JPH0548127A - Amorphous silicon solar battery and its manufacture - Google Patents

Amorphous silicon solar battery and its manufacture

Info

Publication number
JPH0548127A
JPH0548127A JP3206690A JP20669091A JPH0548127A JP H0548127 A JPH0548127 A JP H0548127A JP 3206690 A JP3206690 A JP 3206690A JP 20669091 A JP20669091 A JP 20669091A JP H0548127 A JPH0548127 A JP H0548127A
Authority
JP
Japan
Prior art keywords
layer
amorphous silicon
intrinsic
solar cell
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3206690A
Other languages
Japanese (ja)
Inventor
Shitsuchiyanuritsutsu Poopon
ポーポン・シツチヤヌリツツ
Tetsuro Arai
哲朗 新居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP3206690A priority Critical patent/JPH0548127A/en
Publication of JPH0548127A publication Critical patent/JPH0548127A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To enable an amorphous silicon solar battery having an intrinsic a-Si layer to have a performance equivalent to that of amorphous silicon solar batteries having no intrinsic a-Si layer without increasing the contact resistance between the intrinsic a-Si layer and a rear surface electrode layer by forming the intrinsic a-Si layer on an n-layer and diffusing the rear surface electrode in the intrinsic a-Si layer. CONSTITUTION:An amorphous silicon (a-Si) solar battery element is constituted of a transparent electrode layer 2, p-layer 31, i-layer 32, and n-layer 33 which are successivel.y formed on the layer 2 and respectively composed of a-Si films, and rear surface electrode layer 4 which is formed so that the layer 4 can be diffused in an intrinsic a-Si layer 34 formed on the layer 33. Especially, the a-Si layer 34 is provided and, at the same time, the electrode layer 4 is diffused in the layer 34. Therefore, the contact resistance between the layers 3 and 4 does not increase and a performance which is equivalent to that of amorphous silicon solar batteries having no intrinsic a-Si layer 34 can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、太陽電池や光センサ等
に用いられる光起電力装置及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic device used for a solar cell, an optical sensor, etc. and a method for manufacturing the same.

【0002】[0002]

【従来の技術】図2は、絶縁性基板上1に透明電極層
2、非晶質半導体層としての非晶質シリコン層3(以下
「a−Si層」と記す)及び裏面電極層としての金属電
極層4を積層してなる単位太陽電池素子の構造図であ
る。この種の太陽電池素子は、先ずガラス基板1上にI
TO(インジウムスズ酸化物)、SnO2(酸化スズ)
等の透明電動膜からなる透明電極層2を電子ビーム蒸
着、スパッタリングあるいは熱CVD法で約4500Å程度
の厚さに一面に形成する。次に、a−Si層3は透明電
極層2側から、例えばp型a−Si層31を約200Åの
厚さに、真性型a−Si層32(以下「i層」と記す)
を0.2−1.0μmの膜さに、n型a−Si層33を約500
Åの厚さにシランガスのプラズマ放電分解で成長させ
る。なお、p型にはほう素、炭素を添加し、n型には燐
を添加する。その後、スパッタ法あるいは蒸着法等で裏
面電極4を形成する。この裏面電極4は、膜厚が2000Å
以上の金属、例えばアルミニウム、銀などが使われてい
る。
2. Description of the Related Art FIG. 2 shows a transparent electrode layer 2 on an insulating substrate 1, an amorphous silicon layer 3 (hereinafter referred to as "a-Si layer") as an amorphous semiconductor layer, and a back electrode layer. FIG. 3 is a structural diagram of a unit solar cell element formed by stacking metal electrode layers 4. This type of solar cell element is prepared by first placing I on the glass substrate 1.
TO (indium tin oxide), SnO 2 (tin oxide)
A transparent electrode layer 2 made of a transparent electric film such as is formed over the entire surface by electron beam evaporation, sputtering or thermal CVD to a thickness of about 4500Å. Next, the a-Si layer 3 is an intrinsic a-Si layer 32 (hereinafter referred to as "i layer") from the transparent electrode layer 2 side, for example, a p-type a-Si layer 31 having a thickness of about 200Å.
To a film of 0.2-1.0 μm and an n-type a-Si layer 33 of about 500
Å Grow with plasma discharge decomposition of silane gas to a thickness. Boron and carbon are added to the p-type, and phosphorus is added to the n-type. After that, the back surface electrode 4 is formed by the sputtering method or the vapor deposition method. This back electrode 4 has a film thickness of 2000Å
The above metals such as aluminum and silver are used.

【0003】太陽電池素子の性能は、a−Si層3の膜
厚によって左右される。従来の成膜方式では同一反応室
内でp型、i型及びn型a−Si層を形成していた。そ
の為、反応室内壁や高周波電極等に付着した残留不純物
(燐)が成膜中に取り込まれやすく、膜質低下の原因と
なっている。つまり、同一反応室方式では、太陽電池を
形成する前に形成されたn層の添加不純物である燐の影
響を受けて太陽電池の性能が左右される。a−Si太陽
電池の高効率化には、残留燐濃度を極力少なくすること
が望ましい。それを解決する為に、p層、i層及びn層
を別々の反応室で成膜する分離型プラズマCVD法が開
発され、例えば、特開昭56−114387号公報に開
示されている。
The performance of the solar cell element depends on the thickness of the a-Si layer 3. In the conventional film forming method, p-type, i-type and n-type a-Si layers are formed in the same reaction chamber. Therefore, residual impurities (phosphorus) adhering to the inner wall of the reaction chamber, the high frequency electrode, etc. are easily taken in during the film formation, which causes deterioration of the film quality. That is, in the same reaction chamber system, the performance of the solar cell is influenced by the influence of phosphorus, which is an impurity added to the n layer formed before forming the solar cell. In order to improve the efficiency of the a-Si solar cell, it is desirable to minimize the residual phosphorus concentration. In order to solve the problem, a separation type plasma CVD method for forming a p layer, an i layer and an n layer in separate reaction chambers has been developed, and is disclosed in, for example, Japanese Patent Laid-Open No. 56-114387.

【0004】[0004]

【発明が解決しようとする課題】分離型プラズマCVD
法では、反応室が3室以上あり、かつ基板を各々の反応
室へ送り込む輸送機構が複雑なる為、装置が高価になっ
てしまう。本発明の目的は、単一の反応室を用いたプラ
ズマCVD法により前に形成されたn層の燐の影響を抑
え、再現性よくかつ高性能・低コストのa−Si太陽電
池及びその製造方法を提供することにある。
Discrete type plasma CVD
According to the method, since there are three or more reaction chambers and the transportation mechanism for feeding the substrate into each reaction chamber is complicated, the apparatus becomes expensive. An object of the present invention is to suppress the influence of phosphorus in the n layer previously formed by the plasma CVD method using a single reaction chamber, to achieve a reproducible, high-performance and low-cost a-Si solar cell and its manufacture. To provide a method.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の非晶質シリコン太陽電池はガラス基板上
に形成された透明電極層、該透明電極層上に形成された
pin接合を有する非晶質シリコン層と、該非晶質シリ
コン層上に形成された真性型非晶質シリコン層と、該真
性型非晶質シリコン層内に拡散させて形成された裏面電
極とから成るものである。また本発明の非晶質シリコン
太陽電池の製造方法は、透明電極層を被着した絶縁性透
明基板上にpin接合を有する非晶質シリコン層を設
け、次いで真性型非晶質シリコン層を形成し、金属裏面
電極を付け後、熱処理を行うことを特徴とするものであ
る。
In order to achieve the above object, an amorphous silicon solar cell of the present invention comprises a transparent electrode layer formed on a glass substrate and a pin junction formed on the transparent electrode layer. Comprising an amorphous silicon layer having: an intrinsic type amorphous silicon layer formed on the amorphous silicon layer, and a back electrode formed by diffusing into the intrinsic type amorphous silicon layer. Is. Further, in the method for manufacturing an amorphous silicon solar cell of the present invention, an amorphous silicon layer having a pin junction is provided on an insulating transparent substrate coated with a transparent electrode layer, and then an intrinsic type amorphous silicon layer is formed. However, after the metal back surface electrode is attached, heat treatment is performed.

【0006】[0006]

【作用】真性型非晶質シリコン層は燐濃度を抑制する働
きをするため、i層に取り込まれる燐による太陽電池素
子の電気的特性の低下を無くすことができると共に、裏
面電極層が真性型非晶質シリコン層内に拡散されている
ことにより、非晶質シリコン層と裏面電極間の接触抵抗
が大きくならない。また製造においては、太陽電池の形
成後に、引き続き薄膜真性型非晶質シリコン層を形成し
た後熱処理することによって、その後に形成する太陽電
池への燐の影響を抑えることが可能になり、単一反応室
プラズマCVD装置でも再現性よくかつ高性能・低コス
トの非晶質シリコン太陽電池を可能にする。
Since the intrinsic type amorphous silicon layer has a function of suppressing the phosphorus concentration, it is possible to prevent the deterioration of the electrical characteristics of the solar cell element due to the phosphorus taken in the i layer, and at the same time, the back electrode layer has the intrinsic type. Due to the diffusion in the amorphous silicon layer, the contact resistance between the amorphous silicon layer and the back electrode does not increase. Further, in the manufacturing process, after the formation of the solar cell, the thin film intrinsic type amorphous silicon layer is subsequently formed and then heat-treated, so that the influence of phosphorus on the solar cell to be formed later can be suppressed. It enables high-performance and low-cost amorphous silicon solar cells with high reproducibility even in a reaction chamber plasma CVD apparatus.

【0007】[0007]

【実施例】図1は、本発明のa−Si太陽電池素子の構
造を示す。なお、図2に共通の部分には同一符号が付け
られている。a−Si太陽電池素子はガラス基板1上に
形成された透明電極層2、該透明電極層2上に形成され
たa−Si膜によるp層31、i層32及びn層33、
該n層33上に形成された真性型a−Si層(燐濃度抑
制層)34、及び該真性型a−Si層34内に拡散させ
るようにして形成された裏面電極4とから構成されてい
る。上記構造のa−Si太陽電池素子は、真性型a−S
i層34を設けることにより、i層に取り込まれる燐に
よる太陽電池素子の電気的特性の低下を無くすことがで
きると共に、裏面電極層が真性型a−Si層内に拡散さ
れていることにより、a−Si層3と裏面電極4間の接
触抵抗が大きくならず、真性型a−Si層34の無いも
のと同等の性能を持たせることができる。
EXAMPLE FIG. 1 shows the structure of an a-Si solar cell element of the present invention. The same parts as those in FIG. 2 are designated by the same reference numerals. The a-Si solar cell element includes a transparent electrode layer 2 formed on a glass substrate 1, a p-layer 31, an i-layer 32 and an n-layer 33 formed by an a-Si film formed on the transparent electrode layer 2.
It is composed of an intrinsic type a-Si layer (phosphorus concentration suppressing layer) 34 formed on the n layer 33, and a back surface electrode 4 formed so as to diffuse into the intrinsic type a-Si layer 34. There is. The a-Si solar cell element having the above structure is an intrinsic type a-S
By providing the i layer 34, it is possible to prevent deterioration of electrical characteristics of the solar cell element due to phosphorus taken in the i layer, and the back electrode layer is diffused in the intrinsic a-Si layer. The contact resistance between the a-Si layer 3 and the back surface electrode 4 does not increase, and the same performance as that without the intrinsic a-Si layer 34 can be provided.

【0008】a−Si太陽電池素子の製造は、先ずガラ
ス基板1の上に厚さが4500Å程度のSnO2を熱CVD
法により透明電極層2を形成する。次いで、pin接合
を有するa−Si膜3(p層31、i層32、n層3
3)をプラズマCVD法を用いて約0.4μmの厚さに
形成し、その後燐濃度を抑制する為に同一反応室内で約
300Åの真性型a−Si層34(i層)を続けて形成す
る。更に裏面電極4としてアルミニウムを約2000Åの厚
さにスパッタ法により形成する。
To manufacture an a-Si solar cell element, SnO 2 having a thickness of about 4500Å is first thermally CVD-coated on the glass substrate 1.
The transparent electrode layer 2 is formed by the method. Then, an a-Si film 3 having a pin junction (p layer 31, i layer 32, n layer 3
3) is formed to a thickness of about 0.4 μm by using the plasma CVD method, and then is formed in the same reaction chamber in order to suppress the phosphorus concentration.
A 300 Å intrinsic a-Si layer 34 (i layer) is subsequently formed. Further, aluminum is formed as the back surface electrode 4 to a thickness of about 2000 Å by a sputtering method.

【0009】上記方法により製造されたa−Si太陽電
池素子は、n層33と裏面電極層4の間に高抵抗真性層
34(i層)が存在している為、このままでは接触抵抗
が大きく満足する特性が得られない。そこで、上記製造
工程後に熱処理を行い、金属をi層34内に拡散させて
n層33と裏面電極層4の接触特性を改善する。熱処理
は、i層34の膜厚や裏面電極の種類によって熱処理時
間、温度が変わるため、平均効率が最も高くなるような
熱処理時間および温度が選定される。図3は平均効率の
熱処理時間の依存性を表す一例である。この例は、i層
を約300Å、熱処理温度を1750Cのときのデータであ
り、このときの平均効率は熱処理時間が20分のときに
最も高く、それよりも多くても少なくても低くなる傾向
を示している。
Since the high resistance intrinsic layer 34 (i layer) is present between the n layer 33 and the back electrode layer 4 in the a-Si solar cell element manufactured by the above method, the contact resistance is large as it is. Satisfactory properties cannot be obtained. Therefore, heat treatment is performed after the above manufacturing process to diffuse the metal into the i layer 34 and improve the contact characteristics between the n layer 33 and the back electrode layer 4. In the heat treatment, the heat treatment time and the temperature change depending on the film thickness of the i layer 34 and the type of the back electrode, so that the heat treatment time and the temperature that maximize the average efficiency are selected. FIG. 3 is an example showing the dependence of the average efficiency on the heat treatment time. This example is about 300Å to i layer, a data when the heat treatment temperature 175 0 C, the average efficiency heat treatment time at this time is highest at 20 minutes, lower more or less than that Shows a tendency to become.

【0010】ところで、n層またはp層上に500Åのi
層を形成した場合、その膜内の不純物濃度が約3桁低減
されることが知られている。しかし、i層の膜厚を500
Å以上に厚くしても不純濃度は変化しない。そのため、
i層を厚膜にすると、熱処理時間が長くかかり、温度も
高くしなければならず、製造上不利であり、一方i層を
300Åよりかなり薄膜にすると、燐濃度の抑制効果が小
さくなってしまう。したがって、i層の膜厚の選定は、
裏面電極の材質、熱処理時間、熱処理温度等の関係にお
いて行われる。
By the way, i of 500Å is formed on the n layer or the p layer.
It is known that when a layer is formed, the impurity concentration in the film is reduced by about 3 orders of magnitude. However, if the i-layer thickness is 500
Impurity concentration does not change even if the thickness is more than Å. for that reason,
If the i-layer is thick, the heat treatment time is long and the temperature must be high, which is disadvantageous in manufacturing.
If the film thickness is made much thinner than 300Å, the effect of suppressing the phosphorus concentration becomes small. Therefore, the selection of the film thickness of the i layer is
It is performed in relation to the material of the back electrode, heat treatment time, heat treatment temperature, and the like.

【0011】図4は、本発明のa−Si太陽電池素子に
おける熱処理の効果である。図4(a)は、熱処理を行
う前の特性で、明らかに高抵抗真性層によって特性が悪
くなっている。図4(b)に示すように175°Cで、約2
0分の熱処理を行えば、性能を十分に改善することがで
きた(第1表参照)。また出力として100mW/cm2の入射
光の場合に8.6%という高効率が得られた(第2表参
照)。第1表は、図4に示すa−Si太陽電池素子の主
な特性値を示す。第2表は、従来型の太陽電池素子及び
本発明の太陽電池素子の特性の比較である。
FIG. 4 shows the effect of heat treatment on the a-Si solar cell element of the present invention. FIG. 4A shows the characteristics before the heat treatment, which is clearly deteriorated by the high resistance intrinsic layer. As shown in Fig. 4 (b), at 175 ° C, about 2
When the heat treatment was performed for 0 minutes, the performance could be sufficiently improved (see Table 1). As an output, a high efficiency of 8.6% was obtained when the incident light was 100 mW / cm 2 (see Table 2). Table 1 shows main characteristic values of the a-Si solar cell element shown in FIG. Table 2 is a comparison of the characteristics of the conventional solar cell element and the solar cell element of the present invention.

【0012】 第1表 熱処理前 熱処理後 面積 cm2 3.2 3.2 光照度 mW/cm2 100 100 得られる最大パワー mW 9.992 22.144 最適動作電流 mA 27.58 34.60 最適動作電圧 V 0.36 0.64 短絡電流 mA 39.58 41.79 開放電圧 V 0.69 0.90 短絡電流密度 mA/cm2 12.48 13.06 最適動作電流密度 mA/cm2 8.62 10.81 曲線因子 0.361 0.586 変換効率 % 3.11 6.89 Table 1 Before heat treatment After heat treatment Area cm 2 3.2 3.2 Light intensity mW / cm 2 100 100 Maximum power obtained mW 9.992 22.144 Optimum operating current mA 27.58 34.60 Optimum operating voltage V 0.36 0.64 Short circuit current mA 39.58 41.79 Open voltage V 0.69 0.90 short-circuit current density mA / cm 2 12.48 13.06 optimum operating current density mA / cm 2 8.62 10.81 fill factor 0.361 0.586 conversion efficiency% 3.11 6.89

【0013】 第2表 太陽電池の種類 効率 開放電圧 短絡電流密度 曲線因子 % V mW/cm2 従来型 7.90 0.91 14.61 0.594 本発明 8.58 0.88 14.84 0.657 Table 2 Types of solar cells Efficiency Open circuit voltage Short circuit current density Fill factor% V mW / cm 2 Conventional type 7.90 0.91 14.61 0.594 Present invention 8.58 0.88 14.84 0.657

【0014】[0014]

【発明の効果】上記の通り、本発明によれば、裏面電極
層が真性a−Si層内に拡散されていることにより、a
−Si層と裏面電極4間の接触抵抗が大きくならず、真
性型a−Si層34の無いものと同等の性能を持たせる
ことができる。また本発明の方法によれば、a−Si型
太陽電池の形成後に、さらに所定の膜厚の真性型a−S
i層を形成し、裏面電極を形成した後熱処理をしたこと
で、その後形成する太陽電池への燐の影響を抑えられ、
単一反応室プラズマCVD装置でも再現性よく高性能か
つ低コストなa−Si型太陽電池を製造できる。
As described above, according to the present invention, since the back electrode layer is diffused in the intrinsic a-Si layer, a
The contact resistance between the -Si layer and the back electrode 4 does not increase, and the same performance as that without the intrinsic a-Si layer 34 can be provided. Further, according to the method of the present invention, after the formation of the a-Si solar cell, the intrinsic type a-S having a predetermined film thickness is further formed.
By forming the i layer, forming the back electrode, and then performing heat treatment, it is possible to suppress the influence of phosphorus on the solar cells to be formed later.
Even with a single reaction chamber plasma CVD apparatus, an a-Si solar cell with high reproducibility, high performance and low cost can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】非晶質シリコン太陽電池素子の構造図である。FIG. 1 is a structural diagram of an amorphous silicon solar cell element.

【図2】従来の非晶質シリコン太陽電池素子の構造図で
ある。
FIG. 2 is a structural diagram of a conventional amorphous silicon solar cell element.

【図3】平均効率の熱処理依存性を示す図である。FIG. 3 is a diagram showing heat treatment dependency of average efficiency.

【図4】本発明の太陽電池素子における熱処理の効果を
説明する図で、図4Aは熱処理前の電流ー電圧特性、図
4Bは熱処理後の電流ー電圧特性である。
FIG. 4 is a diagram for explaining the effect of heat treatment in the solar cell element of the present invention, FIG. 4A is a current-voltage characteristic before heat treatment, and FIG. 4B is a current-voltage characteristic after heat treatment.

【符号の説明】[Explanation of symbols]

1 ガラス基板 2 透明電極層 3 非晶質シリコン(a−Si)層 31 p型非晶質シリコン層 32 i型非晶質シリコン層 33 n型非晶質シリコン層 34 燐濃度抑制i層 4 裏面金属電極 1 Glass Substrate 2 Transparent Electrode Layer 3 Amorphous Silicon (a-Si) Layer 31 p-type Amorphous Silicon Layer 32 i-type Amorphous Silicon Layer 33 n-type Amorphous Silicon Layer 34 Phosphorus Concentration Suppression i-layer 4 Backside Metal electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板上に形成された透明電極層、
該透明電極層上に形成されたpin接合を有する非晶質
シリコン層と、該非晶質シリコン層上に形成された真性
型非晶質シリコン層と、該真性型非晶質シリコン層内に
拡散させて形成された裏面電極とから成る非晶質シリコ
ン太陽電池。
1. A transparent electrode layer formed on a glass substrate,
An amorphous silicon layer having a pin junction formed on the transparent electrode layer, an intrinsic type amorphous silicon layer formed on the amorphous silicon layer, and diffused in the intrinsic type amorphous silicon layer An amorphous silicon solar cell comprising a back electrode formed by the above process.
【請求項2】 透明電極層を被着した絶縁性透明基板上
にpin接合を有する非晶質シリコン層を設け、次いで
真性型非晶質シリコン層を形成し、金属裏面電極を付け
後、熱処理を行うことを特徴とする非晶質シリコン太陽
電池の製造方法。
2. An amorphous silicon layer having a pin junction is provided on an insulating transparent substrate coated with a transparent electrode layer, then an intrinsic type amorphous silicon layer is formed, a metal back electrode is attached, and then heat treatment is performed. A method for manufacturing an amorphous silicon solar cell, which comprises:
JP3206690A 1991-08-19 1991-08-19 Amorphous silicon solar battery and its manufacture Pending JPH0548127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3206690A JPH0548127A (en) 1991-08-19 1991-08-19 Amorphous silicon solar battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3206690A JPH0548127A (en) 1991-08-19 1991-08-19 Amorphous silicon solar battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH0548127A true JPH0548127A (en) 1993-02-26

Family

ID=16527503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206690A Pending JPH0548127A (en) 1991-08-19 1991-08-19 Amorphous silicon solar battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH0548127A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222965A (en) * 2001-01-26 2002-08-09 National Institute Of Advanced Industrial & Technology Photoelectric converter
US7960645B2 (en) 2003-05-07 2011-06-14 Imec Germanium solar cell and method for the production thereof
US7964789B2 (en) * 2003-05-07 2011-06-21 Imec Germanium solar cell and method for the production thereof
US8664525B2 (en) * 2003-05-07 2014-03-04 Imec Germanium solar cell and method for the production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222965A (en) * 2001-01-26 2002-08-09 National Institute Of Advanced Industrial & Technology Photoelectric converter
US7960645B2 (en) 2003-05-07 2011-06-14 Imec Germanium solar cell and method for the production thereof
US7964789B2 (en) * 2003-05-07 2011-06-21 Imec Germanium solar cell and method for the production thereof
US8664525B2 (en) * 2003-05-07 2014-03-04 Imec Germanium solar cell and method for the production thereof

Similar Documents

Publication Publication Date Title
US6878921B2 (en) Photovoltaic device and manufacturing method thereof
EP0523919B1 (en) Multijunction photovoltaic device and fabrication method
US5641362A (en) Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
US6459034B2 (en) Multi-junction solar cell
US4638111A (en) Thin film solar cell module
US8049101B2 (en) Photovoltaic device
US6670542B2 (en) Semiconductor device and manufacturing method thereof
JP3349308B2 (en) Photovoltaic element
US6566159B2 (en) Method of manufacturing tandem thin-film solar cell
JPS59205770A (en) Photovoltaic device
JPH05243596A (en) Manufacture of laminated type solar cell
KR20090096637A (en) Reactive sputter deposition of a transparent conductive film
JPH11354820A (en) Photoelectric conversion element and manufacture thereof
JP2006080557A (en) Improved stabilizing properties of amorphous silicon series element manufactured by high hydrogen dilution low temperature plasma vapor deposition
US4781765A (en) Photovoltaic device
JP2989923B2 (en) Solar cell element
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
JP2001028452A (en) Photoelectric conversion device
JPH0548127A (en) Amorphous silicon solar battery and its manufacture
JP2675754B2 (en) Solar cell
JPH06338623A (en) Thin-film solar cell
JPH09181343A (en) Photoelectric conversion device
JP2744680B2 (en) Manufacturing method of thin film solar cell
US20100147380A1 (en) Hybrid Photovoltaic Cell Using Amorphous Silicon Germanium Absorbers and Wide Bandgap Dopant Layers
JP2757896B2 (en) Photovoltaic device