JPS63307776A - Thin-film semiconductor device and manufacture thereof - Google Patents

Thin-film semiconductor device and manufacture thereof

Info

Publication number
JPS63307776A
JPS63307776A JP62143131A JP14313187A JPS63307776A JP S63307776 A JPS63307776 A JP S63307776A JP 62143131 A JP62143131 A JP 62143131A JP 14313187 A JP14313187 A JP 14313187A JP S63307776 A JPS63307776 A JP S63307776A
Authority
JP
Japan
Prior art keywords
film
semiconductor device
insulating substrate
orientation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62143131A
Other languages
Japanese (ja)
Other versions
JPH0571193B2 (en
Inventor
Takashi Aoyama
隆 青山
Saburo Oikawa
及川 三郎
Yoshiaki Okajima
岡島 義昭
Nobutake Konishi
信武 小西
Genshirou Kawachi
玄士朗 河内
Hidemi Adachi
安達 英美
Takaya Suzuki
誉也 鈴木
Kenji Miyata
健治 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62143131A priority Critical patent/JPS63307776A/en
Priority to US07/203,935 priority patent/US5153702A/en
Priority to KR1019880006942A priority patent/KR970004836B1/en
Publication of JPS63307776A publication Critical patent/JPS63307776A/en
Publication of JPH0571193B2 publication Critical patent/JPH0571193B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Recrystallisation Techniques (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To obtain a thin-film semiconductor device having a larger mobility of carriers at a comparatively low process temperature by making the main orientation of a Poly-Si layer constituting a TFT as a semiconductor device formed on an insulating substrate the {111} orientation. CONSTITUTION:A thin-film semiconductor device has at least an insulating substrate 1 and semiconductor layers formed onto the substrate, and polycrystalline silicon films 2 having orientation mainly comprising {111} faces are used as the semiconductor layers. The polycrystalline silicon films are shaped onto the insulating substrate through a decompression CVD method at a temperature of 570 deg.C or less, and the insulating substrate to which the polycrystalline silicon films are formed is annealed at a temperature of 640 deg.C or less. The Poly-Si film mainly comprising {111} has large mobility, and excellent electrical characteristics are acquired by employing the Poly-Si film as an active region in a TFT.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は薄膜半導体装置とその製造方法に係り、特にア
クティブマトリクス方式のディスプレイに好適な薄膜半
導体装置とその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film semiconductor device and a method for manufacturing the same, and more particularly to a thin film semiconductor device suitable for an active matrix display and a method for manufacturing the same.

〔従来の技術〕゛ 近年、アクティブマトリクス用の薄膜半導体装置である
薄膜トランジスタ(Thin FilmTransis
tor、略してTPT)材料としては、高画質化の点で
すぐれている多結晶シリコンが用いられている。従来、
この多結晶シリコン (Polycrystalline 5ilicon略
してPo1y −S i )は減圧CVD (略してL
PGVD)法により作成されている絶縁基板としては石
英ガラス又は通常ガラス板を用いる。通常のガラス板を
用いる際には最高プロセス温度か約64.0℃という大
きな制約がある。このような低温プロセスで結晶性のよ
いPo1y −S i膜を得るために種々の方法が試み
られている。たとえば、第一には、可能な最高プロセス
温度に近い温度(630℃)まで堆積温度を上げ、堆積
圧力を0 、3 TorrとしてLPGVD膜の堆積速
度を減らし、堆積膜の結晶性(単位体積中に含まれる結
晶成分の総体積)を上げるものである(Japan D
isplay″86 Tech、 Digest 3.
5参照)。第二にはLP)CVD膜を600℃で堆積さ
せ、続く約600℃の熱処理で結晶性を向上させる(日
本学術振興会第147委貝会第7回研究資料(60,3
,19)p24参照)。第三にはLPGVD膜を610
℃で堆積させ、イオン打込みにより膜をアモルファス化
し、続く600℃の熱処理で結晶性を向上させる(第3
3回応物学会予稿集(1986年春”)p544参照)
などがある。その結果、これらのPo1y −S i 
lfaは(110)配向を持った膜となる。これらはい
ずれも結晶性向上にある程度効果はあるが、TPTを作
成したときのキャリア移動度は、まだ十分ではない。
[Prior Art] In recent years, thin film transistors, which are thin film semiconductor devices for active matrix
Polycrystalline silicon, which is excellent in terms of high image quality, is used as the tor (TPT) material. Conventionally,
This polycrystalline silicon (Polycrystalline 5ilicon, abbreviated as Poly-S i ) is produced by low pressure CVD (abbreviated as L
A quartz glass or ordinary glass plate is used as the insulating substrate produced by the PGVD method. When using a normal glass plate, there is a major restriction on the maximum process temperature of approximately 64.0°C. Various methods have been attempted to obtain a Po1y-Si film with good crystallinity through such a low-temperature process. For example, the first step is to increase the deposition temperature to a temperature close to the highest possible process temperature (630 °C), increase the deposition pressure to 0.3 Torr, reduce the deposition rate of the LPGVD film, and reduce the crystallinity of the deposited film (per unit volume). (Japan D
isplay″86 Tech, Digest 3.
(see 5). Second, the LP) CVD film is deposited at 600°C, and the crystallinity is improved by subsequent heat treatment at about 600°C (Japan Society for the Promotion of Science 147th Committee 7th Research Materials (60, 3
, 19) p. 24). The third is LPGVD film 610
℃, the film is made amorphous by ion implantation, and the crystallinity is improved by subsequent heat treatment at 600℃ (third step).
Proceedings of the 3rd Annual Meeting of the Society of Applied Physics (Spring 1986) p.544)
and so on. As a result, these Po1y −S i
lfa becomes a film with (110) orientation. Although these are all effective to some extent in improving crystallinity, the carrier mobility when TPT is produced is still not sufficient.

本発明の目的は、薄膜半導体装置の特性を向上させるた
めの薄膜半導体装置の構造、とりわけ、TPTの能動層
に使用されるPo1y −S i膜の配向性に関する構
造を提供することである。さらに、本発明の他の目的は
、約640℃以下のプロセス温度で上記薄膜を形成する
ことができる薄膜半導体装置の製造方法を提供すること
にある。
An object of the present invention is to provide a structure of a thin film semiconductor device for improving the characteristics of the thin film semiconductor device, particularly a structure related to the orientation of a Po1y-Si film used in an active layer of a TPT. Furthermore, another object of the present invention is to provide a method for manufacturing a thin film semiconductor device that can form the above thin film at a process temperature of about 640° C. or lower.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、ガラス基板等の絶縁性基板上に形成された
半導体装置であるTPTを構成するPo1y−3iiの
主配向を(111)配向とすることにより達成される。
The above object is achieved by setting the main orientation of Po1y-3ii constituting the TPT, which is a semiconductor device formed on an insulating substrate such as a glass substrate, to be (111) orientation.

このPo1y −S i層は減圧CVD法により570
’C以下の温度で堆積させ、続いて640℃以下の熱処
理を行うことによって得られる。
This Po1y-Si layer was formed by a low pressure CVD method with a thickness of 570
It is obtained by depositing at a temperature below 'C, followed by heat treatment at a temperature below 640°C.

〔作用〕[Effect]

第1図は絶縁基板1上に形成したPo1y −S i層
を模式的にあられしたものである。第1図(a)は(1
11)配向のPo1y−8iを表わし、第1図(b)は
(110)あるいは(100)配向のPo1y −S 
iを表わす、シリコン単結晶の各結晶面とS i Oz
との界面電荷密度は<100>。
FIG. 1 schematically shows a Poly-Si layer formed on an insulating substrate 1. As shown in FIG. Figure 1(a) is (1
11) represents Poly-8i orientation, and Figure 1(b) represents Poly-S with (110) or (100) orientation.
Each crystal plane of silicon single crystal representing i and S i Oz
The interfacial charge density with is <100>.

<110>、 <111>の順で増加することが知られ
ている。Po1y −S iの結晶粒界の界面にも同様
の関係が成立し、(111)配向のPo1y −S i
膜(第1図(a))では(100)あるいは(100)
配向のPo1y−S i 1II(第1図(b))に比
べ、膜と垂直方向のトラップ密度が大となる。
It is known that the number increases in the order of <110> and <111>. A similar relationship holds true for the grain boundary interface of Po1y -S i , and the (111)-oriented Po1y -S i
In the film (Fig. 1(a)), (100) or (100)
Compared to the oriented Po1y-S i 1II (FIG. 1(b)), the trap density in the direction perpendicular to the film is large.

反対に膜と平行方向では、第1図(a)に示す(111
)配向のPo1y −S i膜(a)が(110)ある
いは(100)配向のPo1y −S i膜(b)に比
べ相対的に低いトラップ密度を示すことになる。
On the other hand, in the direction parallel to the membrane, (111
)-oriented Poly-Si film (a) exhibits a relatively lower trap density than the (110) or (100)-oriented Poly-Si film (b).

トラップ密度が低いと粒界に生じる空乏層幅はせまくな
り、ここでのポテンシャル障壁は低くなる。
When the trap density is low, the width of the depletion layer formed at the grain boundary becomes narrow, and the potential barrier there becomes low.

Po1y −S iのキャリアの移動度は主として粒界
におけるポテンシャル障害の高さで決る。TPTのキャ
リアはPo1y −S i膜と平行方向に流れるため、
(111)配向のPo1y −S iでは(110)や
(100)配向のPo1y −S iに比べ相対的にキ
ャリアの移動度が大きくなる。
The carrier mobility of Po1y-S i is mainly determined by the height of potential disturbance at grain boundaries. Since carriers in TPT flow in a direction parallel to the Po1y-Si film,
In Poly-Si with (111) orientation, carrier mobility is relatively large compared to Poly-Si with (110) or (100) orientation.

〔実施例〕〔Example〕

以下、本発明の一実施例を説明する。 An embodiment of the present invention will be described below.

第3図は本発明を用いたTPT全体の断面構造を示す。FIG. 3 shows the cross-sectional structure of the entire TPT using the present invention.

基板1は歪温度約640℃のガラス板である。基板1を
550℃に保ち、ヘリウムで20%に希釈したモノシラ
ンガスを原料として、圧力I Torrの条件でLPG
VD膜2を堆積させる。堆積時間は85分間で1500
人の膜を堆積させる。
The substrate 1 is a glass plate with a strain temperature of about 640°C. The substrate 1 was maintained at 550°C, and monosilane gas diluted to 20% with helium was used as a raw material, and LPG was heated at a pressure of I Torr.
A VD film 2 is deposited. Deposition time is 1500 in 85 minutes
Deposit human membranes.

次にNz中、600℃の条件で24時間の熱処理を行う
。こうして得られたPo1y −S i膜の主たる配向
は(111)配向であり、平均粒径は約200人である
。この膜をアイランドホト、エツチングの工程を通した
後、常圧CVD法によりゲート絶縁膜用の5iOz膜を
1000人堆積させる。次にゲート電極用のPo1y 
−S i膜9を550℃、ITorrの条件で3500
人堆積させる。ゲート膜9をホト、エッチした後、ソー
ス、ドレイン領域6゜7のインプラを行う。条件はリン
(P)を用い、5 X 10 ”am−2のドース量、
30KeVの電圧である。リンガラス(Phospho
 5ilicate giass、略してPSG)から
なるパシベーション膜11を480℃で5000人堆積
させる。さらに、Nz中、600℃の条件で20時間熱
処理を行い、インプラ領域を活性化させる。コンタクト
用のホト。
Next, heat treatment is performed in Nz at 600° C. for 24 hours. The main orientation of the Po1y-S i film thus obtained is the (111) orientation, and the average grain size is about 200 grains. After this film is subjected to island photolithography and etching steps, a 5iOz film for a gate insulating film is deposited by atmospheric pressure CVD. Next, Po1y for the gate electrode
- Si film 9 at 550°C and 3500°C under ITorr conditions.
Deposit people. After photo-etching the gate film 9, implantation of the source and drain regions 6.7 is performed. The conditions were to use phosphorus (P) at a dose of 5 x 10" am-2,
The voltage is 30 KeV. Phospho
A passivation film 11 made of 5 illicate giass (PSG) was deposited by 5000 people at 480°C. Further, heat treatment is performed in Nz at 600° C. for 20 hours to activate the implant region. Photo for contacts.

エッチ行程の後、AQ電極10を6000人スパッタす
る。本実施例のTPTのチャネル幅、チャネル長はそれ
ぞれ30μm、10μmである。
After the etching step, the AQ electrode 10 is sputtered by 6,000 sputters. The channel width and channel length of the TPT in this example are 30 μm and 10 μm, respectively.

第2図はPo1y −S iを減圧CVD (LPCV
D)法で堆積する際の堆積温度と、堆積した膜を600
℃で熱処理した後の(111)面からのX線回折強度I
 111を示す。Po1y −S i膜を570℃以下
の温度で堆積すれば、熱処理後には主配向が(111)
配向となり結晶性もよくなることがわかる。これは57
0℃以下で堆積したPo1y −S i膜中にはわずか
に(111)面の結晶成分が含まれているのみで、大部
分はアモルファス成分である。続く熱処理中に、(11
1)方位の結晶成分を核として固相成長が起り、アモル
ファス成分は(111)面の結晶成分に変換する。また
、570℃以下で堆積し、その後600℃で熱処理した
場合、配向成分としては、(110)および(311)
より(111)が優勢となり、すなわち主たる配向(主
配向)となる。
Figure 2 shows Po1y-S i subjected to low pressure CVD (LPCV).
D) Deposition temperature when depositing by method and deposited film at 600℃
X-ray diffraction intensity I from the (111) plane after heat treatment at °C
111 is shown. If the Po1y-Si film is deposited at a temperature below 570°C, the main orientation will be (111) after heat treatment.
It can be seen that the crystallinity becomes better due to the orientation. This is 57
The Po1y-Si film deposited at 0° C. or lower contains only a slight (111)-plane crystal component and is mostly an amorphous component. During the subsequent heat treatment, (11
1) Solid-phase growth occurs with the oriented crystalline component as a nucleus, and the amorphous component is converted to a (111)-oriented crystalline component. In addition, when deposited at 570°C or lower and then heat-treated at 600°C, the orientation components are (110) and (311).
Therefore, (111) becomes predominant, that is, becomes the main orientation (main orientation).

第2図かられかるように、電界効果移動度は、(111
)が主配向となる堆積温度550℃では、はぼ30aJ
/VSであり、従来の(110)が主配向となる堆積温
度600℃の場合に比して著しく大である。
As can be seen from Figure 2, the field effect mobility is (111
) is the main orientation at a deposition temperature of 550°C, approximately 30aJ
/VS, which is significantly larger than the conventional case where the deposition temperature is 600° C. in which (110) is the main orientation.

(111)配向面、(11]配向面、(311)配向面
の示すX線′回折強度の割合は、LPGVDによる堆積
温度がほぼ570℃で約4.5対4.5対1であり、こ
れより堆積温度が低下するにつれて、(111)配向面
の示すX線回折強度が増加し、堆積温度がほぼ540℃
では、約7対2対1となり、(111)配向面が主たる
配向となる。
The ratio of X-ray diffraction intensities exhibited by the (111) oriented plane, the (11] oriented plane, and the (311) oriented plane is approximately 4.5:4.5:1 at a deposition temperature of approximately 570°C by LPGVD, As the deposition temperature decreases from this point, the X-ray diffraction intensity shown by the (111) oriented plane increases, and the deposition temperature reaches approximately 540°C.
In this case, the ratio is about 7:2:1, and the (111) orientation plane is the main orientation.

本実施例で述べた(IIL>を主配向とするPo1y 
−S i膜は、移動度が大きく、これをTPTの能動領
域に用いることですぐれた電気特性を得ることができる
As described in this example, Po1y with (IIL> as the main orientation)
-Si film has high mobility, and by using it in the active region of TPT, excellent electrical characteristics can be obtained.

〔発明の効果〕 本発明によれば、比較的低いプロセス温度で、キャリア
の移動度が大きい薄膜半導体装置を得ることができる。
[Effects of the Invention] According to the present invention, a thin film semiconductor device with high carrier mobility can be obtained at a relatively low process temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)、(b)は絶縁基板上の多結晶シリコンの
模式図、第2図は熱処理後の多結晶シリコン膜、結晶性
の堆積温度依存性を示す図、第3図は本発明のTPTの
断面構造の模式図を示す。
Figures 1 (a) and (b) are schematic diagrams of polycrystalline silicon on an insulating substrate, Figure 2 is a diagram showing the polycrystalline silicon film after heat treatment and the dependence of crystallinity on deposition temperature, and Figure 3 is a diagram of the book. A schematic diagram of a cross-sectional structure of TPT of the invention is shown.

Claims (1)

【特許請求の範囲】 1、少なくとも絶縁性基板と、該基板上に形成された半
導体層とを有する薄膜半導体装置において、前記半導体
層は、{111}面を主体とした配向を持つ多結晶シリ
コン膜であることを特徴とする薄膜半導体装置。 2、特許請求の範囲第1項記載の薄膜半導体装置におい
て、前記半導体層はトランジスタの能動層であることを
特徴とする薄膜半導体装置。 3、特許請求の範囲第1項乃至第2項記載の薄膜半導体
装置において、前記半導体層は、トランジスタのドレイ
ンおよびソース領域であることを特徴とする薄膜半導体
装置。 4、下記工程を含むことを特徴とする薄膜半導体装置の
製造方法。 (1)絶縁性基板上に、570℃以下の温度で、減圧C
VD法により多結晶シリコン膜を形成する工程。 (2)上記多結晶シリコン膜が形成された絶縁性基板を
640℃以下の温度でアニールする工程。
[Claims] 1. In a thin film semiconductor device having at least an insulating substrate and a semiconductor layer formed on the substrate, the semiconductor layer is made of polycrystalline silicon mainly oriented in the {111} plane. A thin film semiconductor device characterized in that it is a film. 2. The thin film semiconductor device according to claim 1, wherein the semiconductor layer is an active layer of a transistor. 3. A thin film semiconductor device according to claims 1 and 2, wherein the semiconductor layer is a drain and source region of a transistor. 4. A method for manufacturing a thin film semiconductor device, characterized by including the following steps. (1) On an insulating substrate, at a temperature of 570°C or less,
A process of forming a polycrystalline silicon film using the VD method. (2) A step of annealing the insulating substrate on which the polycrystalline silicon film is formed at a temperature of 640° C. or lower.
JP62143131A 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof Granted JPS63307776A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62143131A JPS63307776A (en) 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof
US07/203,935 US5153702A (en) 1987-06-10 1988-06-08 Thin film semiconductor device and method for fabricating the same
KR1019880006942A KR970004836B1 (en) 1987-06-10 1988-06-10 Thin film semiconductor device and method for fabricating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62143131A JPS63307776A (en) 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP30051994A Division JP2791286B2 (en) 1994-12-05 1994-12-05 Semiconductor device
JP27582396A Division JP2716036B2 (en) 1996-10-18 1996-10-18 Method for manufacturing thin film semiconductor device

Publications (2)

Publication Number Publication Date
JPS63307776A true JPS63307776A (en) 1988-12-15
JPH0571193B2 JPH0571193B2 (en) 1993-10-06

Family

ID=15331635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62143131A Granted JPS63307776A (en) 1987-06-10 1987-06-10 Thin-film semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS63307776A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320084A (en) * 1989-06-16 1991-01-29 Matsushita Electron Corp Manufacture of thin film transistor
EP0631325A2 (en) * 1993-06-25 1994-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with an oriented non single crystal silicon thin film and method for its preparation
US6730549B1 (en) 1993-06-25 2004-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132191A (en) * 1981-02-10 1982-08-16 Suwa Seikosha Kk Active matrix substrate
JPS5884464A (en) * 1981-11-13 1983-05-20 Canon Inc Semiconductor element
JPS58123771A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS59215720A (en) * 1983-05-24 1984-12-05 Seiko Epson Corp Manufacture of thin film semiconductor device
JPS61160925A (en) * 1985-01-09 1986-07-21 Nec Corp Soi crystal growth method
JPS6239070A (en) * 1985-08-09 1987-02-20 ゼネラル エレクトリツク カンパニイ Manufacture of transistor
JPH0538462A (en) * 1991-08-02 1993-02-19 Ube Ind Ltd Vertical crusher

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57132191A (en) * 1981-02-10 1982-08-16 Suwa Seikosha Kk Active matrix substrate
JPS5884464A (en) * 1981-11-13 1983-05-20 Canon Inc Semiconductor element
JPS58123771A (en) * 1982-01-19 1983-07-23 Canon Inc Semiconductor element
JPS59215720A (en) * 1983-05-24 1984-12-05 Seiko Epson Corp Manufacture of thin film semiconductor device
JPS61160925A (en) * 1985-01-09 1986-07-21 Nec Corp Soi crystal growth method
JPS6239070A (en) * 1985-08-09 1987-02-20 ゼネラル エレクトリツク カンパニイ Manufacture of transistor
JPH0538462A (en) * 1991-08-02 1993-02-19 Ube Ind Ltd Vertical crusher

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320084A (en) * 1989-06-16 1991-01-29 Matsushita Electron Corp Manufacture of thin film transistor
EP0631325A2 (en) * 1993-06-25 1994-12-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with an oriented non single crystal silicon thin film and method for its preparation
EP0631325A3 (en) * 1993-06-25 1996-12-18 Semiconductor Energy Lab Semiconductor device with an oriented non single crystal silicon thin film and method for its preparation.
EP1026752A2 (en) * 1993-06-25 2000-08-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
EP1026752A3 (en) * 1993-06-25 2002-11-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
EP1026751A3 (en) * 1993-06-25 2002-11-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
US6730549B1 (en) 1993-06-25 2004-05-04 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation
US6756657B1 (en) 1993-06-25 2004-06-29 Semiconductor Energy Laboratory Co., Ltd. Method of preparing a semiconductor having controlled crystal orientation
US7148094B2 (en) 1993-06-25 2006-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for its preparation

Also Published As

Publication number Publication date
JPH0571193B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
JP3137797B2 (en) Thin film transistor and manufacturing method thereof
US5627086A (en) Method of forming thin-film single crystal for semiconductor
JPH04250669A (en) Polysilicon thin film semiconductor device
JPS63307776A (en) Thin-film semiconductor device and manufacture thereof
JPH04286336A (en) Manufacture of semiconductor device
JPH0491425A (en) Manufacture of semiconductor device
JPS63119576A (en) Thin film transistor
JP2716036B2 (en) Method for manufacturing thin film semiconductor device
JPS62124736A (en) Silicon thin-film and manufacture thereof
JPS61127117A (en) Method for forming polycrystalline semiconductor thin film
JPH0555142A (en) Crystallizing method for amorphous semiconductor layer
JPH06120499A (en) Thin film transistor, liquid crystal display device and manufacture of same transistor
JPS63250178A (en) Manufacture of thin film semiconductor device
JPH03200319A (en) Formation of poly-crystalline silicon
JPS62287615A (en) Formation of polycrystalline silicon film
JP3333489B2 (en) Method for manufacturing thin film transistor
JPH0661489A (en) Manufacture of thin-film transistor
JPH05299348A (en) Forming method for polysrystalline silicon thin film
JPH05121440A (en) Manufacture of thin film transistor
JPH01268047A (en) Formation of polysilicon resistor
JPH0478172A (en) Manufacture of thin film semiconductor device
JPH01222432A (en) Manufacture of semiconductor device
JPH02100315A (en) Formation of crystalline silicon film
JPH0496219A (en) Formation of polycrystalline silicon semiconductor film