JPS61292377A - Amorphous silicon photo-cell - Google Patents

Amorphous silicon photo-cell

Info

Publication number
JPS61292377A
JPS61292377A JP60133601A JP13360185A JPS61292377A JP S61292377 A JPS61292377 A JP S61292377A JP 60133601 A JP60133601 A JP 60133601A JP 13360185 A JP13360185 A JP 13360185A JP S61292377 A JPS61292377 A JP S61292377A
Authority
JP
Japan
Prior art keywords
layer
type
amorphous silicon
cell
microcrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60133601A
Other languages
Japanese (ja)
Inventor
Kenji Maekawa
前川 謙二
Tetsuya Kato
哲也 加藤
Hideki Nakabayashi
英毅 中林
Shoichi Onda
正一 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP60133601A priority Critical patent/JPS61292377A/en
Publication of JPS61292377A publication Critical patent/JPS61292377A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Abstract

PURPOSE:To improve the conversion efficiency of an amorphous silicon photo- cell by forming an N-layer with smaller photo-absorption coefficient. CONSTITUTION:The photo-cell is manufactured by evaporating a transparent conductive film ITO2 consisting of In2O3-SnO2 on a transparent glass substrate 1, and depositing a P-type a-Si layer 3, an I-type a-Si layer 4, an N-type a-Si layer 5, and an N-type fine crystalline Si layer 6 on the ITO2 in order. An Al electrode layer 7 is formed on the N-type fine crystalline Si layer 6 by evaporation. Thus, a pin layer 30 is formed between the ITO2 and the electrode 7. The fine crystalline Si layer 6 with smaller absorption coefficient is used for the N-type layer 6 so as to reduce the absorption deficiency during the turnaround between the N-type layers 5 and 6, with larger amount of the light reintroduced into the I-layer in comparison with the case where only an N-type a-Si is used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、pin型アモルファスシリコン太陽電池(以
下pin型a−5i太陽電池とする)の変換効率向上に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to improving the conversion efficiency of pin type amorphous silicon solar cells (hereinafter referred to as pin type A-5I solar cells).

(従来の技術) 従来pin型a−3t太陽電池の変換効率を向上させる
ために、n層とAI電極層の界面で反射され、i層内で
再吸収される太陽光の光量を増加させることが有効な手
段の1つであると考えられている。
(Prior art) In order to improve the conversion efficiency of conventional pin type A-3T solar cells, it is necessary to increase the amount of sunlight that is reflected at the interface between the N layer and the AI electrode layer and reabsorbed within the I layer. is considered to be one of the effective means.

そこで従来では、光吸収係数の小さい微結晶Siを用い
てn層を構成する検討がなされている。
Therefore, in the past, studies have been made to construct the n-layer using microcrystalline Si, which has a small light absorption coefficient.

(発明が解決しようとする問題点) しかし、本発明者等が調べたところ、微結晶Siによっ
てn層を構成した場合、i層とn層の界面記変質層が形
成され、この変質層においてキャリアの再結合が促進さ
れ、このため長波長領域での光電流の低下がみられ、変
換効率は向上していないことがわかった。
(Problems to be Solved by the Invention) However, according to research conducted by the present inventors, when the n-layer is composed of microcrystalline Si, an interfacially altered layer is formed between the i-layer and the n-layer, and in this altered layer, It was found that carrier recombination was promoted, and as a result, the photocurrent decreased in the long wavelength region, and the conversion efficiency did not improve.

この原因は、本発明者等の検討によれば、微結晶Si形
成時の高エネルギープラズマ粒子によって、i層とn層
の界面部分がダメージを受け、上記のような変質層が形
成されると考えられる。
According to studies by the present inventors, the reason for this is that the interface between the i-layer and n-layer is damaged by high-energy plasma particles during the formation of microcrystalline Si, resulting in the formation of the above-mentioned altered layer. Conceivable.

本発明では、上記のような変質層を形成することなく、
光吸収係数の小さなn層を形成することにより、変換効
率の向上を図ることを解決すべき技術的課題とする。
In the present invention, without forming the above-mentioned altered layer,
A technical problem to be solved is to improve conversion efficiency by forming an n-layer with a small light absorption coefficient.

(問題点を解決するための手段) そこで本発明は、上記技術的課題を達成するために、 基板上に、p型アモルファスシリコン層、およびr’J
アモルファスシリコン層を順次積層してなるアモルファ
スシリコン太陽電池において、前記i型アモルファスシ
リコン層に堆積されるn型アモルファスシリコン層と、 このn型アモルファスシリコン層に堆積されるn型微結
晶シリコン層とを具備するという技術手段を採用する。
(Means for Solving the Problems) Therefore, in order to achieve the above technical problem, the present invention provides a p-type amorphous silicon layer and an r'J layer on a substrate.
In an amorphous silicon solar cell formed by sequentially stacking amorphous silicon layers, an n-type amorphous silicon layer is deposited on the i-type amorphous silicon layer, and an n-type microcrystalline silicon layer is deposited on the n-type amorphous silicon layer. Adopt technical means of equipping.

(作 用) 上記のように、本発明ではn層をアモルファスシリコン
層および光の吸収係数の小さい微結晶層の2Nによって
構成しているため、n層をアモルファスシリコン層のみ
で形成したものに比べ、n層を通過する光の吸収損失が
#、減される。
(Function) As described above, in the present invention, the n-layer is composed of an amorphous silicon layer and a 2N microcrystalline layer with a small light absorption coefficient, so compared to a case where the n-layer is formed only of an amorphous silicon layer. , the absorption loss of light passing through the n-layer is reduced by #.

また、i型アモルファスシリコン層とn型微結晶層の間
には、n型アモルファスシリコン層が介在しているため
、n型微結晶シリコン層を形成する際に発生する高エネ
ルギープラズマ粒子による1層へのダメージが防止され
、i層とn層との境界に再結合層は形成されない。
In addition, since the n-type amorphous silicon layer is interposed between the i-type amorphous silicon layer and the n-type microcrystalline silicon layer, one layer is formed by high-energy plasma particles generated when forming the n-type microcrystalline silicon layer. damage is prevented, and no recombination layer is formed at the boundary between the i-layer and n-layer.

(実施例) 以下本発明を図に示す実施例に基づいて詳細に説明する
(Example) The present invention will be described in detail below based on an example shown in the drawings.

第1図は、本発明を適用した太陽電池の構造を示す。本
実施では、この第1図かられかるように透光性のガラス
基板1に、I n、O,−3nO2からなる透明導電膜
(ITO)2を電子ビーム蒸着し、ITO2には、p型
a−3i層3、i型a−3i層3、n型a−5iN5お
よびn型機結晶Si層6をプラズマCVD法によって順
次堆積させる。そして、さらにn型機結晶Si層6には
、/l電極層を電子ビーム蒸着によって600〜700
nmの膜厚で形成する。したがって、ITO2とAl電
極層7の間には、pin層30が形成される。
FIG. 1 shows the structure of a solar cell to which the present invention is applied. In this implementation, as shown in FIG. 1, a transparent conductive film (ITO) 2 made of In, O, -3nO2 was deposited by electron beam on a transparent glass substrate 1. The a-3i layer 3, the i-type a-3i layer 3, the n-type a-5iN5, and the n-type machine crystalline Si layer 6 are sequentially deposited by plasma CVD. Further, on the n-type mechanical crystal Si layer 6, a /l electrode layer with a thickness of 600 to 700
Formed with a film thickness of nm. Therefore, a pin layer 30 is formed between the ITO 2 and the Al electrode layer 7.

ここで、本発明者等は、次の条件でpin層30の成膜
を行なった。
Here, the present inventors formed the pin layer 30 under the following conditions.

(1)p型a−3t  層3 原・料ガス :10%S i H4/A r      22.5s
ccm:10%CHa /Hz         7.
8sccm:300ppm  13zHh/Ar  5
.Osccm基板温度:230℃ 内   圧:  Q、5 torr 放電パワー:10w   13.56MH2膜   厚
:20nm (2)i型a−3t  層4 原料ガス:10%S i Ha /A r   45s
ccm基板温度:230℃ 内   圧:  0.5 torr 放電パワー:10w   13.56MHz膜 厚ニア
00nm (3)n型a−3i  層5 原料ガス :lO%S i H4/Hz       20scc
m:11000pp  PH3/H220SCCIl+
基板温度:230℃ 内   圧:  Q、 5 torr 放電パワー: 10w   13.56MH2膜  厚
:3層m (4)n型微結晶Si  層6 原料ガス :10%S i Ha /Hz       20se
cm: 1000 ppm  PH3/Hz   20
sccm基板温度:230℃ 内   圧:  0.5 torr 放電パワー : 20w   13.56MHz膜  
厚:30nm なお、上記pin層30の形成において、p型a−3i
層3成膜前の真空度は3 X 10−”torr、p型
a−3i層3成膜後も3 X 10−’torr程度の
真空度に達するまで真空引きし、i型a−3i層4を成
膜する6 i型a −S i ji 4成膜後、3×1
O−btorr程度に真空引きをおこないn型a−3i
層5を形成する。n型a−3i層5が終了したら、その
ままの状態で放電パワーだけを大きくし、n型微結晶S
i層6の成膜に移る。すなわちn型5−3i層5からn
型機結晶S i ii 6への移行は、連続放電に形成
される。
(1) P-type a-3t layer 3 Raw material gas: 10%S i H4/A r 22.5s
ccm: 10% CHa /Hz 7.
8sccm:300ppm 13zHh/Ar 5
.. Osccm substrate temperature: 230°C Internal pressure: Q, 5 torr Discharge power: 10w 13.56MH2 film thickness: 20nm (2) I-type a-3t layer 4 Source gas: 10%S i Ha /A r 45s
ccm substrate temperature: 230°C Internal pressure: 0.5 torr Discharge power: 10w 13.56MHz film thickness near 00nm (3) N-type a-3i layer 5 Raw material gas: 1O%S i H4/Hz 20scc
m: 11000pp PH3/H220SCCIl+
Substrate temperature: 230°C Internal pressure: Q, 5 torr Discharge power: 10w 13.56MH2 film thickness: 3 layers m (4) N-type microcrystalline Si layer 6 Source gas: 10%S i Ha /Hz 20se
cm: 1000 ppm PH3/Hz 20
sccm substrate temperature: 230℃ Internal pressure: 0.5 torr Discharge power: 20W 13.56MHz film
Thickness: 30 nm Note that in the formation of the pin layer 30, p-type a-3i
The degree of vacuum before forming layer 3 was 3 x 10-'' torr, and after forming p-type a-3i layer 3, it was evacuated until it reached a degree of vacuum of about 3 x 10-' torr, and the i-type a-3i layer was 6 i-type a-S i ji After 4 deposition, 3×1
Vacuum to around O-btorr and remove the n-type a-3i.
Form layer 5. After the n-type a-3i layer 5 is completed, only the discharge power is increased while the n-type microcrystalline S
The process moves on to forming the i-layer 6. That is, n-type 5-3i layer 5 to n
The transition to the type machine crystal S i ii 6 is formed in a continuous discharge.

次に、上記構成を有する本実施例の作用について説明す
る。
Next, the operation of this embodiment having the above configuration will be explained.

以上のようにして形成されたa−3i太陽電池に第1図
の矢印Aで示すガラス基板l側から太陽光を入射させる
と光電変換をおこし、太陽電池として作用する。
When sunlight is incident on the a-3i solar cell formed as described above from the glass substrate l side indicated by arrow A in FIG. 1, photoelectric conversion occurs and the cell functions as a solar cell.

ここで、1層4中に入射した光は、1層4に吸収され電
子−正孔対を励起するが1層4の吸収係数に波長依存性
があるために、短波長光は9層3と1層4との界面で、
長波長光は1層4と0層5との界面付近で主に吸収され
る。しかしながら、長波長光は、効率良く1層4中で吸
収されるわけではなく、1層4と0層5との界面に達す
る光量がかなり存在する。それらの光は0層5.6を通
ってn層と/l電極膜7との界面で反射され再び1層4
に導入されるが、このとき本実施例によればn層6に吸
収係数の小さな微結晶St層6を用いているため、0層
5.6を往復する間の吸収ロスが低減され、1層4に再
導入される光量が、n型a−3tだけを用いた場合に比
べ大きくなる。
Here, the light incident into the first layer 4 is absorbed by the first layer 4 and excites electron-hole pairs, but since the absorption coefficient of the first layer 4 is wavelength dependent, the short wavelength light is absorbed by the first layer 4. At the interface between and 1 layer 4,
Long wavelength light is mainly absorbed near the interface between the 1st layer 4 and the 0th layer 5. However, long wavelength light is not efficiently absorbed in layer 1 4, and a considerable amount of light reaches the interface between layer 1 4 and layer 0 5. Those lights pass through the 0 layer 5.6 and are reflected at the interface between the n layer and the /l electrode film 7, and are again reflected in the 1 layer 4.
However, according to this embodiment, since the microcrystalline St layer 6 with a small absorption coefficient is used as the n layer 6, the absorption loss during the round trip to the 0 layer 5.6 is reduced, and the 1 The amount of light reintroduced into layer 4 is greater than when only n-type a-3t is used.

しかし単にn層を微結晶Siに変更するだけでは、n型
微結晶Si成膜時のプラズマダメージにより、1層4と
0層5との界面に変質膜(再結合膜)が形成され、所期
の目的は達成されない。
However, if the n-layer is simply changed to microcrystalline Si, an altered film (recombination film) will be formed at the interface between layer 1 4 and layer 0 5 due to plasma damage during n-type microcrystalline Si film formation. The purpose of the period is not achieved.

そこで本実施例の如く、1層4とn型微結晶81層60
間にn型5−3i層5をダメージ緩和層として挿入する
ことにより、上記変質層の形成を防止し、所期の目的が
達成された。
Therefore, as in this embodiment, 1 layer 4 and n-type microcrystal 81 layer 60
By inserting the n-type 5-3i layer 5 between them as a damage mitigation layer, formation of the above-mentioned altered layer was prevented, and the intended purpose was achieved.

単にn型機結晶Stを用いた場合と、本発明の第1図に
示す構造との分光特性比較を第2図に示す。
FIG. 2 shows a comparison of the spectral characteristics between the case where an n-type mechanical crystal St is simply used and the structure shown in FIG. 1 according to the present invention.

第2図の横軸ぽ入射光波長を示し、縦軸は太陽電池にバ
イアス電圧をかけない時の光電流I pH。
In Fig. 2, the horizontal axis shows the incident light wavelength, and the vertical axis shows the photocurrent I pH when no bias voltage is applied to the solar cell.

(λ)と、バイアス電圧をかけた時の光電流1pHV(
λ)との比を示す。
(λ) and the photocurrent 1 pHV when bias voltage is applied (
λ).

また、第2図の曲線a1 、az 、bl 、b、、C
I、Czの関係を表1に示す。
In addition, the curves a1, az, bl, b, ,C in Fig. 2
Table 1 shows the relationship between I and Cz.

表  1 この表1かられかるように、第2図の曲線a12a2お
よびbl、b2は、n層をn型a−Si層との2Nによ
って構成した場合を示し、CI、Ctはn層をn型微結
晶Si層のみで構成した場合を示す。
Table 1 As can be seen from Table 1, curves a12a2, bl, and b2 in FIG. A case is shown in which the structure is composed of only a type microcrystalline Si layer.

第2図において、曲線C3とbI、あるいは曲線Ctと
b2を比べた場合、blあるいはb2の方がCIあるい
はC2より長波長領域での1li)での感度が増加して
いることがわかる。
In FIG. 2, when curves C3 and bI are compared, or curves Ct and b2 are compared, it can be seen that bl or b2 has higher sensitivity in the long wavelength region (1li) than CI or C2.

これによって上述のように、n型微結晶Si層6と、1
層4の間に、n型a−5i層5が介在することにより、
i −n界面に再結合層がほとんど形成されていないこ
とが確認された。
As a result, as described above, the n-type microcrystalline Si layer 6 and 1
By interposing the n-type a-5i layer 5 between the layers 4,
It was confirmed that almost no recombination layer was formed at the i-n interface.

また、曲線a、とす5、あるいは曲線a2とb2を比べ
た場合、alあるいはC2の方がす、あるいはb2より
長波長領域での感度が増加していることがわかる。
Further, when curves a and 5 are compared, or curves a2 and b2 are compared, it can be seen that the sensitivity in the long wavelength region is higher for al or C2 than for curves a and b2.

このことは、n型微結晶Si層6を形成する時の放電パ
ワーはできるだけ小さい方が望ましいことを意味してい
る。つまり、n型a−3i層5の膜厚は、上述のように
3nmであり、他層の膜厚に比べて非常に薄いため、n
型微結晶6形成の工ネルギーが大きすぎると、i−n界
面に再結合層が形成される可能性が考えられる。
This means that it is desirable that the discharge power when forming the n-type microcrystalline Si layer 6 be as small as possible. In other words, the thickness of the n-type a-3i layer 5 is 3 nm as described above, which is very thin compared to the thickness of other layers, so the n
If the energy for forming the type microcrystal 6 is too large, there is a possibility that a recombination layer will be formed at the i-n interface.

なお、第2図においてバイアス電圧が大きくなるほど、
光電流の大きさが低下することがわかるが、この理由は
、バイアス電圧の増加と共に、i層でのドリフト速度が
減少し、再結合が促進されるからである。
In addition, in FIG. 2, the larger the bias voltage, the more
It can be seen that the magnitude of the photocurrent decreases because, with increasing bias voltage, the drift velocity in the i-layer decreases and recombination is promoted.

第3図は、上記第1図に示す本実施例構造の太陽電池と
、nliをn型a−3i層のみで構成した従来構造の太
陽電池との変換効率の分布を示し、第3図の横軸は変換
効率を示し、縦軸は太陽電池(セル)個数を示す。
FIG. 3 shows the distribution of conversion efficiency between the solar cell having the structure of this embodiment shown in FIG. The horizontal axis shows the conversion efficiency, and the vertical axis shows the number of solar cells.

この第3図において、分布D1は本発明構造のセルにお
ける変換効率の分布を示し、分布D2は従来構造のセル
における変換効率の分布を示す。
In FIG. 3, distribution D1 shows the distribution of conversion efficiency in cells with the structure of the present invention, and distribution D2 shows the distribution of conversion efficiency in cells with the conventional structure.

分布D+、Dzもともに、総数158個のセルを作成し
、それぞれの変換効率を調べた。
A total of 158 cells were created for both distributions D+ and Dz, and the conversion efficiency of each was investigated.

この第3図から、従来構造のセルの平均変換効率が6.
9%に対して、本発明によれば平均効率が8.2%とな
っており、従来より変換効率が確実に向上していること
が確認された。
From this Figure 3, it can be seen that the average conversion efficiency of the cell with the conventional structure is 6.
9%, according to the present invention, the average efficiency was 8.2%, and it was confirmed that the conversion efficiency was reliably improved compared to the conventional method.

なお、本発明は上記実施例に限定されず、次の如き種々
の変形が可能である。
Note that the present invention is not limited to the above-mentioned embodiments, and various modifications as described below are possible.

(1)プラズマダメージを緩和するn型a−3i層は、
プラズマCVD法に限らず、光CVD法で形成しても同
様の効果が得られる。
(1) The n-type a-3i layer that alleviates plasma damage is
Similar effects can be obtained not only by plasma CVD but also by optical CVD.

(2)非透光性の基板(例えばステンレス、セラミック
等)を用いる基板に、p層、i層、n型a −3i層、
n型微結晶SiN透明電極を順次形成し、透明電極側(
n層側から)光を入射させることによりダメージ緩和効
果が得られ、短波長側怒度が向上する。
(2) A non-transparent substrate (e.g. stainless steel, ceramic, etc.) is used for the substrate, including a p-layer, an i-layer, an n-type a-3i layer,
N-type microcrystalline SiN transparent electrodes are sequentially formed, and the transparent electrode side (
By injecting light (from the n-layer side), a damage mitigation effect can be obtained, and the short wavelength side anger intensity can be improved.

(3)本発明の技術は、太陽電池に限らず、例えば薄膜
トランジスタ、電荷結合素子などで、微結晶Siにて能
動層を形成する際には、SiO2、SiNなどの絶縁膜
と微結晶Si0間にa−3i層を薄く形成することによ
り、絶縁膜との界面欠陥が減少し、性能向上が得られる
(3) The technology of the present invention is applicable not only to solar cells but also when forming an active layer of microcrystalline Si in thin film transistors, charge-coupled devices, etc. By forming the a-3i layer thinly, defects at the interface with the insulating film are reduced, resulting in improved performance.

(4)微結晶Si成膜初期において、グロー放電発生用
の電極に直流バイアス電圧を印加することにより、プラ
ズマダメージを減少させても、同様の効果が得られる。
(4) A similar effect can be obtained even if plasma damage is reduced by applying a DC bias voltage to the electrode for generating glow discharge at the initial stage of microcrystalline Si film formation.

(発明の効果) 以上述べたように、本発明によれば、i型アモルファス
シリコン層とn型シリコン層との境界に再結合層等の変
質層を形成することなく、n型シリコン層での光の吸収
率を低下させることができ、その結果、太陽電池の変換
効率を向上させることができるという効果がある。
(Effects of the Invention) As described above, according to the present invention, the n-type silicon layer can be removed without forming a degraded layer such as a recombination layer at the boundary between the i-type amorphous silicon layer and the n-type silicon layer. This has the effect that the absorption rate of light can be lowered, and as a result, the conversion efficiency of the solar cell can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用した太陽電池の断面図、第2図は
入射光波長に対する光電流比の変化を示す特性図、第3
図は従来例と本発明例の変換効率の分布を示す特性図で
ある。 ■・・・ガラス基板、2・・・ITo、3・・・p型a
−3i層、4 ・−i型a−3i層、5−n型a−5i
層、6・・・n型機結晶St層、7・・・AI電極層。 代理人弁理士  岡 部   隆 tt’;’fLkヒ IphV L入)/ Ipho 
 ())一一−−ヘーーーーJ (コ
FIG. 1 is a cross-sectional view of a solar cell to which the present invention is applied, FIG. 2 is a characteristic diagram showing changes in photocurrent ratio with respect to incident light wavelength, and FIG.
The figure is a characteristic diagram showing the distribution of conversion efficiency of the conventional example and the example of the present invention. ■...Glass substrate, 2...ITo, 3...p type a
-3i layer, 4 -i type a-3i layer, 5-n type a-5i
layer, 6... n-type mechanical crystal St layer, 7... AI electrode layer. Representative Patent Attorney: Takashi Okabe
()) 11--Heeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Claims (1)

【特許請求の範囲】  基板上に、p型アモルファスシリコン層、およびi型
アモルファスシリコン層を順次積層してなるアモルファ
スシリコン太陽電池において、前記i型アモルファスシ
リコン層に堆積されるn型アモルファスシリコン層と、 このn型アモルファスシリコン層に堆積されるn型微結
晶シリコン層とを具備することを特徴とするアモルファ
スシリコン太陽電池。
[Claims] In an amorphous silicon solar cell in which a p-type amorphous silicon layer and an i-type amorphous silicon layer are sequentially laminated on a substrate, an n-type amorphous silicon layer deposited on the i-type amorphous silicon layer; , and an n-type microcrystalline silicon layer deposited on the n-type amorphous silicon layer.
JP60133601A 1985-06-19 1985-06-19 Amorphous silicon photo-cell Pending JPS61292377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60133601A JPS61292377A (en) 1985-06-19 1985-06-19 Amorphous silicon photo-cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60133601A JPS61292377A (en) 1985-06-19 1985-06-19 Amorphous silicon photo-cell

Publications (1)

Publication Number Publication Date
JPS61292377A true JPS61292377A (en) 1986-12-23

Family

ID=15108612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60133601A Pending JPS61292377A (en) 1985-06-19 1985-06-19 Amorphous silicon photo-cell

Country Status (1)

Country Link
JP (1) JPS61292377A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01280365A (en) * 1988-05-06 1989-11-10 Mitsui Toatsu Chem Inc Photoelectric transducer
JPH0273673A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film solar battery
US5060041A (en) * 1987-11-12 1991-10-22 Ricoh Research Institute Of General Electronics Amorphous silicon photosensor
JPH07122761A (en) * 1993-10-22 1995-05-12 Hitachi Ltd Solar battery
JP2009290115A (en) * 2008-05-30 2009-12-10 Kaneka Corp Silicon-based thin-film solar battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204178A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Optoelectric transducer
JPS5963774A (en) * 1982-10-05 1984-04-11 Fuji Electric Corp Res & Dev Ltd Thin-film silicon solar cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57204178A (en) * 1981-06-10 1982-12-14 Matsushita Electric Ind Co Ltd Optoelectric transducer
JPS5963774A (en) * 1982-10-05 1984-04-11 Fuji Electric Corp Res & Dev Ltd Thin-film silicon solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5060041A (en) * 1987-11-12 1991-10-22 Ricoh Research Institute Of General Electronics Amorphous silicon photosensor
JPH01280365A (en) * 1988-05-06 1989-11-10 Mitsui Toatsu Chem Inc Photoelectric transducer
JPH0273673A (en) * 1988-09-08 1990-03-13 Fuji Electric Corp Res & Dev Ltd Film solar battery
JPH07122761A (en) * 1993-10-22 1995-05-12 Hitachi Ltd Solar battery
JP2009290115A (en) * 2008-05-30 2009-12-10 Kaneka Corp Silicon-based thin-film solar battery

Similar Documents

Publication Publication Date Title
KR910001742B1 (en) Photo electromotive force device
JP2999280B2 (en) Photovoltaic element
US5256887A (en) Photovoltaic device including a boron doping profile in an i-type layer
JP2009503848A (en) Composition gradient photovoltaic device, manufacturing method and related products
JPS6249672A (en) Amorphous photovoltaic element
JP2918345B2 (en) Photovoltaic element
JP2001267598A (en) Laminated solar cell
JPS62234379A (en) Semiconductor device
JPS61292377A (en) Amorphous silicon photo-cell
JPS61278171A (en) Thin film photoelectric conversion device
US4857115A (en) Photovoltaic device
JP4110713B2 (en) Thin film solar cell
JPS6225275B2 (en)
JP2737705B2 (en) Solar cell
JP2632740B2 (en) Amorphous semiconductor solar cell
JP2669834B2 (en) Stacked photovoltaic device
EP4325586A1 (en) A solar battery
JPH073876B2 (en) Photovoltaic device
JP2545066B2 (en) Semiconductor device
JPS6276569A (en) Thin-film photoelectric conversion element
JP2958491B2 (en) Method for manufacturing photoelectric conversion device
KR102093567B1 (en) Photovoltaic cell and method of fabricating the same
van Swaaij et al. Thin-film silicon technology for highly-efficient solar cells
JPS6347987A (en) Photovoltaic device
JP3291435B2 (en) Photovoltaic element