JPH0445991B2 - - Google Patents

Info

Publication number
JPH0445991B2
JPH0445991B2 JP57204923A JP20492382A JPH0445991B2 JP H0445991 B2 JPH0445991 B2 JP H0445991B2 JP 57204923 A JP57204923 A JP 57204923A JP 20492382 A JP20492382 A JP 20492382A JP H0445991 B2 JPH0445991 B2 JP H0445991B2
Authority
JP
Japan
Prior art keywords
film
type
energy gap
optical energy
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57204923A
Other languages
Japanese (ja)
Other versions
JPS5997514A (en
Inventor
Kazunobu Tanaka
Akihisa Matsuda
Hajime Ichanagi
Nobuhiko Fujita
Hiroshi Kawai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sumitomo Electric Industries Ltd
Original Assignee
Agency of Industrial Science and Technology
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sumitomo Electric Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP57204923A priority Critical patent/JPS5997514A/en
Publication of JPS5997514A publication Critical patent/JPS5997514A/en
Publication of JPH0445991B2 publication Critical patent/JPH0445991B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

【発明の詳細な説明】 (イ) 技術分野 本発明は、アモルフアスシリコン(以下a−Si
と記す)膜の製造法に関する。
[Detailed description of the invention] (a) Technical field The present invention relates to amorphous silicon (hereinafter referred to as a-Si).
related to the manufacturing method of the membrane.

(ロ) 背景技術 従来、a−Si膜はシラン(SiH4)ガスをグロ
ー放電分解する、いわゆるプラズマCVD法、あ
るいはシリコン(Si)ターゲツトを水素を含むア
ルゴン(Ar)ガスでスパツタする方法で製造さ
れており、a−Si膜を用いた光起電力素子は、光
電変換効率が8%を越えるものが製造されてい
た。
(b) Background technology Traditionally, a-Si films have been produced by glow discharge decomposition of silane (SiH 4 ) gas, the so-called plasma CVD method, or by sputtering a silicon (Si) target with argon (Ar) gas containing hydrogen. Photovoltaic devices using a-Si films have been manufactured with photoelectric conversion efficiencies exceeding 8%.

しかしながら、i型a−Si膜は光電変換を司る
重要な活性層であるが、良好な光電変換効率を得
る光起電力素子に用いるi型a−Si膜の光学的エ
ネルギーギヤツプがほぼ1.75eVと一定であるた
めに、長波長光は、エネルギーが小さくa−Si膜
内で吸収されずに透過してしまう。また、短波長
光は、a−Si膜内で吸収されるが、光の持つエネ
ルギーが大きすぎるため、a−Si膜の光学的エネ
ルギーギヤツプ以上の過剰エネレギーはすべてエ
ネレギーロスとなるという欠点があつた。また従
来、前記の欠点を解消せんと、a−Si膜に炭素を
添加したいわゆるa−SiC膜を用い光学的エネル
ギーギヤツプを大きくして短波長光を有効に利用
する試みや、a−Si膜にゲルマニウム(Ge)を
添加したいわゆるa−Si膜を用い、光学的エネル
ギーギヤツプを小さくして長波長光を有効に利用
する試みがなされていた。
However, although the i-type a-Si film is an important active layer that controls photoelectric conversion, the optical energy gap of the i-type a-Si film used in photovoltaic devices to obtain good photoelectric conversion efficiency is approximately 1.75. Since the energy is constant at eV, long wavelength light has small energy and is transmitted through the a-Si film without being absorbed. In addition, short wavelength light is absorbed within the a-Si film, but since the energy of the light is too large, any excess energy exceeding the optical energy gap of the a-Si film results in energy loss. It was hot. In order to overcome the above-mentioned drawbacks, attempts have been made to increase the optical energy gap by using a so-called a-SiC film in which carbon is added to the a-Si film to effectively utilize short wavelength light. Attempts have been made to reduce the optical energy gap and effectively utilize long wavelength light by using a so-called a-Si film in which germanium (Ge) is added to a Si film.

しかしながら、これらのa−SiC膜や、a−
SiGe膜は、添加に伴ない、光電気伝導部が大き
く低下するため、光学的エネルギーギヤツプの拡
大あるいは縮小の効果が、光電変換効率に大きく
寄与していないという問題点があつた。
However, these a-SiC films and a-
In the SiGe film, as the photoelectric conduction area is greatly reduced as the SiGe film is added, there is a problem in that the effect of expanding or reducing the optical energy gap does not significantly contribute to the photoelectric conversion efficiency.

(ハ) 発明の開示 そこで、本発明者は、前記問題点を解消すべく
種々検討を行なつた結果、基板にp−i−n構造
のアモルフアスシリコン膜のRFプラズマCVD法
で形成し、太陽電地を製造する方法において、i
型アモルフアスシリコン膜形成時に前記基板に直
流電流を印加することにより、光学的エネルギー
ギヤツプを制御できることを見出した。
(C) Disclosure of the Invention Therefore, the present inventor conducted various studies to solve the above problems, and as a result, formed an amorphous silicon film with a pin structure on a substrate by RF plasma CVD method, In the method of manufacturing a solar cell, i
It has been found that the optical energy gap can be controlled by applying a direct current to the substrate during the formation of the amorphous silicon film.

本発明の目的は、光電気伝導度を低下すること
なく、光学的エネルギーギヤツプが自在に制御さ
れたi型a−Si膜を利用することにより、高効率
なp−i−n構造のアモルフアス太陽電池の製造
方法を提供することにある。
The purpose of the present invention is to create a highly efficient pin structure by using an i-type a-Si film in which the optical energy gap is freely controlled without reducing photoelectric conductivity. An object of the present invention is to provide a method for manufacturing an amorphous solar cell.

以下、本発明をいくつかの実施例に基づき詳細
に説明する。
Hereinafter, the present invention will be explained in detail based on some examples.

実施例 1 第1図に本発明によるa−Si膜の光学的エネル
ギーギヤツプと基板の導電部に印加した直流電圧
との関係を示す。基板はガラス板に厚さ約3000Å
の酸化スズ(SnO2)からなる透明導電膜を形成
したものを用い、a−Si膜の形成条件は、水素希
釈シランガス濃度10%、シランガス圧力1Torr、
シランガス流量50SCCM、高周波(RF)電力
500W、基板温度250℃、膜形成時間1時間で一定
とした。a−Si膜形成時に前記基板の導電部に、
−300V、−200V、−100V、0V、100V、200V、
300Vの直流電圧を印加し、形成した膜の光学的
エネルギーギヤツプをそれぞれ測定した。第1図
からわかるように、基板の導電部に直流電圧を印
加することにより、光学的エネルギーギヤツプを
変化させることができ、正電圧で光学的エネルギ
ーギヤツプを小さくまたは負電圧で光学的エネル
ギーギヤツプを大きくすることができる。光学的
エネルギーギヤツプが変化する理由は、現段階で
は明らかではないが、およそ次のように考えられ
る。基板に負の直流バイアス電圧を印加すること
によりプラズマが基板から遠ざけられ、水素関連
イオン(H2 +、H+、SiH+等)が中性ラジカルと
ともに膜成長に寄与するため膜中の水素量が増加
する。また、基板に正の直流バイアス電圧を印加
することにより、電子が基板に引きつけられ、膜
が一種のボンバードメントによるアニール効果を
受けるため、膜中の水素量が減少する。この膜中
の水素量の増減により、光学的エネルギーギヤツ
プが変化するものと考えられる。印加する直流電
圧が−300Vから+300Vの範囲では、光学的エネ
ルギーギヤツプは1.70eVから1.85eVまで変化す
ることができた。また、光電気伝導度は、いずれ
の直流電圧を印加した場合でも1×10-4(Ω・cm)
-1とほぼ一定であり、光電変換層として優れた膜
であつた。
Example 1 FIG. 1 shows the relationship between the optical energy gap of the a-Si film according to the present invention and the DC voltage applied to the conductive portion of the substrate. The substrate is a glass plate with a thickness of approximately 3000Å.
A transparent conductive film made of tin oxide (SnO 2 ) was formed, and the conditions for forming the a-Si film were: hydrogen diluted silane gas concentration 10%, silane gas pressure 1 Torr,
Silane gas flow rate 50SCCM, radio frequency (RF) power
The power was kept at 500W, the substrate temperature was 250°C, and the film formation time was 1 hour. When forming the a-Si film, on the conductive part of the substrate,
-300V, -200V, -100V, 0V, 100V, 200V,
A DC voltage of 300 V was applied, and the optical energy gap of each of the formed films was measured. As can be seen from Fig. 1, the optical energy gap can be changed by applying a DC voltage to the conductive part of the substrate. The target energy gap can be increased. The reason why the optical energy gap changes is not clear at this stage, but it is thought to be approximately as follows. By applying a negative DC bias voltage to the substrate, the plasma is moved away from the substrate, and hydrogen-related ions (H 2 + , H + , SiH +, etc.) contribute to film growth together with neutral radicals, which reduces the amount of hydrogen in the film. increases. Furthermore, by applying a positive DC bias voltage to the substrate, electrons are attracted to the substrate and the film undergoes an annealing effect due to a type of bombardment, thereby reducing the amount of hydrogen in the film. It is thought that the optical energy gap changes as the amount of hydrogen in the film increases or decreases. When the applied DC voltage ranged from -300V to +300V, the optical energy gap could vary from 1.70eV to 1.85eV. In addition, the photoelectric conductivity is 1×10 -4 (Ω・cm) when any DC voltage is applied.
The value was almost constant at -1 , indicating that the film was excellent as a photoelectric conversion layer.

なお、絶縁性のガラス基板上にも種々直流電圧
を印加してa−Si膜を前記と同じ条件で形成した
が、光学的エネルギーギヤツプは、いずれのa−
Si膜も1.75eVと変化はなかつた。
Note that a-Si films were also formed on an insulating glass substrate under the same conditions as above by applying various DC voltages, but the optical energy gap was
The Si film also remained unchanged at 1.75 eV.

実施例 2 第2図は、本発明によるa−Si膜を用いた光起
電子素子の一構造図である。SnO2からなる透明
導電膜2を形成したガラス板1にホウ素をSiH4
に対するB2H6の流量比で1×10-3ドープしたp
型a−Si膜3を形成した後、ドープしないi型a
−Si膜4、さらにリンをSiH4に対するPH3の流
量比で1×10-3ドープしたn型a−Si膜5、最後
にアルミ電極6を形成した。i型a−Si膜4は、
3分割し、p型a−Si膜3側から膜形成時に−
300Vの直流電圧を印加したi型a−Si膜7、0V
の直流電流を印加したi型a−Si膜8、+300Vの
直流電圧を印加したi型a−Si膜9の3種類の膜
で構成し、p型a−Si膜3側(光入射側)のi型
a−Si膜7の光学的エネルギーギヤツプを大き
く、またn型a−Si膜5側のi型a−Si膜9の光
学的エネルギーギヤツプを小さくした。なお、シ
ランガス濃度、ガス圧力、シランガス流量、高周
波電力、基板温度はp型a−Si膜3、i型a−Si
膜4、n型a−Si膜5、すべて実施例1と同じで
ある。直流電圧を印加しなかつた光起電力素子の
光電変換効率が6.8%であつたのに対し、本実施
例による光起電力素子は、その光電変換層である
i型a−Si膜の光学的エネルギーギヤツプを調整
したため、その光電変換効率は7.4%であつた。
なお、本実施例では、i型a−Si膜形成時に−
300V、0V、+300Vと離散的に直流電圧を変化さ
せたが、−300Vから+300Vまで連続的に変化さ
せて良いことは言うまでもない。
Example 2 FIG. 2 is a structural diagram of a photovoltaic device using an a-Si film according to the present invention. Boron is added to SiH 4 on the glass plate 1 on which the transparent conductive film 2 made of SnO 2 is formed.
1×10 -3 doped p with a flow ratio of B 2 H 6 to
After forming type a-Si film 3, undoped i-type a
A -Si film 4, an n-type a-Si film 5 doped with phosphorus at a flow rate ratio of PH 3 to SiH 4 of 1×10 −3 , and finally an aluminum electrode 6 were formed. The i-type a-Si film 4 is
Divide into three parts, and when forming the film from the p-type a-Si film 3 side -
i-type a-Si film 7 with 300V DC voltage applied, 0V
It is composed of three types of films: an i-type a-Si film 8 to which a DC current of +300V is applied, and an i-type a-Si film 9 to which a DC voltage of +300V is applied, and the p-type a-Si film 3 side (light incident side) The optical energy gap of the i-type a-Si film 7 on the side of the n-type a-Si film 5 was made large, and the optical energy gap of the i-type a-Si film 9 on the n-type a-Si film 5 side was made small. Note that the silane gas concentration, gas pressure, silane gas flow rate, high frequency power, and substrate temperature are p-type a-Si film 3 and i-type a-Si film 3.
The film 4 and the n-type a-Si film 5 are all the same as in Example 1. While the photovoltaic device to which no DC voltage was applied had a photoelectric conversion efficiency of 6.8%, the photovoltaic device according to this example had an optical After adjusting the energy gap, the photoelectric conversion efficiency was 7.4%.
In this example, when forming an i-type a-Si film, -
Although the DC voltage was changed discretely from 300V to 0V to +300V, it goes without saying that it may be changed continuously from -300V to +300V.

実施例 3 第3図は、本発明によるa−Si膜を用いた光起
電力素子の一構成図である。SnO2からなる透明
導電膜11を形成したガラス板10に、p型a−
Si膜12、i型a−Si膜13、n型a−Si膜1
4、p型a−Si膜15、i型a−Si膜16、n型
a−Si膜17、アルミ電極18の順に形成した。
p型a−Si膜12および15のホウ素のドープ
量、n型a−Si膜14および17のリンのドープ
量はいずれもガスの量流比で1×10-3である。ま
たi型a−Si膜13および16は、膜形成時にそ
れぞれ−300V、+300Vの直流電流を印加し、光
学的エネルギーギヤツプを各々大きくおよび小さ
くした。
Example 3 FIG. 3 is a block diagram of a photovoltaic device using an a-Si film according to the present invention. A p-type a-
Si film 12, i-type a-Si film 13, n-type a-Si film 1
4. A p-type a-Si film 15, an i-type a-Si film 16, an n-type a-Si film 17, and an aluminum electrode 18 were formed in this order.
The amount of boron doped in the p-type a-Si films 12 and 15 and the amount of phosphorus doped in the n-type a-Si films 14 and 17 are both 1×10 −3 in gas flow ratio. Further, when forming the i-type a-Si films 13 and 16, DC currents of -300 V and +300 V were applied, respectively, to increase and decrease the optical energy gap, respectively.

なお、シランガス濃度、ガス圧力、シランガス
流量、高周波電力、基板温度はすべてのa−Si膜
とともに実施例1と同じである。実施例3と同構
造で直流電圧を印加しなかつた場合、および本実
施例の場合、それぞれ光起電力素子の光電変換効
率は6.9%および7.8%であつた。
Note that the silane gas concentration, gas pressure, silane gas flow rate, high frequency power, and substrate temperature are the same as in Example 1 as well as all a-Si films. In the case of the same structure as in Example 3 but no DC voltage was applied, and in the case of this example, the photoelectric conversion efficiency of the photovoltaic element was 6.9% and 7.8%, respectively.

本実施例の場合、光電変換層であるi型a−Si
膜の膜質を低下させることなく、その光学的エネ
ルギーギヤツプを調整できるので高い光電変換効
率が得られる。
In the case of this example, the i-type a-Si which is the photoelectric conversion layer
Since the optical energy gap can be adjusted without reducing the film quality of the film, high photoelectric conversion efficiency can be obtained.

以上詳細に説明したように、本発明により、光
電気伝導度を低下することなく光学的エネルギー
ギヤツプを自在に制御されたi型a−Si膜を得る
ことができ、高効率な太陽電池を製造することが
できる。
As explained in detail above, according to the present invention, it is possible to obtain an i-type a-Si film in which the optical energy gap is freely controlled without reducing the photoelectric conductivity, and it is possible to obtain a highly efficient solar cell. can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるa−Si膜の光学的エネル
ギーギヤツプと基板の導電部に印加した直流電圧
との関係を示す図であり、第2図は本発明による
a−Si膜を用いた光起電力素子の一構造図であ
り、第3図は本発明によるa−Si膜を用いた光起
電力素子の一構成図である。 1……ガラス板、2……透明導電膜、3……p
型a−Si膜、4……i型a−Si膜、5……n型a
−Si膜、6……アルミ電極、7……i型a−Si
膜、8……i型a−Si膜、9……i型a−Si膜、
10……ガラス板、11……透明導電膜、12…
…p型a−Si膜、13……i型a−Si膜、14…
…n型a−Si膜、15……p型a−Si膜、16…
…i型a−Si膜、17……n型a−Si膜、18…
…アルミ電極。
FIG. 1 is a diagram showing the relationship between the optical energy gap of the a-Si film according to the present invention and the DC voltage applied to the conductive part of the substrate, and FIG. FIG. 3 is a structural diagram of a photovoltaic device using an a-Si film according to the present invention. 1...Glass plate, 2...Transparent conductive film, 3...p
Type a-Si film, 4...i type a-Si film, 5...n type a
-Si film, 6...aluminum electrode, 7...i-type a-Si
film, 8... i-type a-Si film, 9... i-type a-Si film,
10...Glass plate, 11...Transparent conductive film, 12...
...p-type a-Si film, 13...i-type a-Si film, 14...
...n-type a-Si film, 15...p-type a-Si film, 16...
...i-type a-Si film, 17...n-type a-Si film, 18...
...Aluminum electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 基板にp−i−n構造のアモルフアスシリコ
ン膜をRFプラズマCVD法で形成し、太陽電池を
製造する方法において、i型アモルフアスシリコ
ン膜形成時に、前記基板に直流バイアス電圧を印
加して該電圧を変化させることにより、前記i型
アモルフアスシリコン膜の光学的エネルギーギヤ
ツプを光の入射側から次第に小さくなるように制
御することを特徴とする太陽電池の製造法。
1. In a method of manufacturing a solar cell by forming an amorphous silicon film with a p-i-n structure on a substrate by RF plasma CVD method, a DC bias voltage is applied to the substrate when forming an i-type amorphous silicon film. A method for manufacturing a solar cell, characterized in that the optical energy gap of the i-type amorphous silicon film is controlled to gradually become smaller from the light incident side by changing the voltage.
JP57204923A 1982-11-22 1982-11-22 Manufacture of amorphous silicon film Granted JPS5997514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57204923A JPS5997514A (en) 1982-11-22 1982-11-22 Manufacture of amorphous silicon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57204923A JPS5997514A (en) 1982-11-22 1982-11-22 Manufacture of amorphous silicon film

Publications (2)

Publication Number Publication Date
JPS5997514A JPS5997514A (en) 1984-06-05
JPH0445991B2 true JPH0445991B2 (en) 1992-07-28

Family

ID=16498601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57204923A Granted JPS5997514A (en) 1982-11-22 1982-11-22 Manufacture of amorphous silicon film

Country Status (1)

Country Link
JP (1) JPS5997514A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4547621A (en) * 1984-06-25 1985-10-15 Sovonics Solar Systems Stable photovoltaic devices and method of producing same
JPH0195770U (en) * 1987-12-17 1989-06-26
JPH02122575A (en) * 1988-10-31 1990-05-10 Kyocera Corp Photoelectric conversion device
JP2008115460A (en) 2006-10-12 2008-05-22 Canon Inc Method for forming semiconductor device and method for forming photovoltaic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56130466A (en) * 1980-03-17 1981-10-13 Canon Inc Film forming method
JPS56130465A (en) * 1980-03-14 1981-10-13 Canon Inc Film forming method
JPS58144470A (en) * 1981-12-16 1983-08-27 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Chemical phase deposition manufacture for light responsive amorphous alloy
JPS5855328B2 (en) * 1978-09-20 1983-12-09 日野自動車株式会社 diesel engine piston
JPS5913617A (en) * 1982-07-16 1984-01-24 Agency Of Ind Science & Technol Manufacture of thin silicon film containing microcrystalline silicon

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855328U (en) * 1981-10-09 1983-04-14 三洋電機株式会社 switching device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855328B2 (en) * 1978-09-20 1983-12-09 日野自動車株式会社 diesel engine piston
JPS56130465A (en) * 1980-03-14 1981-10-13 Canon Inc Film forming method
JPS56130466A (en) * 1980-03-17 1981-10-13 Canon Inc Film forming method
JPS58144470A (en) * 1981-12-16 1983-08-27 エナ−ジ−・コンバ−シヨン・デバイセス・インコ−ポレ−テツド Chemical phase deposition manufacture for light responsive amorphous alloy
JPS5913617A (en) * 1982-07-16 1984-01-24 Agency Of Ind Science & Technol Manufacture of thin silicon film containing microcrystalline silicon

Also Published As

Publication number Publication date
JPS5997514A (en) 1984-06-05

Similar Documents

Publication Publication Date Title
US6121541A (en) Monolithic multi-junction solar cells with amorphous silicon and CIS and their alloys
US5730808A (en) Producing solar cells by surface preparation for accelerated nucleation of microcrystalline silicon on heterogeneous substrates
EP0204567A2 (en) Thin film solar module
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
US4396793A (en) Compensated amorphous silicon solar cell
US4339470A (en) Fabricating amorphous silicon solar cells by varying the temperature _of the substrate during deposition of the amorphous silicon layer
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
JPS6233479A (en) Solar cell
JPH0445991B2 (en)
JPH0544198B2 (en)
JPH0340515B2 (en)
JP2675754B2 (en) Solar cell
JPH0363229B2 (en)
JP2744680B2 (en) Manufacturing method of thin film solar cell
JP2545066B2 (en) Semiconductor device
JPH0548127A (en) Amorphous silicon solar battery and its manufacture
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element
JPH0571196B2 (en)
JP3547716B2 (en) Method for manufacturing semiconductor thin film and method for manufacturing photovoltaic device
JPH0612836B2 (en) Method for manufacturing photoelectric conversion element
JPS6095977A (en) Photovoltaic device
JP2000164904A (en) Amorphous silicon solar cell and manufacture of it
JPS60239068A (en) Photovoltaic device
JPS5842280A (en) Manufacture of photovoltaic element
JPS6356712B2 (en)