JPS6258663A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPS6258663A JPS6258663A JP19784385A JP19784385A JPS6258663A JP S6258663 A JPS6258663 A JP S6258663A JP 19784385 A JP19784385 A JP 19784385A JP 19784385 A JP19784385 A JP 19784385A JP S6258663 A JPS6258663 A JP S6258663A
- Authority
- JP
- Japan
- Prior art keywords
- silicon film
- film
- amorphous silicon
- etching
- polycrystalline silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Recrystallisation Techniques (AREA)
- Electrodes Of Semiconductors (AREA)
- Drying Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は半導体装置の製造方法に係り、特に多結晶シリ
コンゲート素子の形成方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for forming a polycrystalline silicon gate element.
(発明の概要)
本発明は、半導体装置の製造方法において、基板上に非
晶質シリコン膜を堆積する工程と、前記の非晶質シリコ
ン幌上にマスクバタン全形成する工程と、ドライエツチ
ング法によシ前記の非晶質シリコンl[t−選択エツチ
ングする工程と、ついで前記のマスクパタンを除去した
後、熱処理を行って、前記の非晶質シリコン膜を多結晶
化する工程とを具備することにより、高精度なシリコン
ゲート構造を有する半導体装置の製造方法をうろことに
ある。(Summary of the Invention) The present invention provides a method for manufacturing a semiconductor device, including a step of depositing an amorphous silicon film on a substrate, a step of completely forming a mask button on the amorphous silicon hood, and a dry etching method. The method further includes the step of selectively etching the amorphous silicon film, and the step of polycrystallizing the amorphous silicon film by performing heat treatment after removing the mask pattern. By doing so, it is possible to develop a method for manufacturing a semiconductor device having a highly precise silicon gate structure.
(従来技術および発明が解決しようとする問題点)近年
、半導体集積回路製作技術は1すます微細化の方向に進
んでおり、微細パタンの高精度な加工技術として、ドラ
イエツチング法が広く用いられつつあり、多結晶シリコ
ン膜の高精度の微細加工には反応性イオンエツチング法
が広く利用されている。この方法は、数十ないし数百e
Vの高エネルギーを有する反応性イオンのスパッタ作用
によシ映ヲエッチングするもので、この方法によれば、
バタン変換差の少い、いわゆる方向性エツチングが可能
である。しかし、この方法はイオンのスパッタ作用を利
用している几めに下地のシリコン酸化膜とのエッチレ−
ト比をあまり高くとれない。近年、半導体集積回路の微
細化が急速に進展しており、多結晶シリコンゲート素子
における下地シリコン酸化膜厚はま丁ます薄J−化の傾
向にある。したがって、多結晶シリコン俟とシリコン酸
化膜とのエッチレート比が高くとれる力日工技術が必要
となる。(Prior art and problems to be solved by the invention) In recent years, semiconductor integrated circuit manufacturing technology has progressed in the direction of further miniaturization, and dry etching is widely used as a high-precision processing technology for fine patterns. Reactive ion etching is now widely used for high-precision microfabrication of polycrystalline silicon films. This method requires tens to hundreds of e.g.
According to this method, the image is etched by the sputtering action of reactive ions having high energy of V.
It is possible to perform so-called directional etching with a small difference in baton conversion. However, this method utilizes the sputtering action of ions and requires careful etching with the underlying silicon oxide film.
The tortoise ratio cannot be made very high. In recent years, the miniaturization of semiconductor integrated circuits has progressed rapidly, and the thickness of the underlying silicon oxide film in polycrystalline silicon gate elements is becoming increasingly thinner. Therefore, a technology that can achieve a high etch rate ratio between the polycrystalline silicon film and the silicon oxide film is required.
それを央現しつるものとしてECRプラズマ流を用いる
方法やマグネトロン放電を利用する反応性イオンエツチ
ング法などがある。前者は低エネルギーを有するプラズ
マ流で多結晶シリコン1漠ヲエツチングするもの、後者
はマグネトロン放電を用いることによりプラズマ密度を
高め、低い電界下でエツチングを行うもので、いずれの
方法もイオン衝撃が少いために下地シリコン酸化膜との
選択比を高くとることができる。There are methods that embody this, such as a method using ECR plasma flow and a reactive ion etching method that uses magnetron discharge. The former involves etching polycrystalline silicon by using a plasma stream with low energy, while the latter uses magnetron discharge to increase the plasma density and performs etching under a low electric field.Both methods involve less ion bombardment. It is possible to obtain a high selectivity with respect to the underlying silicon oxide film.
一方、多結晶シリコン膜の加工性は1模質依存性が非常
に大きく、膜の形成法及びその後の膜の処理方法によジ
、ドライエツチング後のバタン形状が異なること全しば
しば経験する。例えば、減圧CVD法により堆積した膜
にイオン注入法によりP原子をドープし、熱処理を施し
几膜及びP原子を含んだドーピングガスの気相反応によ
り堆積し、熱処理を施し7′c膜を上記マグネトロン放
電を利用し九反応性イオンエツチング法によりエツチン
グすると、いずれの膜に訃いてもバタン側壁にアンダカ
ットが生じる。On the other hand, the processability of a polycrystalline silicon film is highly dependent on one pattern, and it is often experienced that the shape of the batten after dry etching differs depending on the method of forming the film and the method of subsequent processing of the film. For example, a film deposited by low-pressure CVD is doped with P atoms by ion implantation, heat-treated, and deposited by a vapor phase reaction of a doping gas containing P atoms. When etching is performed using a nine-reactive ion etching method using magnetron discharge, undercuts occur on the sidewalls of the batten no matter which film is etched.
このように、従来法で形成した上記2植類の多結晶シリ
コン膜を上記のドライエツチング法でエツチングした場
合、バタン側壁に明瞭なアンダカットが観察された。半
導体集積回路にはますます微細で高精度なバタン形成技
術が必要とされるようになっており、アンダカット全い
かにして小さくするかということが極めて重要になって
いる。したがって、従来技術の上記欠点は半導体集積回
路素子製作においては致命的なものである。As described above, when the above-mentioned two-type polycrystalline silicon film formed by the conventional method was etched by the above-mentioned dry etching method, clear undercuts were observed on the sidewalls of the batten. Semiconductor integrated circuits require increasingly finer and more precise batten forming techniques, and it is extremely important to determine how to reduce the overall size of undercuts. Therefore, the above-mentioned drawbacks of the prior art are fatal in the production of semiconductor integrated circuit devices.
(問題点を解決するための手段)
本発明はこれらの問題点に層目してなされたもので、そ
の目的とするところは高精度なシリコンゲート構造を有
する半導体装置の製造方法全提供することにある。(Means for Solving the Problems) The present invention has been made to address these problems, and its purpose is to provide a complete method for manufacturing a semiconductor device having a highly accurate silicon gate structure. It is in.
以下、図面全参照して本発明の一実施例について説明す
る。Hereinafter, one embodiment of the present invention will be described with reference to all the drawings.
第1図において、半導体基板1上に、膜厚100A以下
の非常に薄いシリコン酸化膜2を形成し、この上にジシ
ラン及びホスフィンの混合ガスを用いてCVD法により
、非晶質シリコン膜3を約3500 ′Aの厚さに堆積
する。その後、この非晶質シリコン膜3上に所望のレジ
ストバタン4を形成し、これをマスクにして非晶質シリ
コン膜3全ドライエツチングする(第2図)。In FIG. 1, a very thin silicon oxide film 2 with a thickness of 100 Å or less is formed on a semiconductor substrate 1, and an amorphous silicon film 3 is formed thereon by CVD using a mixed gas of disilane and phosphine. Deposited to a thickness of approximately 3500'A. Thereafter, a desired resist pattern 4 is formed on this amorphous silicon film 3, and using this as a mask, the entire amorphous silicon film 3 is dry etched (FIG. 2).
この場合、非晶質シリコン膜3のエツチング終了後、下
地シリコン酸化膜をオーバエッチしてもシリコン酸化膜
が残存するように、シリコン酸化膜に対する非晶質シリ
コン換のエッチレート比が十分大きくとれるようなエツ
チング方法が必要である。例えば、非晶質シリコン膜厚
のウェハ面内均一性が±10%、それを加工したとき、
エッチレートのウェハ面内均一性が±5%であったとす
ると、シリコン酸化膜に対する非晶質シリコン映のエッ
チレート比(選択比)は約10以上必要である。望まし
くは、シリコン酸化膜の残存厚は50λ以上であること
が好ましく、このためには、選択比が加以上必要となる
。このような高選択比を実現できるエツチング法として
はECRプラズマ流エツチングあるいはマグネトロン放
電式反応性イオンエツチング(低電力領域)などがある
。In this case, after the etching of the amorphous silicon film 3 is completed, the etch rate ratio of the amorphous silicon to the silicon oxide film is set to be sufficiently large so that the silicon oxide film remains even if the underlying silicon oxide film is overetched. Such an etching method is necessary. For example, when the uniformity of the amorphous silicon film thickness within the wafer surface is ±10%, when it is processed,
Assuming that the uniformity of the etch rate within the wafer surface is ±5%, the etch rate ratio (selectivity) of the amorphous silicon film to the silicon oxide film must be about 10 or more. Preferably, the remaining thickness of the silicon oxide film is 50λ or more, and for this purpose, a selectivity of more than 50% is required. Etching methods that can achieve such a high selectivity include ECR plasma etching and magnetron discharge reactive ion etching (low power range).
多結晶シリコン膜のプラズマエツチングにおけるエツチ
ングプロセスは通常、結晶粒の境界に沿って進行すると
考えられる。したがって、熱処理等により結晶粒径が大
きくなると、バタン側壁に生じるアンダカット量は大き
くなる。The etching process in plasma etching of polycrystalline silicon films is generally thought to proceed along grain boundaries. Therefore, when the crystal grain size increases due to heat treatment or the like, the amount of undercut generated on the batten side wall increases.
ま7!:、n型不純物を含んだ多結晶シリコン膜の場合
には、熱処理を施すことにょう活性化し、中性ラジカル
との反応が高まるためにエッチレートは増大し、且つア
ンダヵソトiも大きくなる。これに対し、非晶質シリコ
ン映ではシリコン粒径が非常に小さく、これをプラズマ
エツチングした場合、第2図に示すように、非晶質シリ
コン暎3の側壁にはアンダカットは生じていない○また
、エツチング途中の膜表面の状態は平滑であり、エツチ
ング終了時における下地シリコン酸化膜2の表面も非常
に平滑であることを観察している。このようにして形成
した非晶質シリコン膜バタンを有する試料ヲへプラズマ
中で所定の時間だけアッシング処理を行い、レジストバ
タン4を除去する。その後、この試料を窒素雰囲気中で
例えば900℃、30分間の熱処理をすると非晶質シリ
コン膜3は結晶化し多結晶シリコン1換3′となる(第
3図)。このとき、非晶質シリコン暎3中にドープされ
ているP原子は活性化され、電気伝導を司どるキャリア
密度が高まり、多結晶シリコン嗅3′の比抵抗は低下す
る。非晶質シリコン映3を多結晶シリコン暎3′に変質
させ、比抵抗を低下させることによシ、この膜はシリコ
ンゲート素子のゲート電極配線として機能する。非晶質
シリコン膜全多結晶化させる方法としては上記のような
窒素雰囲気中におけるアニール処理による方法以外に酸
化工程を通すことにより、必然的に多結晶化するので、
場合によってはアニール処理工程を省略することもでき
る。第4図は非晶質シリコンバタンを形成後、酸化工程
を通した後の断面図であり、多結晶シリコン膜バタン3
′の表面は酸化膜5に覆われている。Ma7! : In the case of a polycrystalline silicon film containing n-type impurities, it is activated by heat treatment, and the reaction with neutral radicals increases, so the etch rate increases and the undercurrent i also increases. On the other hand, in amorphous silicon film, the silicon grain size is very small, and when it is plasma etched, no undercuts occur on the side walls of the amorphous silicon film 3, as shown in Figure 2. It has also been observed that the surface of the film during etching is smooth, and that the surface of the underlying silicon oxide film 2 is also very smooth at the end of etching. The sample having the amorphous silicon film bump thus formed is subjected to an ashing process in plasma for a predetermined period of time to remove the resist bump 4. Thereafter, this sample is heat-treated at, for example, 900° C. for 30 minutes in a nitrogen atmosphere, and the amorphous silicon film 3 is crystallized to become polycrystalline silicon 1 3' (FIG. 3). At this time, the P atoms doped in the amorphous silicon layer 3 are activated, the carrier density that controls electrical conduction increases, and the specific resistance of the polycrystalline silicon layer 3' decreases. By transforming the amorphous silicon film 3 into a polycrystalline silicon film 3' and lowering the specific resistance, this film functions as a gate electrode wiring of a silicon gate element. As a method for completely polycrystallizing an amorphous silicon film, in addition to the above-mentioned method of annealing in a nitrogen atmosphere, passing an oxidation process will inevitably result in polycrystalization.
In some cases, the annealing process can be omitted. FIG. 4 is a cross-sectional view of the polycrystalline silicon film baton 3 after the formation of the amorphous silicon film and the oxidation process.
The surface of ' is covered with an oxide film 5.
以上述べ友方法により、非晶質シリコン膜3を熱処理し
て多結晶化してデバイスを作製し、電気的特性を測定し
たところ良好な結果が得られ几0
(発明の効果)
以上説明し友ように本発明によれば、非晶質シリコン膜
を堆積した後にエツチングし、その後、熱処理を施し、
非晶質シリコン映ヲ多結晶化することにより、アンダカ
ットの生じない多結晶シリコンゲート配線層が形成でき
る。By the method described above, the amorphous silicon film 3 was heat-treated to polycrystallize it to fabricate a device, and when its electrical characteristics were measured, good results were obtained. According to the present invention, an amorphous silicon film is deposited, etched, and then heat treated.
By polycrystallizing amorphous silicon, a polycrystalline silicon gate wiring layer without undercuts can be formed.
第1図ないし第3図は本発明の半導体装置の製造方法の
実施例を示すもので、多結晶シリコンゲート加工工程を
示す断面図であり、また、第4図は非晶質シリコン膜を
多結晶化する方法の一例を示す断面図である。
1・・・・・・・・・シリコン基板
2・・・・・・・・・シリコン酸化膜
3・・・・・・・・・非晶質シリコン膜3′・・・・・
・・・・多結晶シリコン膜4・・・・・・・・・レジス
トバタン
5・・・・・・・・・酸化膜
特許出願人 日本電信電話株式会社
第4図1 to 3 show an embodiment of the method for manufacturing a semiconductor device of the present invention, and are cross-sectional views showing the process of manufacturing a polycrystalline silicon gate, and FIG. FIG. 2 is a cross-sectional view showing an example of a crystallization method. 1...Silicon substrate 2...Silicon oxide film 3...Amorphous silicon film 3'...
・・・・・・Polycrystalline silicon film 4・・・・・・Resist baton 5・・・・・・・・・Oxide film Patent applicant Nippon Telegraph and Telephone Corporation Fig. 4
Claims (1)
晶質シリコン膜上にマスクパタンを形成する工程と、ド
ライエッチング法により前記の非晶質シリコン膜を選択
エッチングする工程と、ついで前記のマスクパタンを除
去した後、熱処理を行つて、前記の非晶質シリコン膜を
多結晶化する工程とを具備することを特徴とする半導体
装置の製造方法。A step of depositing an amorphous silicon film on a substrate, a step of forming a mask pattern on the amorphous silicon film, a step of selectively etching the amorphous silicon film by a dry etching method, and then A method for manufacturing a semiconductor device, comprising the step of removing the mask pattern and then performing heat treatment to polycrystallize the amorphous silicon film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60197843A JPH0642484B2 (en) | 1985-09-09 | 1985-09-09 | Method for manufacturing semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60197843A JPH0642484B2 (en) | 1985-09-09 | 1985-09-09 | Method for manufacturing semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6258663A true JPS6258663A (en) | 1987-03-14 |
JPH0642484B2 JPH0642484B2 (en) | 1994-06-01 |
Family
ID=16381260
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60197843A Expired - Lifetime JPH0642484B2 (en) | 1985-09-09 | 1985-09-09 | Method for manufacturing semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0642484B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6453562A (en) * | 1987-08-25 | 1989-03-01 | Sony Corp | Formation of wiring |
JPH01302747A (en) * | 1988-04-15 | 1989-12-06 | Toshiba Corp | Manufacture of semiconductor device |
US6087212A (en) * | 1996-05-30 | 2000-07-11 | Nec Corporation | Method for forming a storage node in a semiconductor memory |
JP2014203937A (en) * | 2013-04-04 | 2014-10-27 | 株式会社半導体エネルギー研究所 | Semiconductor device and semiconductor device manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023584A (en) * | 1973-06-29 | 1975-03-13 | ||
JPS58175847A (en) * | 1982-04-08 | 1983-10-15 | Toshiba Corp | Manufacture of semiconductor device |
JPS5922348A (en) * | 1982-07-29 | 1984-02-04 | Fujitsu Ltd | Manufacture of semiconductor device |
-
1985
- 1985-09-09 JP JP60197843A patent/JPH0642484B2/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5023584A (en) * | 1973-06-29 | 1975-03-13 | ||
JPS58175847A (en) * | 1982-04-08 | 1983-10-15 | Toshiba Corp | Manufacture of semiconductor device |
JPS5922348A (en) * | 1982-07-29 | 1984-02-04 | Fujitsu Ltd | Manufacture of semiconductor device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6453562A (en) * | 1987-08-25 | 1989-03-01 | Sony Corp | Formation of wiring |
JPH01302747A (en) * | 1988-04-15 | 1989-12-06 | Toshiba Corp | Manufacture of semiconductor device |
US6087212A (en) * | 1996-05-30 | 2000-07-11 | Nec Corporation | Method for forming a storage node in a semiconductor memory |
JP2014203937A (en) * | 2013-04-04 | 2014-10-27 | 株式会社半導体エネルギー研究所 | Semiconductor device and semiconductor device manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0642484B2 (en) | 1994-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH029122A (en) | Method of etching layers containing polycrystalline silicon | |
TW200529293A (en) | Masking methods | |
KR102413039B1 (en) | Optional SiARC Removal | |
EP0473344B1 (en) | Process for etching a conductive bi-layer structure | |
US5514621A (en) | Method of etching polysilicon using a thin oxide mask formed on the polysilicon while doping | |
JP3318801B2 (en) | Dry etching method | |
KR20010033406A (en) | Improved techniques for etching with a photoresist mask | |
JPS6258663A (en) | Manufacture of semiconductor device | |
US6171940B1 (en) | Method for fabricating semiconductor devices having small dimension gate structures | |
JPS61185928A (en) | Pattern forming method | |
JP3235549B2 (en) | Conductive layer formation method | |
KR20220127122A (en) | Improved pattern formation through mask stress management and resulting structures | |
JPH04208528A (en) | Manufacture of semiconductor device | |
JP3260165B2 (en) | Manufacturing method of thin film element | |
EP0052227A1 (en) | Method for forming a self-aligned contact and a plasma especially applicable in performing said method | |
JP3550276B2 (en) | Method for manufacturing semiconductor device | |
JPS58132933A (en) | Selective dry etching method | |
JPH01112733A (en) | Ashing of resist | |
JPH03241740A (en) | Manufacture of semiconductor device | |
JPH07135198A (en) | Etching | |
JPH05234934A (en) | Manufacture of semiconductor device | |
JPH0774148A (en) | Dry etching method | |
JPH0613354A (en) | Semiconductor device and fabrication thereof | |
JPH0613473A (en) | Manufacture of semiconductor device | |
JPH0629263A (en) | Manufacture of semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |