され
る。第4図に、本実施例の構成により太陽電池をA旧1
00mW /−のソーラーシュミレータ光を照射した場
合の[−V特性を線63により示す、光電変換効率はη
−8.7%を得ることが出来た。これに対してn形μc
−5i : Hのコンタクト層を介在させない場合には
、接触抵抗が大きいために線64に示す(−V特性を示
す、また、本実施例においてコンタクト層として形成す
るn形、uc−5i:H層7を光電変換層のp−1−n
層の1層33と共用することも可能である。なお、透明
導電膜2の露出部に形成される端子電極5も炭素ペース
トによる印刷電極層51と銀ペーストによる印刷電極5
2との積層か、らなる。
Ga, kl, Ing03.5n02. I To
By adding at least one of these to the carbon paste, it is also possible to reduce the contact resistance to 1 Ω or less per 1 cIJ. A second printed i-layer 82 is formed on the first printed electrode layer 81 by printing and baking a silver paste.
is formed. This second electrode is formed in order to ensure conductivity in the lateral direction, and it is desirable that the resistance of the sheet 11 is 5Ω/or less, and this value is fully satisfied when silver paste is used. Figure 4 shows a solar cell A old 1 with the configuration of this embodiment.
When irradiated with solar simulator light of 00 mW/-, the [-V characteristic is shown by line 63, and the photoelectric conversion efficiency is η
-8.7% was obtained. On the other hand, n-type μc
If a -5i:H contact layer is not interposed, the contact resistance is large, as shown by the line 64. Layer 7 is p-1-n of the photoelectric conversion layer.
It is also possible to share one layer 33 of the layers. Note that the terminal electrode 5 formed on the exposed portion of the transparent conductive film 2 also includes a printed electrode layer 51 made of carbon paste and a printed electrode 5 made of silver paste.
Consists of lamination with 2.

第5図は、本発明の別の実施例を示すもので、第1図に
示す実施例と異なる点は、コンタクト層を形成するn形
μc−5i : H層7が光電変換層のp−1−n層の
n層をかねている点および裏面電極を形成する印刷電極
層8が銀ペーストと炭素ペーストの混合物の印刷、焼成
により形成されている点で、第1図に示す実施例と比較
して、a−5i:Hliを一層成膜する手間および導電
ペーストを2回印刷する手間が省略可能となる利点を持
つものである。
FIG. 5 shows another embodiment of the present invention. The difference from the embodiment shown in FIG. 1 is that the n-type μc-5i:H layer 7 forming the contact layer is the Comparison with the embodiment shown in FIG. 1 in that the 1-n layer also serves as the n layer and that the printed electrode layer 8 forming the back electrode is formed by printing and firing a mixture of silver paste and carbon paste. This has the advantage that the trouble of forming one layer of a-5i:Hli and the trouble of printing conductive paste twice can be omitted.

第5図に示す実施例の単層の印刷電極N8は、モルブデ
ンペーストあるいはニッケルペーストを用いて形成する
こともできる。第6図は光電変換装置の入射光量40μ
−/−における分光感度特性を示し、実線65はMoペ
ーストを用いた印刷電極、点線66はNiペーストを用
いた印刷電極をそれぞれ微結晶シリコン層を介して設け
た場合で、11M167の蒸着M電極を微結晶シリコン
層を介して設けた場合と比較して遜色がない、一方、N
iペーストを用いた印刷電極を非晶質シリコン光電変換
層上に直接接触させた場合は、破線68に示すように感
度が低い。
The single-layer printed electrode N8 of the embodiment shown in FIG. 5 can also be formed using molybdenum paste or nickel paste. Figure 6 shows the incident light amount of the photoelectric conversion device: 40μ
-/-, the solid line 65 shows the printed electrode using Mo paste, and the dotted line 66 shows the case where the printed electrode using Ni paste is provided through the microcrystalline silicon layer. On the other hand, N
When the printed electrode using i-paste is brought into direct contact with the amorphous silicon photoelectric conversion layer, the sensitivity is low as shown by the broken line 68.

第7図は、この発明のさらに別の実施例を示すもので、
第1図の実施例と異なる点は、光電変換層の構成であり
、透明導電膜2上に、p形a−5iC: HN 34.
 i形a−3i:H層32.n形a−5L+H層33.
p形a−5i:H層31.  i形a−3l:H層32
)n形a−5i:H層33が順次形成され、この上部に
コンタクト層としてn形μc−3i : H層7が形成
される点である。この様なタンデム構造セルにおいては
、電圧が2倍となり電流が172倍となることから、抵
抗成分の制限は4倍まで広がるため、導電ペーストの有
効性が生かされる。なお、基板lより遠い側の1形a−
5i:H層32の代わりに光学ギャップ幅の狭いa −
5iGe : H膜を用いることにより、印刷電極8の
反射率が太き(ないといった欠点をおぎなうことも可能
である。
FIG. 7 shows yet another embodiment of the invention,
The difference from the embodiment shown in FIG. 1 is the structure of the photoelectric conversion layer, in which p-type a-5iC: HN 34.
i-type a-3i: H layer 32. n-type a-5L+H layer 33.
P-type a-5i: H layer 31. i-type a-3l: H layer 32
) An n-type a-5i:H layer 33 is sequentially formed, and an n-type μc-3i:H layer 7 is formed as a contact layer on top of the n-type a-5i:H layer 33. In such a tandem structure cell, the voltage is doubled and the current is 172 times as large, so the limit on the resistance component is expanded to four times, so the effectiveness of the conductive paste can be utilized. In addition, the type 1 a- on the side farther from the board l
5i: A − with a narrow optical gap width instead of the H layer 32
By using the 5iGe:H film, it is also possible to overcome the drawback that the printed electrode 8 has a thick reflectance (or lack thereof).

第8図は、この発明の異なる実施例を示すもので、第1
図の実施例と異なる点は、二層裏面電極の第二層目の印
刷電極jlE182の印刷面積が第一層目の印刷電極N
81より小さいことであり、これは第二印刷電極層82
を印刷する際に、だれが生じることによる短絡の発生を
防ぐ効果がある。
FIG. 8 shows a different embodiment of the present invention.
The difference from the example shown in the figure is that the printed area of the second layer printed electrode jlE182 of the two-layer back electrode is the same as that of the first layer printed electrode N.
81, which is smaller than the second printed electrode layer 82
This has the effect of preventing short circuits caused by someone when printing.

第9図に示す実施例では、コンタクト層としてp形μc
−3i : 8層71を用いている。非晶質シリコン層
に微結晶シリコン層が接触する場合には、導電性が異な
っても整流性が生じないのでこのような構成も可能で・
ある。
In the embodiment shown in FIG. 9, p-type μC is used as the contact layer.
-3i: 8 layers 71 are used. When a microcrystalline silicon layer is in contact with an amorphous silicon layer, this configuration is possible because rectification does not occur even if the conductivity is different.
be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高価な蒸着、スパッタリング技術によ
る金属電極の代わりに安価な導電ペーストの印刷、焼成
による電極を用いる場合に非晶質半導体層の間に生ずる
接触抵抗成分を、印刷電極と非晶質半導体層の間に微結
晶半導体層を介在させることによって低減させることが
でき、非晶質半導体装置の低価格化に極めて有効である
According to the present invention, the contact resistance component that occurs between an amorphous semiconductor layer when an inexpensive printed and fired conductive paste electrode is used instead of an expensive metal electrode made by vapor deposition or sputtering technology is reduced. This can be reduced by interposing a microcrystalline semiconductor layer between crystalline semiconductor layers, which is extremely effective in reducing the cost of amorphous semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は従来例の
断面図、第3図は第2図の装置の裏面電極の材料による
光起電力特性の差を示す電流・電圧線図、第4図は第1
図の装置における本発明の効果を示す電流・電圧線図、
第5図は本発明の別の実施例の断面図、第6図は第5図
の装置の構成における導電ペーストを変えた場合の分光
感度特性線図、第7図、第8図、第9図はそれぞれ本発
明のさらに別の実施例を示す断面図である。 1:透光性基板、2:透明導電膜、31:p形a−5i
:8層、32:1形a−5i:8層、33:n形a−3
i:8層、34:p形a−3iC:8層、7:n形μc
−3i:H層1.71:p形μc−St : H7i 
% 8 :印刷電極層、81:第一印刷電極層、82:
第二年別電極層。 第1図 第2図 第3図 電流塩L(mA/(浦2) 第4図 第5図 :L L(nrn) 第6図 第7図
Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 is a cross-sectional view of a conventional example, and Fig. 3 is a current/voltage diagram showing the difference in photovoltaic characteristics depending on the material of the back electrode of the device shown in Fig. 2. Diagram, Figure 4 is the first
A current/voltage diagram showing the effect of the present invention in the device shown in the figure,
FIG. 5 is a sectional view of another embodiment of the present invention, FIG. 6 is a spectral sensitivity characteristic diagram when the conductive paste is changed in the configuration of the device shown in FIG. 5, and FIGS. 7, 8, and 9 Each figure is a sectional view showing still another embodiment of the present invention. 1: Transparent substrate, 2: Transparent conductive film, 31: P type a-5i
: 8 layers, 32: 1 type a-5i: 8 layers, 33: n type a-3
i: 8 layers, 34: p-type a-3iC: 8 layers, 7: n-type μc
-3i: H layer 1.71: p-type μc-St: H7i
% 8: Printed electrode layer, 81: First printed electrode layer, 82:
Second year separate electrode layer. Figure 1 Figure 2 Figure 3 Current salt L (mA/(Ura 2) Figure 4 Figure 5: L L (nrn) Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1)透光性基板上に透明電極層、非晶質半導体層を含む
光電変換層および裏面電極層を順次積層してなるものに
おいて、裏面電極層が導電性ペーストの印刷、焼成によ
りなり、該裏面電極層と非晶質半導体層の間に微結晶半
導体層が介在することを特徴とする非晶質光電変換装置
。 2)特許請求の範囲第1項記載の装置において、微結晶
半導体層が10Å以上の厚さを有することを特徴とする
非晶質光電変換装置。
[Scope of Claims] 1) In a device in which a transparent electrode layer, a photoelectric conversion layer including an amorphous semiconductor layer, and a back electrode layer are sequentially laminated on a light-transmitting substrate, the back electrode layer is printed with a conductive paste. An amorphous photoelectric conversion device characterized in that it is formed by firing, and a microcrystalline semiconductor layer is interposed between the back electrode layer and the amorphous semiconductor layer. 2) An amorphous photoelectric conversion device according to claim 1, wherein the microcrystalline semiconductor layer has a thickness of 10 Å or more.
JP62027906A 1987-02-09 1987-02-09 Amorphous photoelectric conversion device Pending JPS63194372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62027906A JPS63194372A (en) 1987-02-09 1987-02-09 Amorphous photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62027906A JPS63194372A (en) 1987-02-09 1987-02-09 Amorphous photoelectric conversion device

Publications (1)

Publication Number Publication Date
JPS63194372A true JPS63194372A (en) 1988-08-11

Family

ID=12233927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62027906A Pending JPS63194372A (en) 1987-02-09 1987-02-09 Amorphous photoelectric conversion device

Country Status (1)

Country Link
JP (1) JPS63194372A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457762A (en) * 1987-08-28 1989-03-06 Kyocera Corp Photoelectric converting device
JPH0273673A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film solar battery
JPH0381647U (en) * 1989-12-08 1991-08-21
JPH07122761A (en) * 1993-10-22 1995-05-12 Hitachi Ltd Solar battery
WO2009110409A1 (en) * 2008-03-07 2009-09-11 国立大学法人東北大学 Solar cell
WO2009110403A1 (en) * 2008-03-07 2009-09-11 国立大学法人東北大学 Photoelectric conversion element structure and solar battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963774A (en) * 1982-10-05 1984-04-11 Fuji Electric Corp Res & Dev Ltd Thin-film silicon solar cell
JPS59167056A (en) * 1983-03-12 1984-09-20 Agency Of Ind Science & Technol Silicon semiconductor electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5963774A (en) * 1982-10-05 1984-04-11 Fuji Electric Corp Res & Dev Ltd Thin-film silicon solar cell
JPS59167056A (en) * 1983-03-12 1984-09-20 Agency Of Ind Science & Technol Silicon semiconductor electrode

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457762A (en) * 1987-08-28 1989-03-06 Kyocera Corp Photoelectric converting device
JPH0273673A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film solar battery
JPH0381647U (en) * 1989-12-08 1991-08-21
JPH07122761A (en) * 1993-10-22 1995-05-12 Hitachi Ltd Solar battery
WO2009110409A1 (en) * 2008-03-07 2009-09-11 国立大学法人東北大学 Solar cell
WO2009110403A1 (en) * 2008-03-07 2009-09-11 国立大学法人東北大学 Photoelectric conversion element structure and solar battery

Similar Documents

Publication Publication Date Title
US4272641A (en) Tandem junction amorphous silicon solar cells
CA1113594A (en) Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal schottky barrier
JP2740284B2 (en) Photovoltaic element
JP2589462B2 (en) Photoelectric device
US5091764A (en) Semiconductor device having a transparent electrode and amorphous semiconductor layers
CN107369726B (en) n-type crystalline silicon double-sided solar cell
US5268039A (en) Photovoltaic device including shunt preventing layer and method for the deposition thereof
JPH0793451B2 (en) Multi-junction amorphous silicon solar cell
CN108615775B (en) Interdigital back contact heterojunction monocrystalline silicon battery
CN213519988U (en) Heterojunction solar cell string
JPS63194372A (en) Amorphous photoelectric conversion device
EP0248953A1 (en) Tandem photovoltaic devices
GB2047463A (en) Amorphous silicon solar cells
JPH0658971B2 (en) Photovoltaic device manufacturing method
JPH065765B2 (en) Photoelectric conversion device
JP2680579B2 (en) Photovoltaic device
JPH0125235B2 (en)
CN213519989U (en) Heterojunction solar cell
JPH07142753A (en) Heterojunction photovoltaic apparatus
JPH0463550B2 (en)
JP2632740B2 (en) Amorphous semiconductor solar cell
CN114447125A (en) Heterojunction solar cell and manufacturing method thereof
JPS62256481A (en) Semiconductor device
JPS61135167A (en) Thin-film solar cell
JPH0586677B2 (en)