JPH01302747A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01302747A
JPH01302747A JP9272488A JP9272488A JPH01302747A JP H01302747 A JPH01302747 A JP H01302747A JP 9272488 A JP9272488 A JP 9272488A JP 9272488 A JP9272488 A JP 9272488A JP H01302747 A JPH01302747 A JP H01302747A
Authority
JP
Japan
Prior art keywords
silicon film
film
polycrystalline silicon
oxide film
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9272488A
Other languages
Japanese (ja)
Other versions
JPH0687465B2 (en
Inventor
Yuichi Mikata
見方 裕一
Katsunori Ishihara
石原 勝則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP63092724A priority Critical patent/JPH0687465B2/en
Publication of JPH01302747A publication Critical patent/JPH01302747A/en
Publication of JPH0687465B2 publication Critical patent/JPH0687465B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the withstand voltage of an insulating film by a method wherein a non-single crystal silicon film is formed on the insulating film, while said silicon film is converted into a polycrystalline film by conducting annealing thereon, and a non-single crystal silicon film containing impurities is formed on the polycrystalline silicon film. CONSTITUTION:A first gate oxide film 2 is formed on the main surface of a silicon-substrate 1 by conducting thermal oxidization, and a non-single crystal silicon film 3 is formed by deposition by the oxide film 2. Crystal grains are generated and crystallized on the silicon film 3 by conducting an annealing treatment without exposing the substrate 1 to the ambient air. Said crystal becomes a polycrystalline-silicon film 3 by conducting a heat treatment in a furnace at 600 deg.C or higher. A phosforus-doped polycrystalline silicon film 4 is formed thereon without exposing the substrate 1 to the ambient air. The second gate oxide film 5 is formed by conducting thermal oxidization on the silicon film 4. A polycrystalline silicon film 6 is deposited on the oxide film 5. As a result, the withstand voltage of the oxide film 2 can be improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は半導体装置の製造方法に関するもので、特に積
層構造の電極又は電極配線を有する半導体装置に使用さ
れるものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and is particularly used for a semiconductor device having a laminated structure of electrodes or electrode wiring. .

(従来の技術) 近年、半導体基板主面の絶縁膜上に第1の多結晶シリコ
ン膜が形成され、前記第1の多結晶シリコン膜上に絶縁
膜を介して第2の多結晶シリコン膜が形成される、積層
構造の多結晶シリコン膜を電極又は電極配線として利用
する半導体装置がよく用いられている。そこで、このよ
うな半導体装置としてEPROMを例にとりあげ、その
製造方法について第3図(a)、(b)を参照して以下
説明する。
(Prior Art) In recent years, a first polycrystalline silicon film is formed on an insulating film on the main surface of a semiconductor substrate, and a second polycrystalline silicon film is formed on the first polycrystalline silicon film via an insulating film. Semiconductor devices are often used in which a multi-layered polycrystalline silicon film is used as an electrode or electrode wiring. Therefore, taking an EPROM as an example of such a semiconductor device, a method for manufacturing the same will be described below with reference to FIGS. 3(a) and 3(b).

まず、p−型シリコン基板31の表面に、周知の技術に
よりフィールド酸化膜32を形成し、前記フィールド酸
化膜32により囲まれた素子領域上に、熱酸化により厚
さ500人程0の第1の熱酸化膜33を形成する。次に
、厚さ1000人程度0第1の多結晶シリコン膜34を
LPCVD法により全面に堆積形成し、続いてリン(P
)を熱拡散によりドープする。次に、約1000℃にて
熱酸化を行い、前記多結晶シリコン膜34上に厚さ50
0人程0の第2の熱酸化膜35を形成し、さらに前記第
2の熱酸化膜35上には第2の多結晶シリコン膜3Bを
堆積形成する((a)図参照)。次に、写真蝕刻法によ
り前記第2の多結晶シリコン膜36、第2の熱酸化膜3
5、第1の多結晶シリコン膜34及び第1の熱酸化膜3
3を順次エツチングして、それぞれコントロールグー1
−3ti−1第2のゲート酸化膜35′、フローティン
グゲート34′及び第1のゲート酸化膜33−を形成す
る。次に、これら積層膜をマスクとしてn型不純物をイ
オン注入した後、アニールを行なってn十型ドレイン領
域37及びn+型ソース領域38を形成し、さらに熱酸
化膜39を全面に形成する。次に、前記熱酸化膜39上
にパッシベーション膜(たとえばPSG膜)40を堆積
形成した後、所望の領域1マコンタクトホールを設ける
。そして、全面にAI!”Si膜を堆積形成した後、バ
ターニングしてドレイン電極41、及びソース電極42
を形成し、EFROMを完成する。
First, a field oxide film 32 is formed on the surface of a p-type silicon substrate 31 by a well-known technique, and a first film with a thickness of about 500 nm is formed by thermal oxidation on the device region surrounded by the field oxide film 32. A thermal oxide film 33 is formed. Next, a first polycrystalline silicon film 34 with a thickness of about 1000 yen is deposited over the entire surface by LPCVD, and then phosphorus (P
) is doped by thermal diffusion. Next, thermal oxidation is performed at about 1000° C. to form a 50% thick film on the polycrystalline silicon film 34.
A second thermal oxide film 35 having a thickness of approximately 0.0 nm is formed, and a second polycrystalline silicon film 3B is further deposited on the second thermal oxide film 35 (see figure (a)). Next, the second polycrystalline silicon film 36 and the second thermal oxide film 3 are etched by photolithography.
5. First polycrystalline silicon film 34 and first thermal oxide film 3
3 in sequence, control group 1 respectively.
-3ti-1 A second gate oxide film 35', a floating gate 34', and a first gate oxide film 33- are formed. Next, using these laminated films as a mask, n-type impurities are ion-implanted, and then annealing is performed to form an n+ type drain region 37 and an n+ type source region 38, and a thermal oxide film 39 is further formed on the entire surface. Next, a passivation film (for example, a PSG film) 40 is deposited on the thermal oxide film 39, and then a contact hole is formed in a desired area. And AI all over! ``After depositing and forming a Si film, patterning is performed to form a drain electrode 41 and a source electrode 42.
is formed to complete the EFROM.

このように形成されたEFROMは、セルトランジスタ
のnゞ吟レイン領域37とコントロールゲート3B′と
に正の高電圧を印加して、フローティングゲート34′
に電子を注入し、情報の書き込みを行なうデバイスであ
る。よって、この注入電子は長期間に渡って蓄積される
必要がある。しかしながら、通常時に何らかの偶発的な
原因でコントロールゲート36″に正の高電圧が印加さ
れると、フローティングゲート34′に蓄積されていた
注入電子が第2のゲート酸化膜35−を経てコントロー
ルゲート8G′に吸収され、情報が消去されてしまうこ
とがある。この現象は、第2のゲート酸化膜35′のリ
ーク電流が大きいことに起因している。
In the EFROM formed in this way, a high positive voltage is applied to the n-rain region 37 of the cell transistor and the control gate 3B' to close the floating gate 34'.
This is a device that writes information by injecting electrons into the memory. Therefore, these injected electrons need to be accumulated over a long period of time. However, when a positive high voltage is applied to the control gate 36'' for some accidental reason during normal operation, the injected electrons accumulated in the floating gate 34' pass through the second gate oxide film 35- to the control gate 8G. ', and information may be erased. This phenomenon is caused by the large leakage current of the second gate oxide film 35'.

前記リーク電流は、前記第2のゲート酸化膜35′下の
フローティングゲート34−に不純物拡散を行なった後
、表面に形成される凹凸に原因があることが知られてい
る。これに対して、前記フローティングゲート34′に
1n−situ  dopedpoly  Si  (
不純物をその場ドーピングした多結晶シリコン膜)を利
用するとこの問題はさけられる。しかし、これを利用す
ると第1のゲート酸化膜33′の耐圧が低下することが
報告されている(J、Electrehem、Soc、
Vol。
It is known that the leakage current is caused by irregularities formed on the surface after impurity diffusion is performed in the floating gate 34- under the second gate oxide film 35'. On the other hand, 1n-situ doped poly Si (
This problem can be avoided by using a polycrystalline silicon film doped with impurities in-situ. However, it has been reported that using this reduces the breakdown voltage of the first gate oxide film 33' (J, Electrehem, Soc.
Vol.

134.1987,698.Derv Flowersに記載)。134.1987,698. Derv (described in Flowers).

(発明が解決しようとする課題) このように、従来の半導体装置の製造方法では、電極又
は電極配線表面の凹凸が問題であった。
(Problems to be Solved by the Invention) As described above, in the conventional method of manufacturing a semiconductor device, unevenness on the surface of an electrode or an electrode wiring has been a problem.

この凹凸を減らすため、前記電極又は電極配線を1n−
situ  doped  poly  Stにより形
成すると前記電極又は電極配線直下の絶縁膜の耐圧が低
下する欠点があった。
In order to reduce this unevenness, the electrode or electrode wiring is
When formed using in-situ doped polySt, there is a drawback that the withstand voltage of the insulating film directly under the electrode or electrode wiring decreases.

よって、本発明の目的は、電極又は電極配線を1n−s
itu  doped  poly  Stにより形成
して前記電極又は電極配線上の絶縁膜の耐圧を向上させ
るとともに、前記電極又は電極配線下の絶縁膜の耐圧を
低下させることのない半導体装置の製造方法を提供する
ことである。
Therefore, an object of the present invention is to improve the electrode or electrode wiring by 1ns.
To provide a method for manufacturing a semiconductor device in which the withstand voltage of an insulating film on the electrode or the electrode wiring is improved by forming it using doped polySt, and the withstand voltage of the insulating film under the electrode or the electrode wiring is not reduced. It is.

[発明の構成コ (課題を解決するための手段とその作用)上記目的を達
成するために本発明の半導体装置の製造方法は、半導体
基板主面上に絶縁膜を形成し、前記絶縁膜上に非単結晶
シリコン膜を形成する。続けて不活性ガス中でアニール
を行い前記非単結晶シリコン膜を多結晶シリコン膜にす
る。
[Structure of the Invention (Means for Solving the Problems and Their Effects) In order to achieve the above object, the method for manufacturing a semiconductor device of the present invention includes forming an insulating film on the main surface of a semiconductor substrate, A non-single crystal silicon film is formed. Subsequently, annealing is performed in an inert gas to convert the non-single crystal silicon film into a polycrystalline silicon film.

さらに続けて前記多結晶シリコン膜上に不純物を含んだ
非単結晶シリコン膜を形成している。
Subsequently, a non-single crystal silicon film containing impurities is formed on the polycrystalline silicon film.

また、半導体基板主面上に絶縁膜を形成し、前記絶縁膜
上に非単結晶シリコン膜を形成する。
Further, an insulating film is formed on the main surface of the semiconductor substrate, and a non-single crystal silicon film is formed on the insulating film.

続けてQ、1Torr以下の真空中でアニールを行い前
記非単結晶シリコン膜を多結晶シリコン膜にする。さら
に続けて前記多結晶シリコン膜上に不純物を含んだ非単
結晶シリコン膜を形成してもよい。
Subsequently, annealing is performed in a vacuum of Q, 1 Torr or less to convert the non-single crystal silicon film into a polycrystalline silicon film. Further, a non-monocrystalline silicon film containing impurities may be subsequently formed on the polycrystalline silicon film.

このような半導体装置の製造方法によれば、非単結晶シ
リコン膜に不活性ガス中又は0.1Torr以下の真空
中でアニールを施して、前記非単結晶シリコン膜を結晶
の粒径が大きく粒界の数も少ない多結晶シリコン膜に変
換しているので、前記多結晶シリコン膜上に不純物を含
んだ非単結晶シリコン膜を形成しても、前記多結晶シリ
コン膜下の絶縁膜に不純物が拡散するのを緩和でき、前
記絶縁膜の耐圧の低下を防ぐことができる。
According to such a method of manufacturing a semiconductor device, the non-single crystal silicon film is annealed in an inert gas or in a vacuum of 0.1 Torr or less, so that the non-single crystal silicon film has large crystal grains. Since the polycrystalline silicon film is converted into a polycrystalline silicon film with a small number of fields, even if a non-monocrystalline silicon film containing impurities is formed on the polycrystalline silicon film, impurities will not be introduced into the insulating film under the polycrystalline silicon film. Diffusion can be alleviated and a decrease in breakdown voltage of the insulating film can be prevented.

(実施例) 以下、図面を参照して本発明の一実施例を詳細に説明す
る。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の半導体装置の製造方法をEPRO〜
1のゲート部分に適用したものである。
FIG. 1 shows a method for manufacturing a semiconductor device according to the present invention using EPRO~
This is applied to the gate part of No.1.

まず、シリコン基板lの主面に熱酸化により厚さ500
人程0の第1のゲート酸化膜(絶縁膜)2を形成する。
First, the main surface of the silicon substrate 1 is thermally oxidized to a thickness of 500 mm.
A first gate oxide film (insulating film) 2 having a thickness of 0 is formed.

次に、LPGVD装置を用い、反応温度400〜600
℃で5iH4(ンラン)ガスを熱分解し、前記ゲート酸
化膜2上に非単結晶シリコン膜3を少なくとも30人の
厚さで堆積形成する。なお、反応温度600℃以下では
、St原子の結晶化が殆んど進行しないことから、大部
分が非晶質のシリコン膜が形成される。また、前記非単
結晶シリコン膜3の形成において、同時にPH3ガスを
混ぜることにより濃度1×1020cm”以下のリン(
P)をドープしても良い。続いて、前記基板1を外気に
さらすことなく、炉の温度を900℃程度に上げた後、
不活性ガス(たとえばArガス)中で約30分アニー・
ルを行い、前記非単結晶シリコン膜3に結晶粒を生じさ
せて結晶化する。この結晶は、600℃以上の炉内で行
なうことにより多結晶シリコン膜3となる。さらに、前
記基板 1を外気にさらすことなく、PH3とSiH4
の混合ガス中において、L P CV D法により反応
温度約700℃で濃度I X 10 ”cm”3以上の
リンがドープされた多結晶シリコン膜(非単結晶シリコ
ン膜)4を厚さ1000人程度0なるように形成する(
in−situ  dopedpoly  St)。な
お、下地へのリンの拡散は、結晶の粒径が大きく粒界の
数も少ない前記多結晶シリコン膜3が緩和している。次
に、約1000℃で前記多結晶シリコン膜4を熱酸化し
、厚さ500人程0の第2のゲート酸化膜5を形成する
Next, using an LPGVD device, the reaction temperature was 400 to 600.
A non-single crystal silicon film 3 is deposited on the gate oxide film 2 to a thickness of at least 30 nm by thermally decomposing 5iH4 gas at .degree. Note that at a reaction temperature of 600° C. or lower, crystallization of St atoms hardly progresses, so that a mostly amorphous silicon film is formed. In addition, in forming the non-single crystal silicon film 3, by simultaneously mixing PH3 gas, a concentration of phosphorus (
P) may be doped. Subsequently, the temperature of the furnace was raised to about 900° C. without exposing the substrate 1 to the outside air, and then
Anneal for about 30 minutes in an inert gas (e.g. Ar gas).
Then, crystal grains are generated in the non-single crystal silicon film 3 and crystallized. This crystallization is performed in a furnace at a temperature of 600° C. or higher to form a polycrystalline silicon film 3. Furthermore, PH3 and SiH4 can be combined without exposing the substrate 1 to the outside air.
In a mixed gas of Form it so that the degree is 0 (
in-situ dopedpoly St). Note that the polycrystalline silicon film 3, which has a large crystal grain size and a small number of grain boundaries, eases the diffusion of phosphorus into the underlying layer. Next, the polycrystalline silicon film 4 is thermally oxidized at about 1000° C. to form a second gate oxide film 5 having a thickness of about 500°C.

次に、前記ゲート酸化膜5上に面抵抗的20Ωの多結晶
シリコン膜6を厚さ3500人程度0堆積形成する。次
に、写真蝕刻法により、前記多結晶シリコン膜6、第2
のゲート酸化膜5、多結晶シリコン膜4及び多結晶シリ
コン膜3を順次エツチングする。なお、前記多結晶シリ
コン膜6はコントロールゲートとなり、前記多結晶シリ
コン膜3゜4でフローティングゲートが構成される。
Next, a polycrystalline silicon film 6 having a sheet resistance of 20 Ω is deposited on the gate oxide film 5 to a thickness of about 3,500 Ω. Next, by photolithography, the polycrystalline silicon film 6 and the second
Gate oxide film 5, polycrystalline silicon film 4, and polycrystalline silicon film 3 are sequentially etched. The polycrystalline silicon film 6 serves as a control gate, and the polycrystalline silicon film 3.4 constitutes a floating gate.

ところで、上記実施例では非単結晶シリコン膜3を形成
した後、続けて不活性ガス中でアニールを行っているが
、これに変えて0.1Torr以下の真空中でアニール
を行っても、結晶の粒径が大きく粒界の数も少ない多結
晶シリコン膜が形成できる。
Incidentally, in the above embodiment, after forming the non-single crystal silicon film 3, annealing is performed in an inert gas, but even if the annealing is performed in a vacuum of 0.1 Torr or less, the crystalline A polycrystalline silicon film with a large grain size and a small number of grain boundaries can be formed.

次に、このように形成されるEFROMと従来の製造方
法により形成されるEPROMについて、ゲート酸化膜
の耐圧とブローティングゲート中のリン濃度との関係を
示したのが第2図(a)。
Next, FIG. 2(a) shows the relationship between the breakdown voltage of the gate oxide film and the phosphorus concentration in the bloating gate for an EFROM formed in this manner and an EPROM formed by the conventional manufacturing method.

(b)である。(a)図はフローティングゲート下のゲ
ート酸化膜(第1のゲート酸化膜)の耐圧とフローティ
ングゲート中のリン濃度の関係を示している。(b)図
はフローティングデー1−上のゲート酸化膜(第2のゲ
ート酸化膜)の耐圧とフローティングゲート中のリン濃
度の関係を示している。なお、従来例1はフローティン
グゲー!・中へのリンの導入を熱拡散により行なった場
合であり、従来例2はフローティングゲート中へのリン
の導入を1n−situ  doped  polyS
iを利用することにより行なった場合である。
(b). The figure (a) shows the relationship between the breakdown voltage of the gate oxide film (first gate oxide film) under the floating gate and the phosphorus concentration in the floating gate. The figure (b) shows the relationship between the withstand voltage of the gate oxide film (second gate oxide film) on the floating gate 1- and the phosphorus concentration in the floating gate. In addition, conventional example 1 is a floating game!・This is a case where phosphorus is introduced into the floating gate by thermal diffusion, and in conventional example 2, phosphorus is introduced into the floating gate using a 1n-situ doped polyS
This is a case where this is done by using i.

図示するように、本発明の製造方法によれば、第1のゲ
ート酸化膜と第2のゲート酸化膜のどちらの耐圧もフロ
ーティングゲート中のリン濃度によらず良好であること
がわかる。
As shown in the figure, according to the manufacturing method of the present invention, the breakdown voltage of both the first gate oxide film and the second gate oxide film is good regardless of the phosphorus concentration in the floating gate.

なお、本発明は上記実施例に示した EFROMに限らず、積層構造の電極又は電極配線を有
する半導体装置に対して有効である。
Note that the present invention is effective not only for the EFROM shown in the above embodiments but also for semiconductor devices having stacked electrodes or electrode wiring.

[発明の効果コ 以上、説明したように本発明によれば次のような効果を
奏する。
[Effects of the Invention] As explained above, the present invention provides the following effects.

電極又は電極配線をin−situ doped  poly  Siにより形成しているの
で前記電極又は電極配線上の絶縁膜の耐圧を向上させる
ことができる。それとともに、前記電極又ぼrib配線
の形成において、まず非単結晶シリコン膜を不活性ガス
中又は0.1Torr以下の真空中でアニールすること
によりできる、結晶の粒径が大きく粒界の数も少ない多
結晶シリコン膜を不純物拡散防止用として形成している
ので、前記電極又は電極配線下の絶縁膜の耐圧も同時に
向上させることができる。
Since the electrodes or electrode wirings are formed of in-situ doped poly Si, the withstand voltage of the insulating film on the electrodes or electrode wirings can be improved. At the same time, in forming the electrode or rib wiring, first, the non-single crystal silicon film is annealed in an inert gas or in a vacuum of 0.1 Torr or less, so that the crystal grain size is large and the number of grain boundaries is small. Since a small amount of polycrystalline silicon film is formed to prevent impurity diffusion, the withstand voltage of the insulating film under the electrode or electrode wiring can also be improved at the same time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる半導体装置の製造方
法について説明するための断面図、第2図は本発明及び
従来の半導体装置の製造方法により形成されたEFRO
Mのゲート酸化膜の耐圧とフローティングゲート中のリ
ン濃度の関係を説明するための図。第3図は従来の半導
体装置の製造方法について説明するための断面図である
。 2・・・ゲート酸化膜(絶縁膜)、3・・・非単結晶シ
リコン膜(アニール後は多結晶シリコン膜)、4・・・
多結晶シリコン膜(非単結晶シリコン膜)。 出願人代理人 弁理士 鈴江武彦 第1図 70−94.;’、f、’+’ ; h中 (x l 
O”crr+3)第2図
FIG. 1 is a cross-sectional view for explaining a method of manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of an EFRO formed by the method of manufacturing a semiconductor device of the present invention and the conventional method.
FIG. 3 is a diagram for explaining the relationship between the breakdown voltage of the gate oxide film of M and the phosphorus concentration in the floating gate. FIG. 3 is a cross-sectional view for explaining a conventional method of manufacturing a semiconductor device. 2... Gate oxide film (insulating film), 3... Non-monocrystalline silicon film (polycrystalline silicon film after annealing), 4...
Polycrystalline silicon film (non-monocrystalline silicon film). Applicant's agent Patent attorney Takehiko Suzue Figure 1 70-94. ;', f, '+'; in h (x l
O”crr+3) Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板主面上に絶縁膜を形成する工程と、前
記絶縁膜上に非単結晶シリコン膜を形成する工程と、不
活性ガス中でアニールを行い前記非単結晶シリコン膜を
多結晶シリコン膜に変換する工程と、前記多結晶シリコ
ン膜上に不純物を含んだ非単結晶シリコン膜を形成する
工程とを具備することを特徴とする半導体装置の製造方
法。
(1) A step of forming an insulating film on the main surface of a semiconductor substrate, a step of forming a non-monocrystalline silicon film on the insulating film, and annealing in an inert gas to convert the non-single-crystalline silicon film into a polycrystalline silicon film. A method for manufacturing a semiconductor device, comprising the steps of converting the polycrystalline silicon film into a silicon film, and forming a non-monocrystalline silicon film containing impurities on the polycrystalline silicon film.
(2)半導体基板主面上に絶縁膜を形成する工程と、前
記絶縁膜上に非単結晶シリコン膜を形成する工程と、0
.1Torr以下の真空中でアニールを行い前記非単結
晶シリコン膜を多結晶シリコン膜に変換する工程と、前
記多結晶シリコン膜上に不純物を含んだ非単結晶シリコ
ン膜を形成する工程とを具備することを特徴とする半導
体装置の製造方法。
(2) forming an insulating film on the main surface of the semiconductor substrate; forming a non-single crystal silicon film on the insulating film;
.. The method includes a step of converting the non-single crystal silicon film into a polycrystalline silicon film by annealing in a vacuum of 1 Torr or less, and a step of forming a non-single crystal silicon film containing impurities on the polycrystalline silicon film. A method for manufacturing a semiconductor device, characterized in that:
JP63092724A 1988-04-15 1988-04-15 Method for manufacturing semiconductor device Expired - Lifetime JPH0687465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63092724A JPH0687465B2 (en) 1988-04-15 1988-04-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63092724A JPH0687465B2 (en) 1988-04-15 1988-04-15 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01302747A true JPH01302747A (en) 1989-12-06
JPH0687465B2 JPH0687465B2 (en) 1994-11-02

Family

ID=14062393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63092724A Expired - Lifetime JPH0687465B2 (en) 1988-04-15 1988-04-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0687465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096093A (en) * 2002-07-18 2004-03-25 Hynix Semiconductor Inc Manufacture of semiconductor memory element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258663A (en) * 1985-09-09 1987-03-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS6329954A (en) * 1986-07-23 1988-02-08 Toshiba Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6258663A (en) * 1985-09-09 1987-03-14 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS6329954A (en) * 1986-07-23 1988-02-08 Toshiba Corp Manufacture of semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096093A (en) * 2002-07-18 2004-03-25 Hynix Semiconductor Inc Manufacture of semiconductor memory element
JP4669655B2 (en) * 2002-07-18 2011-04-13 株式会社ハイニックスセミコンダクター Manufacturing method of semiconductor memory device

Also Published As

Publication number Publication date
JPH0687465B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
US5773325A (en) Method of making a variable concentration SiON gate insulating film
US6228692B1 (en) Thin film semiconductor device, method for fabricating the same and semiconductor device
JP3402380B2 (en) Semiconductor circuit and manufacturing method thereof
JPS61134055A (en) Manufacture of semiconductor device
JPH01302747A (en) Manufacture of semiconductor device
JP3332467B2 (en) Method for manufacturing polycrystalline semiconductor
JPH06260644A (en) Manufacture of semiconductor device
JPS63119576A (en) Thin film transistor
JPH04221854A (en) Thin film semiconductor device
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPH0284716A (en) Semiconductor element and manufacture thereof
JPH06163580A (en) Manufacture of thin-film transistor
JP3426163B2 (en) Liquid crystal display
JPS63117420A (en) Manufacture of silicide layer
JPH05299348A (en) Forming method for polysrystalline silicon thin film
JP3361310B2 (en) Method for manufacturing insulated gate field effect semiconductor device
JPH10233514A (en) Thin-film transistor
JPH113887A (en) Manufacture of thin film transistor
JP3426164B2 (en) Manufacturing method of liquid crystal display device
JPH0571193B2 (en)
JPH11150277A (en) Thin-film transistor and manufacture thereof
JP3133861B2 (en) Method for manufacturing semiconductor device
JPH0587992B2 (en)
JP2960742B2 (en) Thin film transistor element
JPH08181317A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 14