JP2989923B2 - Solar cell element - Google Patents

Solar cell element

Info

Publication number
JP2989923B2
JP2989923B2 JP3084807A JP8480791A JP2989923B2 JP 2989923 B2 JP2989923 B2 JP 2989923B2 JP 3084807 A JP3084807 A JP 3084807A JP 8480791 A JP8480791 A JP 8480791A JP 2989923 B2 JP2989923 B2 JP 2989923B2
Authority
JP
Japan
Prior art keywords
silicon nitride
nitride film
refractive index
film
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3084807A
Other languages
Japanese (ja)
Other versions
JPH04296063A (en
Inventor
健次 福井
賢治 増利
勝彦 白沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP3084807A priority Critical patent/JP2989923B2/en
Publication of JPH04296063A publication Critical patent/JPH04296063A/en
Application granted granted Critical
Publication of JP2989923B2 publication Critical patent/JP2989923B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上に利用分野】本発明は太陽電池素子に関し、特
に半導体基板の受光面側に反射防止膜を有する太陽電池
素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell device, and more particularly to a solar cell device having an antireflection film on a light receiving surface of a semiconductor substrate.

【0002】[0002]

【従来の技術およびその問題点】太陽電池素子の受光面
側には、太陽電池素子の受光面部分での反射損失を低減
させるために反射防止膜を形成するのが一般的である。
2. Description of the Related Art Generally, an antireflection film is formed on the light receiving surface side of a solar cell element in order to reduce reflection loss at the light receiving surface of the solar cell element.

【0003】この反射防止膜としては、酸化シリコン
膜、酸化チタン膜、酸化タンタル膜、あるいはフッ化マ
グネシウム膜などを単層にしたり、二層にしたりする。
この場合、反射防止膜の屈折率、太陽電池素子を被覆す
るカバーガラスの屈折率、空気の屈折率の順で徐々に小
さくなるように反射防止膜の材料を選択すればよいが、
反射防止膜としては、単層のものより二層のものが効果
的である。反射防止膜を二層構造にする場合も、半導体
基板に屈折率の大きい膜を被着して、この上に屈折率の
比較的小さい膜を被着するように形成される(例えば特
開昭57─126173号公報参照)。
As the antireflection film, a silicon oxide film, a titanium oxide film, a tantalum oxide film, a magnesium fluoride film, or the like is used as a single layer or a two layer.
In this case, the material of the antireflection film may be selected so that the refractive index of the antireflection film, the refractive index of the cover glass covering the solar cell element, and the refractive index of air gradually decrease.
As the antireflection film, two layers are more effective than a single layer. When the antireflection film has a two-layer structure, a film having a large refractive index is formed on a semiconductor substrate, and a film having a relatively small refractive index is formed thereon. 57-126173).

【0004】このような反射防止膜は、真空蒸着法、ス
パッタリング法、あるいは回転塗布法などで形成される
が、半導体基板側から順次屈折率が小さくなるような反
射防止膜を形成するには、一層目の反射防止膜の材料と
二層目の反射防止膜の材料を変えなければならず、それ
ぞれの膜を形成するために複数の装置が必要で、製造工
程も煩雑であるという問題がある。
[0004] Such an antireflection film is formed by a vacuum deposition method, a sputtering method, a spin coating method, or the like. To form an antireflection film having a refractive index gradually decreasing from the semiconductor substrate side, It is necessary to change the material of the first layer anti-reflection film and the material of the second layer anti-reflection film, and there is a problem that a plurality of devices are required to form each film, and the manufacturing process is complicated. .

【0005】そこで、例えば窒化シリコン(SixN
y)膜などのように、構成元素の比率を変えることによ
って屈折率を変えることができる材料で反射防止膜を形
成すれば、同一材料で順次屈折率が小さくなるように形
成でき、製造工程が簡略化できる。
Therefore, for example, silicon nitride (SixN
y) If the antireflection film is formed of a material such as a film, the refractive index of which can be changed by changing the ratio of constituent elements, the same material can be formed so that the refractive index decreases sequentially, and the manufacturing process is reduced. Can be simplified.

【0006】ところが、窒化シリコン膜を一層目の屈折
率が例えばn=2.1以上のものとなり、二層目がn=
2.1以下のものとなるような二層構造に形成すると、
反射率を低下させることはできるものの、太陽電池素子
の出力特性はむしろ低下するという問題があった。すな
わち、反射率は低下するが、太陽電池の短絡光電流は全
く向上せず、開放電圧は逆に低下してしまう。このよう
に、屈折率の高い窒化シリコン膜をシリコン基板上に形
成した場合に短絡光電流が向上せずしかも開放電圧が低
下する理由は明らかでないが、250〜600℃程度の
温度で窒化シリコン膜を形成して室温まで降下させる際
の窒化シリコン膜のストレスでシリコン基板の表面に格
子欠陥ができ、この欠陥部分でキャリアが再結合して、
再結合損失による特性の低下を来すものと考えられる。
すなわち、より屈折率が大きくて密度の高い窒化シリコ
ン膜には、パシベーション効果がないものと思われる。
However, the first layer of the silicon nitride film has a refractive index of, for example, n = 2.1 or more, and the second layer has a refractive index of n = 2.1.
2.1 When formed into a two-layer structure such that
Although the reflectance can be reduced, there is a problem that the output characteristics of the solar cell element are rather lowered. That is, although the reflectance decreases, the short-circuit photocurrent of the solar cell does not improve at all, and the open-circuit voltage decreases. Although the reason why the short-circuit photocurrent does not improve and the open-circuit voltage decreases when the silicon nitride film having a high refractive index is formed on the silicon substrate is not clear, it is not clear at a temperature of about 250 to 600 ° C. The lattice defect is formed on the surface of the silicon substrate due to the stress of the silicon nitride film when forming and lowering to room temperature, and the carriers recombine at this defect portion,
It is considered that the characteristics are deteriorated due to the recombination loss.
That is, it is considered that a silicon nitride film having a higher refractive index and a higher density has no passivation effect.

【0007】[0007]

【課題を解決するための手段】本発明によれば、シリコ
ンから成る半導体基板内にp−n接合部を形成して受光
面側と裏面側に電極を形成するとともに受光面側に反射
防止膜を形成して成る太陽電池素子において、前記反射
防止膜を屈折率n=2.1以下の第1の窒化シリコン膜
と、この第1の窒化シリコン膜よりも屈折率の大きい第
2の窒化シリコン膜とを順次積層して形成したことを特
徴とする太陽電池素子が提供され、そのことにより上記
目的が達成される。
According to the present invention, a pn junction is formed in a semiconductor substrate made of silicon, electrodes are formed on a light receiving surface side and a back surface side, and an antireflection film is formed on a light receiving surface side. A first silicon nitride film having a refractive index n = 2.1 or less and a second silicon nitride film having a refractive index larger than that of the first silicon nitride film. A solar cell element characterized by being formed by sequentially laminating films is provided, whereby the above object is achieved.

【0008】[0008]

【問題点を解決するための手段】本発明によれば、半導
体基板内にp−n接合部を形成して受光面側と裏面側に
電極を形成するとともに受光面側に反射防止膜を形成し
て成る太陽電池素子において、前記反射防止膜を屈折率
n=2.1以下の第1の窒化シリコン膜と、この第1の
窒化シリコン膜よりも屈折率の大きい第2の窒化シリコ
ン膜とを順次積層して形成したことを特徴とする太陽電
池素子が提供され、そのことにより上記目的が達成され
る。
According to the present invention, a pn junction is formed in a semiconductor substrate to form electrodes on a light receiving surface side and a back surface side, and an antireflection film is formed on a light receiving surface side. In the solar cell element, the antireflection film is formed of a first silicon nitride film having a refractive index n = 2.1 or less, and a second silicon nitride film having a refractive index larger than that of the first silicon nitride film. Are sequentially laminated to provide a solar cell element, which achieves the above object.

【0009】[0009]

【作用】上記のように構成することにより、シリコンか
ら成る半導体基板表面に格子欠陥ができるのを防止でき
るとともに、反射率も低下させることができ、出力特性
の良好な太陽電池素子を提供できる。また、二層構造の
反射防止膜を同一の化合物で形成することから、同一の
装置で連続的に形成でき、製造工程も簡略化できる。
With the above construction, it is possible to prevent lattice defects from being formed on the surface of the semiconductor substrate made of silicon, to reduce the reflectance, and to provide a solar cell element having good output characteristics. In addition, since the antireflection film having a two-layer structure is formed of the same compound, the antireflection film can be formed continuously by the same apparatus, and the manufacturing process can be simplified.

【0010】[0010]

【実施例】以下、本発明を添付図面に基づき詳細に説明
する。図1は、本発明に係る太陽電池素子の一実施例を
示す断面図であり、1はシリコン基板である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing one embodiment of a solar cell element according to the present invention, where 1 is a silicon substrate.

【0011】前記シリコン基板1は、例えばボロンなど
のp型不純物を含有したp型シリコン基板で構成され
る。このシリコン基板1は引上げ法などによって形成し
た単結晶シリコン基板やキャスティング法によって形成
した多結晶シリコン基板などで構成される。このシリコ
ン基板1の受光面側には、リン(P)などを高濃度に拡
散させたn+層2が形成されており、このn+層2とp
型シリコン基板でp−n接合が形成される。なお、シリ
コン基板1内の裏面側には、BSF(裏面電界)層とな
るアミニウム元素が高濃度に拡散されたp+層3を形成
してもよい。
The silicon substrate 1 is formed of a p-type silicon substrate containing a p-type impurity such as boron. This silicon substrate 1 is composed of a single crystal silicon substrate formed by a pulling method or the like, a polycrystalline silicon substrate formed by a casting method, or the like. On the light receiving surface side of the silicon substrate 1, an n + layer 2 in which phosphorus (P) or the like is diffused at a high concentration is formed.
A pn junction is formed on the silicon substrate. Note that a p + layer 3 in which an aminium element serving as a BSF (back surface electric field) layer is diffused at a high concentration may be formed on the back surface side in the silicon substrate 1.

【0012】前記シリコン基板1の表面側には、屈折率
n=2.1以下の第1の窒化シリコン膜4と、この第1
の窒化シリコン膜4よりも屈折率の大きい第2の窒化シ
リコン膜5とが形成されている。第1の窒化シリコン膜
4は、シランガス(SiH4)を0.21l/mit以
下、アンモニアガス(NH3)を1.5l/mit、お
よびキャリアガスとしての窒素ガス(N2)を用いて9
0〜450KHzの高周波電源でグロー放電分解して堆
積させるプラズマCVD法により、シリコン基板1上に
厚み100〜1000Å程度に形成される。このような
第1の窒化シリコン膜は、屈折率n=2.1以下とな
る。また、このようにアンモニアガスの流量比を相対的
に多くすることによって、パシベーション効果を持た
せ、シリコン基板1表面に格子欠陥が生じるのを低減さ
せることができるものと考えられる。
On the front side of the silicon substrate 1, a first silicon nitride film 4 having a refractive index n = 2.1 or less is formed.
And a second silicon nitride film 5 having a higher refractive index than the silicon nitride film 4. The first silicon nitride film 4 is formed using a silane gas (SiH4) of 0.21 l / mit or less, an ammonia gas (NH3) of 1.5 l / mit, and a nitrogen gas (N2) as a carrier gas.
It is formed on the silicon substrate 1 to a thickness of about 100 to 1000 ° by a plasma CVD method in which glow discharge decomposition and deposition are performed with a high-frequency power supply of 0 to 450 KHz. Such a first silicon nitride film has a refractive index n = 2.1 or less. In addition, it is considered that by relatively increasing the flow rate ratio of the ammonia gas in this manner, a passivation effect can be provided and the occurrence of lattice defects on the surface of the silicon substrate 1 can be reduced.

【0013】前記第1の窒化シリコン膜4上に、第2の
窒化シリコン膜5を形成する。この第2の窒化シリコン
膜4もプラズマCVD法により形成される。この第2の
窒化シリコン膜は、シランガス(SiH4)の流量比を
0.21l/mit以上に設定して形成する他は第1の
窒化シリコン膜と同一の条件で厚み600Å程度に形成
される。この第2の窒化シリコン膜5は、第1の窒化シ
リコン膜4の屈折率よりも大きくなるように形成すれば
よく、屈折率n=2.0以上となるように形成すること
により、反射率を低下させることができる。すなわち、
第1の窒化シリコン膜3が2.0以下の場合でも、この
第2の窒化シリコン膜の屈折率は2.0以上にすること
が望ましい。この第2の窒化シリコン膜5は、第1の窒
化シリコン膜と同一のプラズマCVD装置を用いて連続
して形成することができる
On the first silicon nitride film 4, a second silicon nitride film 5 is formed. This second silicon nitride film 4 is also formed by the plasma CVD method. The second silicon nitride film is formed to have a thickness of about 600 ° under the same conditions as the first silicon nitride film except that the flow rate ratio of the silane gas (SiH4) is set to 0.21 l / mit or more. The second silicon nitride film 5 may be formed so as to have a refractive index higher than that of the first silicon nitride film 4. Can be reduced. That is,
Even when the first silicon nitride film 3 is 2.0 or less, it is desirable that the refractive index of the second silicon nitride film be 2.0 or more. This second silicon nitride film 5 can be formed continuously using the same plasma CVD device as the first silicon nitride film.

【0014】なお、前記シリコン基板1の裏面側には、
BSR(裏面側反射防止)膜を兼ねるAlなどから成る
裏面側電極6がスクリーン印刷法や蒸着法によって形成
され、シリコン基板1の裏面側には、反射防止膜4、5
を部分的に除去して表面側電極7が形成される。
Incidentally, on the back side of the silicon substrate 1,
A backside electrode 6 made of Al or the like also serving as a BSR (backside antireflection) film is formed by a screen printing method or a vapor deposition method.
Is partially removed to form the surface-side electrode 7.

【0015】[0015]

【実験例】キャスティング法で形成した多結晶シリコン
基板上に、厚みが660Åで屈折率n=2.0、n=
2.2、n=2.3の窒化シリコン膜から成る一層構造
の反射防止膜を形成した試料1、2、3と、厚みが66
0Åで屈折率n=2.0の第1の窒化シリコン膜と厚み
が350Åで屈折率n=2.3の第2の窒化シリコン膜
とから成る二層構造の反射防止膜を形成した試料4のそ
れぞれの短絡電流Isc(mA)、開放電圧Voc
(V)、変換効率Effi.(%)、曲線因子F.Fを
それぞれ下表に示す。
[Experimental example] On a polycrystalline silicon substrate formed by a casting method, a thickness of 660 ° and a refractive index of n = 2.0, n =
Samples 1, 2, and 3 having a single-layered antireflection film formed of a 2.2, n = 2.3 silicon nitride film
Sample 4 in which a two-layered antireflection film formed of a first silicon nitride film having a refractive index of n = 2.0 at 0 ° and a second silicon nitride film having a refractive index of n = 2.3 having a thickness of 350 ° was formed. Short circuit current Isc (mA), open circuit voltage Voc
(V), conversion efficiency Effi. (%), Fill factor F. F is shown in the table below.

【0016】 表 試料No. 屈折率 Isc(mA) Voc(V) Effi.(%) F.F 1. n=2.0 30.38 0.585 13.24 0.745 2. n=2.2 30.52 0.577 12.92 0.734 3. n=2.3 29.15 0.565 11.99 0.728 4. n=2.0/n=2.3 32.50 0.597 14.45 0.745 Table Sample No. Refractive index Isc (mA) Voc (V) Effi. (%) FF 1.n = 2.0 30.38 0.585 13.24 0.745 2.n = 2.2 30.52 0.577 12.92 0.734 3.n = 2.3 29.15 0.565 11.99 0.728 4.n = 2.0 / n = 2.3 32.50 0.597 14.45 0.745

【0017】上記表から明らかなように、屈折率n=
2.2、n=2.3の試料2および試料3では、開放電
圧Vocが0.597、0.565と低く、窒化シリコ
ン膜によるパシベーション効果が表れず、変換効率のE
ffi.も低いものとなる。一方、屈折率n=2.0の
試料1では、反射防止膜の反射率が比較的大きいことか
ら短絡電流Iscはそれほど伸びないが、開放電圧Vo
cは大きく伸び、窒化シリコン膜によるパシベーション
効果が認められる。さらに、試料1のものに、反射率を
低下させるための屈折率の大きい(n=2.3)窒化シ
リコン膜をつけて二層構造とした試料4のものでは、短
絡電流Iscが大きく伸びるとともに、開放電圧Voc
も最も高くなる。
As is clear from the above table, the refractive index n =
In Samples 2 and 3 in which 2.2 and n = 2.3, the open-circuit voltage Voc was as low as 0.597 and 0.565, the passivation effect of the silicon nitride film did not appear, and the conversion efficiency E
ffi. Will also be low. On the other hand, in the sample 1 having a refractive index n = 2.0, the short-circuit current Isc does not increase so much because the reflectance of the antireflection film is relatively large, but the open-circuit voltage Vo
c greatly increases, and a passivation effect by the silicon nitride film is observed. Further, in the sample 4 having a two-layer structure in which a silicon nitride film having a large refractive index (n = 2.3) for lowering the reflectance is added to the sample 1, the short-circuit current Isc is greatly increased. , Open circuit voltage Voc
Will also be the highest.

【0018】[0018]

【発明の効果】以上のように、本発明に係る太陽電池素
子によれば、反射防止膜が屈折率n=2.1以下の第1
の窒化シリコン膜と、この第1の窒化シリコン膜よりも
屈折率の大きい第2の窒化シリコン膜とを順次積層して
形成したことから、シリコンから成る半導体基板表面の
近傍に格子欠陥ができるのを防止できるとともに、反射
率も低下させることができ、出力特性の良好な太陽電池
素子を提供できる。また、二層構造の反射防止膜を一つ
の装置で連続して形成でき、製造工程も簡略化される。
As described above, according to the solar cell device of the present invention, the antireflection film has the first refractive index n = 2.1 or less.
And a second silicon nitride film having a refractive index higher than that of the first silicon nitride film are sequentially laminated, so that a lattice defect can be formed near the surface of the semiconductor substrate made of silicon. Can be prevented, the reflectance can be reduced, and a solar cell element having good output characteristics can be provided. Further, the antireflection film having a two-layer structure can be continuously formed by one apparatus, and the manufacturing process is also simplified.

【0019】[0019]

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本発明に係る太陽電池素子の一実施例を
示す断面図
FIG. 1 is a cross-sectional view showing one embodiment of a solar cell element according to the present invention.

【符号の説明】[Explanation of symbols]

1:半導体基板 2:n+領域 3:p+領域 4:第1の窒化シリコン膜 5:第2の窒化シリコン膜 6:裏面電極 7:受光面側電極 1: semiconductor substrate 2: n + region 3: p + region 4: first silicon nitride film 5: second silicon nitride film 6: back surface electrode 7: light receiving surface side electrode

フロントページの続き (56)参考文献 特開 昭57−5374(JP,A) 特開 昭59−105382(JP,A) 特開 昭59−200473(JP,A) 特開 昭61−222228(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 31/04 - 31/078 Continuation of front page (56) References JP-A-57-5374 (JP, A) JP-A-59-105382 (JP, A) JP-A-59-200473 (JP, A) JP-A-61-222228 (JP) , A) (58) Field surveyed (Int.Cl. 6 , DB name) H01L 31/04-31/078

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコンから成る半導体基板内にp−n
接合部を形成して受光面側と裏面側に電極を形成すると
ともに受光面側に反射防止膜を形成して成る太陽電池素
子において、前記反射防止膜を屈折率n=2.1以下の
第1の窒化シリコン膜と、この第1の窒化シリコン膜よ
りも屈折率の大きい第2の窒化シリコン膜とを順次積層
して形成したことを特徴とする太陽電池素子。
1. A semiconductor substrate made of silicon has pn
In a solar cell element comprising a junction portion, electrodes formed on a light receiving surface side and a back surface side, and an antireflection film formed on a light receiving surface side, the antireflection film has a refractive index n = 2.1 or less. A solar cell element comprising: a first silicon nitride film; and a second silicon nitride film having a higher refractive index than the first silicon nitride film.
JP3084807A 1991-03-25 1991-03-25 Solar cell element Expired - Lifetime JP2989923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3084807A JP2989923B2 (en) 1991-03-25 1991-03-25 Solar cell element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3084807A JP2989923B2 (en) 1991-03-25 1991-03-25 Solar cell element

Publications (2)

Publication Number Publication Date
JPH04296063A JPH04296063A (en) 1992-10-20
JP2989923B2 true JP2989923B2 (en) 1999-12-13

Family

ID=13840993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3084807A Expired - Lifetime JP2989923B2 (en) 1991-03-25 1991-03-25 Solar cell element

Country Status (1)

Country Link
JP (1) JP2989923B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2661676B2 (en) * 1994-09-06 1997-10-08 株式会社日立製作所 Solar cell
JP2002270879A (en) * 2001-03-14 2002-09-20 Mitsubishi Electric Corp Semiconductor device
JP4540447B2 (en) 2004-10-27 2010-09-08 シャープ株式会社 Solar cell and method for manufacturing solar cell
JP5063875B2 (en) * 2005-07-27 2012-10-31 パナソニック株式会社 Manufacturing method of optical semiconductor device
JP5409007B2 (en) * 2005-11-08 2014-02-05 エルジー・エレクトロニクス・インコーポレーテッド High efficiency solar cell and preparation method thereof
JP4864661B2 (en) * 2006-11-22 2012-02-01 東京エレクトロン株式会社 Solar cell manufacturing method and solar cell manufacturing apparatus
KR101241617B1 (en) * 2006-12-01 2013-03-08 샤프 가부시키가이샤 Solar cell and method of manufacturing the same
JP5014223B2 (en) * 2008-03-25 2012-08-29 三菱電機株式会社 Method for manufacturing solar cell and method for manufacturing solar cell module
JP2008277860A (en) * 2008-07-10 2008-11-13 Toyota Motor Corp Photoelectric converting element
JP5004932B2 (en) * 2008-12-04 2012-08-22 シャープ株式会社 Solar cell and method for manufacturing solar cell
DE102009025977A1 (en) 2009-06-16 2010-12-23 Q-Cells Se Solar cell and manufacturing process of a solar cell
DE102009044052A1 (en) * 2009-09-18 2011-03-24 Schott Solar Ag Crystalline solar cell, process for producing the same and process for producing a solar cell module
KR101155890B1 (en) * 2009-10-28 2012-06-20 엘지전자 주식회사 Solar cell and method for manufacturing the same
DE102011081863A1 (en) * 2011-08-31 2013-02-28 Robert Bosch Gmbh Solar cell and process for its production
JP2014022428A (en) * 2012-07-13 2014-02-03 Sharp Corp Solar cell and solar cell module
JP2014229712A (en) * 2013-05-21 2014-12-08 株式会社カネカ Solar cell and method for manufacturing the same, and solar cell module

Also Published As

Publication number Publication date
JPH04296063A (en) 1992-10-20

Similar Documents

Publication Publication Date Title
US5641362A (en) Structure and fabrication process for an aluminum alloy junction self-aligned back contact silicon solar cell
US6187150B1 (en) Method for manufacturing thin film photovoltaic device
JP2989923B2 (en) Solar cell element
EP1187223B1 (en) Photovoltaic device
TWI398004B (en) Solar cell and method for manufacturing the same
EP2095430B1 (en) Solar cell
US6383898B1 (en) Method for manufacturing photoelectric conversion device
US20070023081A1 (en) Compositionally-graded photovoltaic device and fabrication method, and related articles
JPS6249672A (en) Amorphous photovoltaic element
US20130186464A1 (en) Buffer layer for improving the performance and stability of surface passivation of silicon solar cells
KR20080002657A (en) Photovoltaic device which includes all-back-contact configuration and related processes
JPS59205770A (en) Photovoltaic device
JPH11354820A (en) Photoelectric conversion element and manufacture thereof
US4781765A (en) Photovoltaic device
JP2931498B2 (en) Solar cell and method of manufacturing the same
KR20050087248A (en) Solar cell using double anti-reflection coatings and fabrication method thereof
JP2001028452A (en) Photoelectric conversion device
JPH11274527A (en) Photovoltaic device
JPH09181343A (en) Photoelectric conversion device
JP2001007356A (en) Thin-film solar cell
JPH09181347A (en) Photoelectric converter
JP3649948B2 (en) Photovoltaic device and manufacturing method thereof
JPH0548127A (en) Amorphous silicon solar battery and its manufacture
JPS62165374A (en) Amorphous photovoltaic element
JP2958491B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 12