JPH0571193B2 - - Google Patents

Info

Publication number
JPH0571193B2
JPH0571193B2 JP62143131A JP14313187A JPH0571193B2 JP H0571193 B2 JPH0571193 B2 JP H0571193B2 JP 62143131 A JP62143131 A JP 62143131A JP 14313187 A JP14313187 A JP 14313187A JP H0571193 B2 JPH0571193 B2 JP H0571193B2
Authority
JP
Japan
Prior art keywords
film
plane
thin film
poly
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62143131A
Other languages
Japanese (ja)
Other versions
JPS63307776A (en
Inventor
Takashi Aoyama
Saburo Oikawa
Yoshiaki Okajima
Nobutake Konishi
Genshiro Kawachi
Hidemi Adachi
Takaya Suzuki
Kenji Myata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62143131A priority Critical patent/JPS63307776A/en
Priority to US07/203,935 priority patent/US5153702A/en
Priority to KR1019880006942A priority patent/KR970004836B1/en
Publication of JPS63307776A publication Critical patent/JPS63307776A/en
Publication of JPH0571193B2 publication Critical patent/JPH0571193B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜半導体装置とその製造方法に係
り、特にアクテイブマトリクス方式のデイスプレ
イに好適な薄膜半導体装置とその製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film semiconductor device and a method for manufacturing the same, and more particularly to a thin film semiconductor device suitable for an active matrix display and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

近年、アクテイブマトリクス用の薄膜半導体装
置である薄膜トランジスタ(Thin Film
Transistor、略してTFT)材料としては、高画
質化の点ですぐれている多結晶シリコンが用いら
れている。従来、この多結晶シリコン
(Polycrystalline Silicon略してPoly−Si)は減
圧CVD(略してLPCVD)法により作成されてい
る絶縁基板としては石英ガラス又は通常ガラス板
を用いる。通常のガラス板を用いる際には最高プ
ロセス温度か約640℃という大きな制約がある。
このような低温プロセスで結晶性のよいPoly−
Si膜を得るために種々の方法が試みられている。
たとえば、第一には、可能な最高プロセス温度に
近い温度(630℃)まで堆積温度を上げ、堆積圧
力を0.3TorrとしてLPCVD膜の堆積速度を減ら
し、堆積膜の結晶性(単位体積中に含まれる結晶
成分の総体積)を上げるものである(Japan
Display'86 Tech.Digest 3.5参照)。第二には
LPCVD膜を600℃で堆積させ、続く約600℃の熱
処理で結晶性を向上させる(日本学術振興会第
147委員会第7回研究資料(60.3.19)p24参照)。
第三にはLPCVD膜を610℃で堆積させ、イオン
打込みにより膜をアモルフアス化し、続く600℃
の熱処理で結晶性を向上させる(第33回応物学会
予稿集(1986年春)p544参照)などがある。そ
の結果、これらのPoly−Si膜は{110}配向を持
つた膜となる。これらはいずれも結晶性向上にあ
る程度効果はあるが、TFTを作成したときのキ
ヤリア移動度は、まだ十分ではない。
In recent years, thin film transistors (thin film transistors), which are thin film semiconductor devices for active matrices, have been developed.
Polycrystalline silicon, which is excellent in terms of high image quality, is used as the transistor (TFT) material. Conventionally, this polycrystalline silicon (abbreviated as Poly-Si) is produced by a low pressure CVD (abbreviated as LPCVD) method, and a quartz glass or ordinary glass plate is used as an insulating substrate. When using a regular glass plate, there is a major restriction on the maximum process temperature, which is approximately 640°C.
Poly-
Various methods have been tried to obtain Si films.
For example, the first step is to increase the deposition temperature to a temperature close to the highest possible process temperature (630°C), increase the deposition pressure to 0.3 Torr, reduce the deposition rate of the LPCVD film, and reduce the crystallinity of the deposited film to (Total volume of crystalline components)
(See Display'86 Tech.Digest 3.5). secondly
The LPCVD film is deposited at 600℃, and the crystallinity is improved by subsequent heat treatment at about 600℃ (Japan Society for the Promotion of Science No.
147 Committee 7th Research Materials (60.3.19) See p24).
Third, the LPCVD film was deposited at 610°C, the film was made amorphous by ion implantation, and then the film was deposited at 600°C.
heat treatment to improve crystallinity (see Proceedings of the 33rd Annual Meeting of the Society of Applied Physics (Spring 1986), p. 544). As a result, these Poly-Si films have {110} orientation. All of these have some effect on improving crystallinity, but the carrier mobility when creating TFTs is still not sufficient.

本発明の目的は、薄膜半導体装置の特性を向上
させるための薄膜半導体装置の構造、とりわけ、
TFTの能動層に使用されるPoly−Si膜の配向性
に関する構造を提供することである。さらに、本
発明の他の目的は、約640℃以下のプロセス温度
で上記薄膜を形成することができる薄膜半導体装
置の製造方法を提供することにある。
An object of the present invention is to provide a structure of a thin film semiconductor device for improving the characteristics of the thin film semiconductor device, particularly,
The object of the present invention is to provide a structure related to the orientation of a Poly-Si film used in the active layer of a TFT. Furthermore, another object of the present invention is to provide a method for manufacturing a thin film semiconductor device that can form the above thin film at a process temperature of about 640° C. or lower.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ガラス基板等の絶縁性基板上に形
成された半導体装置であるTFTを構成するPoly
−Si層の主配向を{111}配向とすることにより
達成される。このPoly−Si層は減圧CVD法によ
り520℃以上570℃未満の温度で{111}面の結晶
成分をわずかに含みアモルフアス成分主体の
Poly−Si層を堆積させ、続いて熱処理を行うこ
とによつて得られる。
The above purpose is to improve
This is achieved by setting the main orientation of the -Si layer to {111} orientation. This Poly-Si layer is formed using a low-pressure CVD method at a temperature of 520°C or higher and lower than 570°C, containing a small amount of {111} crystalline components and mainly consisting of amorphous components.
Obtained by depositing a Poly-Si layer followed by heat treatment.

〔作用〕[Effect]

第1図は絶縁基板1上に形成したPoly−Si層
を模式的にあらわしたものである。第1図aは
{111}配向のPoly−Siを表わし、第1図bは
{110}あるいは{100}配向のPoly−Siを表わ
す。シリコン単結晶の各結晶面とSiO2との界面
電荷密度は〈100〉,〈110〉,〈111〉の順で増加す
ることが知られている。Poly−Siの結晶粒界の
界面にも同様の関係が成立し、{111}配向の
Poly−Si膜(第1図a)では{100}あるいは
{100}配向のPoly−Si膜(第1図b)に比べ、
膜と垂直方向のトラツプ密度が大となる。反対に
膜と平行方向では、第1図aに示す{111}配向
のPoly−Si膜aが{110}あるいは{100}配向
のPoly−Si膜bに比べ相対的に低いトラツプ密
度を示すことになる。トラツプ密度が低いと粒界
に生じる空乏層幅はせまくなり、ここでのポテン
シヤル障壁は低くなる。Poly−Siのキヤリアの
移動度は主として粒界におけるポテンシヤル障害
の高さで決る。TFTのキヤリアはPoly−Si膜と
平行方向に流れるため、{111}配向のPoly−Si
では{110}や{100}配向のPoly−Siに比べ相
対的にキヤリアの移動度が大きくなる。
FIG. 1 schematically shows a Poly-Si layer formed on an insulating substrate 1. As shown in FIG. FIG. 1a represents {111} oriented Poly-Si, and FIG. 1b represents {110} or {100} oriented Poly-Si. It is known that the interfacial charge density between each crystal plane of a silicon single crystal and SiO 2 increases in the order of <100>, <110>, and <111>. A similar relationship holds true at the poly-Si grain boundary interface, and the {111} orientation is
In the Poly-Si film (Fig. 1a), compared to the {100} or {100}-oriented Poly-Si film (Fig. 1b),
The trap density in the direction perpendicular to the membrane becomes large. On the other hand, in the direction parallel to the film, the {111}-oriented Poly-Si film a shown in Figure 1a exhibits a relatively lower trap density than the {110}- or {100}-oriented Poly-Si film b. become. When the trap density is low, the width of the depletion layer formed at the grain boundary becomes narrow, and the potential barrier there becomes low. The carrier mobility of Poly-Si is mainly determined by the height of potential disorder at grain boundaries. Since the TFT carrier flows parallel to the Poly-Si film, {111}-oriented Poly-Si
In this case, carrier mobility is relatively large compared to {110} or {100} oriented Poly-Si.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第3図は本発明を用いたTFT全体の断面構造
を示す。基板1は歪温度約640℃のガラス板であ
る。基板1を550℃に保ち、ヘリウムで20%に希
釈したモノシランガスを原料として、圧力1Torr
の条件でLPCVD膜2を堆積させる。堆積時間は
85分間で1500Åの膜を堆積させる。次にN2中、
600℃の条件で24時間の熱処理を行う。こうして
得られたPoly−Si膜の主たる配向は{111}配向
であり、平均粒径は約200Åである。この膜をア
イランドホト、エツチングの工程を通した後、通
常CVD法によりゲート絶縁膜用のSiO2膜を1000
Å堆積させる。次にゲート電極用のPoly−Si膜
9を550℃、1Torrの条件で3500Å堆積させる。
ゲート膜9をホト、エツチした後、ソース、ドレ
イン領域6,7のインプラを行う。条件はリン
(P)を用い、5×1015cm-2のドース量、30KeV
の電圧である。リンガラス(Phospho silicate
glass、略してPSG)からなるパシベーシヨン膜
11を480℃で5000Å堆積させる。さらに、N2
中、600℃の条件で20時間熱処理を行い、インプ
ラ領域を活性化させる。コンタクト用のホト、エ
ツチ行程の後、Al電極10を6000Åスパツタす
る。本実施例のTFTのチヤネル幅、チヤネル長
はそれぞれ30μm,10μmである。
FIG. 3 shows the cross-sectional structure of the entire TFT using the present invention. The substrate 1 is a glass plate with a strain temperature of about 640°C. The substrate 1 is kept at 550℃ and the pressure is 1 Torr using monosilane gas diluted to 20% with helium.
LPCVD film 2 is deposited under the following conditions. The deposition time is
Deposit a 1500 Å film in 85 min. Then in N2 ,
Heat treatment is performed at 600℃ for 24 hours. The main orientation of the thus obtained Poly-Si film is {111} orientation, and the average grain size is about 200 Å. After passing this film through island photo and etching processes, a SiO 2 film for the gate insulating film is deposited at a thickness of 1,000 yen using the usual CVD method.
Å Deposit. Next, a poly-Si film 9 for a gate electrode is deposited to a thickness of 3500 Å at 550° C. and 1 Torr.
After photo-etching the gate film 9, implantation of the source and drain regions 6 and 7 is performed. The conditions were to use phosphorus (P), a dose of 5×10 15 cm -2 , and a voltage of 30 KeV.
voltage. Phospho silicate
A passivation film 11 made of glass (PSG) is deposited to a thickness of 5000 Å at 480°C. Furthermore, N2
Heat treatment is performed for 20 hours at 600°C to activate the implant area. After the photo-etching process for contact, an Al electrode 10 with a thickness of 6000 Å is sputtered. The channel width and channel length of the TFT in this example are 30 μm and 10 μm, respectively.

第2図はPoly−Siを減圧CVD(LPCVD)法で
堆積する際の堆積温度と、堆積した膜を600℃で
熱処理した後の{111}面からX線回折強度I111
を示す。同様に、堆積膜中において比較的量の多
い{110}面及び{311}面からのX線回折強度も
調べた。ある配向面からX線回折強度は、その配
向面の結晶成分の量に比例する。熱処理後、
{111}配向面、{110}配向面、{311}配向面の示
すX線回折強度の比は、LPCVDによる堆積温度
がほぼ570℃で約4.5対4.5対1であり、{111}配
向面及び{110}配向面の結晶成分が最も多かつ
た。この時、第2図より{111}配向面からのX
線回折強度は約1.1Kcpsである。570℃より堆積
温度が低下するにつれて、{111}配向面の示すX
線回折強度が増加した。従つて。570℃未満の堆
積温度では{111}配向面の結晶成分が他の配向
面の結晶成分に比べて多くなり、主配向となる。
堆積温度がほぼ540℃では、{111}配向面、{110}
配向面、{311}配向面の示すX線回折強度の比
は、約7対2対1となつた。
Figure 2 shows the deposition temperature when depositing Poly-Si by the low pressure CVD (LPCVD) method and the X-ray diffraction intensity I 111 from the {111} plane after the deposited film was heat-treated at 600℃.
shows. Similarly, the X-ray diffraction intensity from the {110} plane and {311} plane, which are relatively abundant in the deposited film, was also investigated. The X-ray diffraction intensity from a certain orientation plane is proportional to the amount of crystal components on that orientation plane. After heat treatment,
The ratio of the X-ray diffraction intensities exhibited by the {111} oriented plane, {110} oriented plane, and {311} oriented plane is approximately 4.5:4.5:1 at a deposition temperature of approximately 570°C by LPCVD, and the ratio of the X-ray diffraction intensities shown by the {111} oriented plane The crystal components with the {110} orientation plane were the largest. At this time, from Fig. 2, the X from the {111} orientation plane
Linear diffraction intensity is approximately 1.1 Kcps. As the deposition temperature decreases from 570℃, the
Linear diffraction intensity increased. Follow. At a deposition temperature of less than 570° C., the crystal components on the {111} oriented plane become larger than the crystal components on other oriented planes, and become the main orientation.
At a deposition temperature of approximately 540°C, the {111} oriented plane, the {110}
The ratio of the X-ray diffraction intensities exhibited by the oriented plane and the {311} oriented plane was approximately 7:2:1.

上述のように、{111}配向面からのX線回折強
度が約1.1Kcps以上で{111}配向面が主配向で
あるとすれば、第2図より、熱処理後{111}配
向面が主配向となる下限の堆積温度は約505℃と
なる。従つて、実験結果に基づいてプロツクされ
た点のうち、520℃の点が{111}配向面が主配向
となる下限の堆積温度である。
As mentioned above, if the X-ray diffraction intensity from the {111} oriented plane is about 1.1 Kcps or more and the {111} oriented plane is the main orientation, then from Figure 2, the {111} oriented plane is the main orientation after heat treatment. The lower limit deposition temperature for orientation is approximately 505°C. Therefore, among the points plotted based on the experimental results, the point at 520° C. is the lower limit of the deposition temperature at which the {111} orientation plane becomes the main orientation.

以上のように、Poly−Siを520℃以上570℃未
満の温度で堆積すれば、熱処理後には主配向が
{111}配向となり結晶性もよくなることがわか
る。これはこのような温度で堆積したPoly−Si
膜中にはわずかに{111}面の結晶成分が含まれ
ているのみで、大部分はアモルフアス成分であ
る。続く熱処理中に、{111}方位の結晶成分を核
として固相成長が起り、アモルフアス成分は
{111}面の結晶成分に変換する。従つて、520℃
以上750℃未満の温度で堆積し、その後600℃で熱
処理した場合、配向成分としては、{110}および
{311}より{111}が優勢となり、すなわち主た
る配向(主配向)となる。
As described above, it can be seen that if Poly-Si is deposited at a temperature of 520° C. or more and less than 570° C., the main orientation becomes {111} orientation after heat treatment and the crystallinity is improved. This is because Poly-Si deposited at such a temperature
The film contains only a small amount of {111}-plane crystal components, and most of it is amorphous components. During the subsequent heat treatment, solid-phase growth occurs with the {111}-oriented crystalline component as the core, and the amorphous component is converted into a {111}-oriented crystalline component. Therefore, 520℃
When deposited at a temperature below 750° C. and then heat-treated at 600° C., {111} becomes more dominant than {110} and {311}, that is, becomes the main orientation (main orientation).

第2図からわかるように、電界効果移動度は、
{111}が主配向となる堆積温度550℃では、ほぼ
30cm2/VSであり、従来の{110}が主配向となる
堆積温度600℃の場合に比して著しく大である。
As can be seen from Figure 2, the field effect mobility is
At a deposition temperature of 550℃, where {111} is the main orientation, approximately
30 cm 2 /VS, which is significantly larger than the conventional case where {110} is the main orientation at a deposition temperature of 600°C.

本実施例で述べた{111}を主配向とするPoly
−Si膜は、移動度が大きく、これをTFTの能動
領域に用いることですぐれた電気特性を得ること
ができる。
Poly with {111} as the main orientation described in this example
-Si films have high mobility, and by using them in the active region of TFTs, excellent electrical characteristics can be obtained.

〔発明の結果〕[Results of the invention]

本発明によれば、比較的低いプロセス温度で、
キヤリアの移動度が大きい薄膜半導体装置を得る
ことができる。
According to the invention, at relatively low process temperatures,
A thin film semiconductor device with high carrier mobility can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,bは絶縁基板上の多結晶シリコンの
模式図、第2図は熱処理後の多結晶シリコン膜、
結晶性の堆積温度依存性を示す図、第3図は本発
明のTFTの断面構造の模式図を示す。 1……絶縁性基板、2……結晶粒、3……結晶
粒界、4……空乏層領域、5……多結晶シリコン
層、6……ソース領域、7……ドレイン領域、8
……ゲート絶縁膜、9……ゲート電極、10……
Al電極、11……パシベーシヨン膜。
Figures 1a and b are schematic diagrams of polycrystalline silicon on an insulating substrate, Figure 2 is a polycrystalline silicon film after heat treatment,
FIG. 3, which is a diagram showing the dependence of crystallinity on deposition temperature, is a schematic diagram of the cross-sectional structure of the TFT of the present invention. DESCRIPTION OF SYMBOLS 1... Insulating substrate, 2... Crystal grain, 3... Crystal grain boundary, 4... Depletion layer region, 5... Polycrystalline silicon layer, 6... Source region, 7... Drain region, 8
...Gate insulating film, 9...Gate electrode, 10...
Al electrode, 11... Passivation film.

Claims (1)

【特許請求の範囲】 1 少なくとも絶縁性基板と、該基板上に形成さ
れた半導体層とを有する薄膜半導体装置におい
て、前記半導体層は、{111}面を主体とした配向
を持つ多結晶シリコン膜であることを特徴とする
薄膜半導体装置。 2 特許請求の範囲第1項記載の薄膜半導体装置
において、前記半導体層はトランジスタの能動層
であることを特徴とする薄膜半導体装置。 3 特許請求の範囲第1項乃至第2項記載の薄膜
半導体装置において、前記半導体層は、トランジ
スタのドレインおよびソース領域であることを特
徴とする薄膜半導体装置。 4 下記工程を含むことを特徴とする薄膜半導体
装置の製造方法。 (1) 絶縁性基板上に、520℃以上570℃未満の温度
で、減圧CVD法により、{111}面の結晶成分
をわずかに含み、アモルフアス成分主体の多結
晶シリコン膜を形成する工程。 (2) 上記多結晶シリコン膜が形成された絶縁性基
板をアニールし、{111}面を主体とした配向を
持つ多結晶シリコン膜を得る工程。
[Claims] 1. In a thin film semiconductor device having at least an insulating substrate and a semiconductor layer formed on the substrate, the semiconductor layer is a polycrystalline silicon film mainly oriented in the {111} plane. A thin film semiconductor device characterized by: 2. The thin film semiconductor device according to claim 1, wherein the semiconductor layer is an active layer of a transistor. 3. The thin film semiconductor device according to claims 1 and 2, wherein the semiconductor layer is a drain and source region of a transistor. 4. A method for manufacturing a thin film semiconductor device, characterized by including the following steps. (1) A process of forming a polycrystalline silicon film containing a small amount of {111} plane crystalline components and mainly consisting of amorphous components on an insulating substrate at a temperature of 520°C or higher and lower than 570°C by low-pressure CVD. (2) A step of annealing the insulating substrate on which the polycrystalline silicon film is formed to obtain a polycrystalline silicon film mainly oriented in the {111} plane.
JP62143131A 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof Granted JPS63307776A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62143131A JPS63307776A (en) 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof
US07/203,935 US5153702A (en) 1987-06-10 1988-06-08 Thin film semiconductor device and method for fabricating the same
KR1019880006942A KR970004836B1 (en) 1987-06-10 1988-06-10 Thin film semiconductor device and method for fabricating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143131A JPS63307776A (en) 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP30051994A Division JP2791286B2 (en) 1994-12-05 1994-12-05 Semiconductor device
JP27582396A Division JP2716036B2 (en) 1996-10-18 1996-10-18 Method for manufacturing thin film semiconductor device

Publications (2)

Publication Number Publication Date
JPS63307776A JPS63307776A (en) 1988-12-15
JPH0571193B2 true JPH0571193B2 (en) 1993-10-06

Family

ID=15331635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143131A Granted JPS63307776A (en) 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63307776A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320084A (en) * 1989-06-16 1991-01-29 Matsushita Electron Corp Manufacture of thin film transistor
US6730549B1 (en) 1993-06-25 2004-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
TW295703B (en) * 1993-06-25 1997-01-11 Handotai Energy Kenkyusho Kk

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132191A (en) * 1981-02-10 1982-08-16 Suwa Seikosha Kk Active matrix substrate
JPS5884464A (en) * 1981-11-13 1983-05-20 Canon Inc Semiconductor element
JPS58123771A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS59215720A (en) * 1983-05-24 1984-12-05 Seiko Epson Corp Manufacture of thin film semiconductor device
JPS61160925A (en) * 1985-01-09 1986-07-21 Nec Corp Soi crystal growth method
JPS6239070A (en) * 1985-08-09 1987-02-20 ゼネラル エレクトリツク カンパニイ Manufacture of transistor
JPH0538462A (en) * 1991-08-02 1993-02-19 Ube Ind Ltd Vertical crusher

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132191A (en) * 1981-02-10 1982-08-16 Suwa Seikosha Kk Active matrix substrate
JPS5884464A (en) * 1981-11-13 1983-05-20 Canon Inc Semiconductor element
JPS58123771A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS59215720A (en) * 1983-05-24 1984-12-05 Seiko Epson Corp Manufacture of thin film semiconductor device
JPS61160925A (en) * 1985-01-09 1986-07-21 Nec Corp Soi crystal growth method
JPS6239070A (en) * 1985-08-09 1987-02-20 ゼネラル エレクトリツク カンパニイ Manufacture of transistor
JPH0538462A (en) * 1991-08-02 1993-02-19 Ube Ind Ltd Vertical crusher

Also Published As

Publication number Publication date
JPS63307776A (en) 1988-12-15

Similar Documents

Publication Publication Date Title
US6228692B1 (en) Thin film semiconductor device, method for fabricating the same and semiconductor device
US6458636B1 (en) Method for forming polycrystalline silicon layer and method for fabricating thin film transistor
JP3137797B2 (en) Thin film transistor and manufacturing method thereof
JP3103385B2 (en) Polysilicon thin film semiconductor device
JPH02148831A (en) Laser annealing method
JPH0571193B2 (en)
JP3332467B2 (en) Method for manufacturing polycrystalline semiconductor
JPH0614549B2 (en) Thin film transistor
JP2716036B2 (en) Method for manufacturing thin film semiconductor device
JP2944103B2 (en) MOS transistor
JP3515132B2 (en) Method for manufacturing thin film transistor
JPS63119576A (en) Thin film transistor
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JP2508601B2 (en) Field effect thin film transistor
JPS62124736A (en) Silicon thin-film and manufacture thereof
JP3054614B2 (en) Semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon
JP3075799B2 (en) Method for manufacturing semiconductor device
JP3016486B2 (en) Thin film transistor
JP2791286B2 (en) Semiconductor device
JP3426063B2 (en) Liquid crystal display device and manufacturing method thereof
JP2951319B2 (en) Method for manufacturing semiconductor device
JP3426164B2 (en) Manufacturing method of liquid crystal display device
JPS631071A (en) Thin-film semiconductor device
JPH05299348A (en) Forming method for polysrystalline silicon thin film