JPS6253034B2 - - Google Patents

Info

Publication number
JPS6253034B2
JPS6253034B2 JP19922281A JP19922281A JPS6253034B2 JP S6253034 B2 JPS6253034 B2 JP S6253034B2 JP 19922281 A JP19922281 A JP 19922281A JP 19922281 A JP19922281 A JP 19922281A JP S6253034 B2 JPS6253034 B2 JP S6253034B2
Authority
JP
Japan
Prior art keywords
alloy powder
powder
conductive
paint
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19922281A
Other languages
Japanese (ja)
Other versions
JPS58101168A (en
Inventor
Yasuhiro Ogawa
Sankichi Shinoda
Akyoshi Takeshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19922281A priority Critical patent/JPS58101168A/en
Publication of JPS58101168A publication Critical patent/JPS58101168A/en
Publication of JPS6253034B2 publication Critical patent/JPS6253034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性ペイントに関し、安価で導電性
にすぐれ、しかも耐マイグレーシヨン性にすぐれ
た導電性ペイントの提供を目的とするものであ
る。 従来、この種の導電性ペイントには、導電粉と
して、Au,Ag,Pdなどの貴金属粉が用いられて
きた。一般的には、導電粉にAgを用い、フエノ
ール樹脂、エポキシ樹脂、キシレン樹脂などの熱
硬化型樹脂と、エチルカルビトールのような溶剤
と共に混練したAgペイントを、フエノール樹脂
基板などにスクリーン印刷等の方法で塗布した
後、加熱硬化し、可変抵抗器などの電極、あるい
は電子回路用の印刷配線導体として使用されてき
た。 しかし、近年、電子機器の小型化や薄型化に伴
ない、電子部品の小型化が強く要望される傾向に
あり、このような状況下では、Agペイント硬化
膜中のAgが大気中の湿気と直流電界との相互作
用により、Agペイント電極相互間を移行する現
象、いわゆるマイグレーシヨンを起こし、その結
果、回路の短絡を起こし、しばしばトラブルの大
きな要因となつている。 このようなAgペイントの欠点を補うために、
Ag―Pd粉を用いた導電性ペイントが市販されて
いるが、まだ完全とはいえない。また、Ag―Pd
粉を用いた導電性ペイントは、Pdの価格がAgの
価格に較べて極めて高く、さらに、貴金属類、特
にAgの価格高騰が激しい近年の情勢では、経済
性の点で極めて不利である。 以上のような理由から、耐マイグレーシヨン性
の良い安価な導電性ペイントの出現が望まれてい
る。 本発明はこのような点に鑑みて成されたもので
あり、発明者らは、卑金属を主成分とする合金粉
を調査検討した結果、Ag―Al―Cu合金粉を導電
粉とした導電性ペイントが、耐マイグレーシヨン
性にすぐれ、しかも導電性をかなりのレベルで満
足することを見い出した。 次に、本発明の構成を詳述する。 本発明にかかる導電性ペイントは、その導電粉
が少なくともAg10〜70重量%とAl0.1〜10重量%
を含有し、残部がCuという組成のAg―Al―Cu合
金粉であることを特徴とする導電性ペイントであ
る。 この種の樹脂硬化型の導電性ペイントの導電粉
において望まれる条件は、 a 導電性があること、 b 加熱硬化時における耐熱酸化性があること、 があげられる。 合金粉の一成分であるCuは、導電性にすぐれ
た金属であるが、耐熱酸化性、耐食性は良いとは
いえない。したがつて、ペイント硬化処理におけ
る加熱によつて、しばしばCu粉の表面に多量の
酸化スケールが発生し、ペイント硬化膜の十分な
導電性が得られない。このようなCu粉の欠点
は、合金元素としてAgを添加することにより改
善される。しかしながら、耐マイグレーシヨン性
において、Cuがマイグレーシヨンを起こしにく
いということから、Ag―Cu合金粉はAg粉に較べ
ると改善される傾向にあるが、十分な耐マイグレ
ーシヨン性は得られない。このようなAg―Cu合
金粉の難点は、さらにAlを合金元素として添加
することにより大幅に改良される。合金化が何故
にこのような耐マイグレーシヨン性の改良をもた
らすかは明確ではないが、Al自身がマイグレー
シヨンを起こしにくいということと、AlがAgに
較べて極めて卑な金属であるということが、Ag
―Al―Cu合金粉が導電性ペイントとして使用さ
れた場合のすぐれた耐マイグレーシヨン性をひき
出しているものと推察される。また、合金元素と
してのAlの添加は、Ag―Cu合金粉の耐熱酸化性
とも改善する傾向にある。これは、Al酸化物が
合金粉の過度の酸化を防止しているものと推察さ
れる。さらに、Al自身の耐環境性によつても、
その添加により耐食性の効果を呈するものと考え
られる。しかしながら、Alの添加量が適量を越
えると、合金粉自体の導電性が降下するため、望
ましい特性は得られない。 Ag―Al―Cu合金粉が、導電性ペイントの導電
粉として、上述の長所を見い出し得る合金組成
は、Ag10〜70重量%、Al0.1〜10重量%、残Cuで
ある。Ag量の下限は合金粉の耐熱酸化性から、
上限は経済性からそれぞれ制約される量である。
また、Al量の下限はその添加効果を見い出し得
る最少量、上限は合金粉の導電性の面から制約さ
れる量である。 以上のように、Ag―Al―Cu合金粉を用いた導
電性ペイントは、導電性、耐マイグレーシヨン性
の面で実用上十分な性能を見い出し得るものであ
る。しかしながら、一般的にCuおよびCu系合合
の耐食性は過度の腐食環境においては必ずしも良
好ではないように、本発明における合金粉におい
ても、そのような雰囲気に放置された場合、耐食
性は必ずしも満足できるものではない。しかし
て、このような欠点は、合金粉に、1,2,3―
ベンゾトリアゾールをアセトンなどの有機溶媒に
溶かした溶液に浸漬した後、溶液を分離して乾燥
させるという処理(以下、ベンゾトリアゾール処
理と呼ぶ)により解決される。推察するに、上記
のベンゾトリアゾール処理によつて合金粉表面に
薄いキレート化合物の皮膜を形成することによ
り、防食効果を発揮しているものと思われる。 本発明に従えば、Ag―Al―Cu合金粉、あるい
は、ベンゾトリアゾール処理を行なつたAg―Al
―Cu合金粉を、熱硬化型の樹脂と溶剤と共に混
練して導電性ペイントとなす。この導電性ペイン
トは、通常のAgペイントと同様にフエノール樹
脂基板等にスクリーン印刷等の方法で塗布した
後、大気中で加熱硬化して、電極や導電路として
利用される。合金粉の粒径は0.05〜10μの範囲、
好ましくは0.5〜5μ程度が良い。10μ以上にな
るとスクリーン印刷時の印刷性が悪化し、最終加
熱硬化後の面抵抗が大きくなる。 次に、本発明をより具体化するために実施例に
ついて詳述する。 本発明に従うAg―Al―Cu合金粉は、次のよう
にして作製した。本発明に従う合金組成に合わせ
て、Ag,Al,Cuの各素材を秤量し、全量を1Kg
とした。これを窒素ガス中で溶解し、さらに、溶
湯噴霧法によつて粉体化した。噴霧媒として窒素
ガスを利用し、水中投入冷却した。得られた合金
粉の粒径は5〜100μ程度のものであるが、これ
を機械式粉砕機にて再度粉体化し、平均粒径約2
μとした。 上記の方法によつて得られた合金粉の一部につ
いては、ベンゾトリアゾール処理を行なつた。ベ
ンゾトリアゾール処理は次の手順で行なつた。
1,2,3―ベンゾトリアゾール10mgをアセトン
100ml中に溶解させ、この溶液に合金粉10gを浸
漬し十分に分散させた。この後、合金粉と溶液を
分離し、合金粉を乾燥した。 以上の方法によつて得られた合金粉2g、ある
いはベンゾトリアゾール処理を行なつた合金粉2
gを、キシレン樹脂1g、エチルカルビトール
0.2gと共にフーバーマーラを用いて混練した。
フーバーマーラによる混練は、荷重100ポンド、
40回転を4回繰り返して行なつた。 以上作製した導電性ペイントをスクリーン印刷
法を用いてフエノール樹脂基板上に所定の形状に
印刷後、大気中190℃10分間の条件で加熱硬化し
た。 上記印刷パターンの両端間の抵抗値を測定した
結果と、さらに40℃95%RHの恒温恒湿槽に120時
間放置した後で測定した結果を次表に示す。表に
は参考として、市販のAg粉、Cu粉を導電粉とし
た場合の結果を併せて示す。
The present invention relates to a conductive paint, and an object of the present invention is to provide a conductive paint that is inexpensive, has excellent conductivity, and has excellent migration resistance. Conventionally, noble metal powders such as Au, Ag, and Pd have been used as conductive powders in this type of conductive paint. Generally, Ag paint is mixed with a thermosetting resin such as phenolic resin, epoxy resin, or xylene resin, and a solvent such as ethyl carbitol using Ag as the conductive powder, and is screen printed on a phenolic resin substrate. After being applied by this method, it is cured by heating and used as electrodes for variable resistors and printed wiring conductors for electronic circuits. However, in recent years, as electronic devices have become smaller and thinner, there has been a strong demand for smaller electronic components. Interaction with a DC electric field causes a phenomenon in which Ag paint migrates between electrodes, so-called migration, which results in short circuits and is often a major cause of trouble. In order to compensate for such shortcomings of Ag paint,
Conductive paints using Ag-Pd powder are commercially available, but they are not yet perfect. Also, Ag―Pd
Conductive paint using powder is extremely disadvantageous in terms of economic efficiency in the recent situation where the price of Pd is extremely high compared to the price of Ag, and the price of precious metals, especially Ag, has skyrocketed in recent years. For the reasons mentioned above, there is a desire for an inexpensive conductive paint with good migration resistance. The present invention has been made in view of these points, and as a result of research and study on alloy powders mainly composed of base metals, the inventors have developed a conductive powder using Ag-Al-Cu alloy powder as a conductive powder. It has been discovered that the paint has excellent migration resistance and satisfies a considerable level of conductivity. Next, the configuration of the present invention will be explained in detail. In the conductive paint according to the present invention, the conductive powder contains at least 10 to 70% by weight of Ag and 0.1 to 10% by weight of Al.
This is an electrically conductive paint characterized by being an Ag-Al-Cu alloy powder with a composition of Ag-Al-Cu, and the balance being Cu. Desired conditions for the conductive powder of this type of resin-curing conductive paint include: a) electrical conductivity; and b) thermal oxidation resistance during heat curing. Cu, which is a component of alloy powder, is a metal with excellent electrical conductivity, but it cannot be said to have good thermal oxidation resistance or corrosion resistance. Therefore, a large amount of oxidized scale is often generated on the surface of the Cu powder due to the heating during the paint curing process, making it impossible to obtain sufficient conductivity of the cured paint film. These drawbacks of Cu powder can be improved by adding Ag as an alloying element. However, in terms of migration resistance, Ag--Cu alloy powder tends to be improved compared to Ag powder because Cu is less likely to cause migration, but sufficient migration resistance cannot be obtained. These drawbacks of Ag--Cu alloy powder can be greatly improved by further adding Al as an alloying element. It is not clear why alloying brings about such an improvement in migration resistance, but it is believed that Al itself is less prone to migration and that Al is an extremely base metal compared to Ag. ,Ag
-It is presumed that the Al-Cu alloy powder has excellent migration resistance when used as a conductive paint. Furthermore, the addition of Al as an alloying element tends to improve the heat oxidation resistance of Ag--Cu alloy powder. This is presumably because Al oxide prevents excessive oxidation of the alloy powder. Furthermore, due to the environmental resistance of Al itself,
It is thought that its addition provides corrosion resistance effects. However, if the amount of Al added exceeds an appropriate amount, the conductivity of the alloy powder itself decreases, making it impossible to obtain desirable characteristics. The alloy composition in which Ag-Al-Cu alloy powder can find the above-mentioned advantages as a conductive powder for conductive paint is 10 to 70% by weight of Ag, 0.1 to 10% by weight of Al, and the remainder Cu. The lower limit of Ag content is determined by the heat oxidation resistance of the alloy powder.
The upper limit is a quantity restricted from economic efficiency.
Further, the lower limit of the amount of Al is the minimum amount at which the effect of its addition can be found, and the upper limit is the amount limited by the electrical conductivity of the alloy powder. As described above, conductive paint using Ag-Al-Cu alloy powder can be found to have practically sufficient performance in terms of conductivity and migration resistance. However, in general, the corrosion resistance of Cu and Cu-based composites is not necessarily good in an excessively corrosive environment, and the alloy powder of the present invention does not necessarily have satisfactory corrosion resistance when left in such an atmosphere. It's not a thing. However, such drawbacks are caused by the 1, 2, 3-
This problem can be solved by a process (hereinafter referred to as benzotriazole treatment) in which benzotriazole is immersed in a solution of an organic solvent such as acetone, and then the solution is separated and dried. It is presumed that the benzotriazole treatment described above forms a thin chelate compound film on the surface of the alloy powder, thereby exerting an anticorrosion effect. According to the present invention, Ag-Al-Cu alloy powder or Ag-Al treated with benzotriazole
-Cu alloy powder is mixed with thermosetting resin and solvent to create conductive paint. This conductive paint is applied to a phenol resin substrate or the like by a method such as screen printing in the same way as ordinary Ag paint, and then heated and cured in the atmosphere to be used as electrodes or conductive paths. The particle size of alloy powder ranges from 0.05 to 10μ,
Preferably, the thickness is about 0.5 to 5μ. When the thickness exceeds 10μ, printability during screen printing deteriorates, and sheet resistance after final heat curing increases. Next, examples will be described in detail in order to make the present invention more concrete. Ag-Al-Cu alloy powder according to the present invention was produced as follows. Each material of Ag, Al, and Cu was weighed according to the alloy composition according to the present invention, and the total amount was 1 kg.
And so. This was dissolved in nitrogen gas and further pulverized by a molten metal spray method. Nitrogen gas was used as a spray medium, and the mixture was cooled in water. The particle size of the obtained alloy powder is about 5 to 100μ, but this is powdered again using a mechanical crusher, and the average particle size is about 2.
It was set as μ. A portion of the alloy powder obtained by the above method was treated with benzotriazole. The benzotriazole treatment was carried out in the following manner.
1,2,3-benzotriazole 10mg in acetone
10 g of the alloy powder was immersed in this solution and thoroughly dispersed. After that, the alloy powder and the solution were separated, and the alloy powder was dried. 2g of alloy powder obtained by the above method or 2g of alloy powder treated with benzotriazole
g, xylene resin 1g, ethyl carbitol
It was kneaded with 0.2g using a Hubermala.
For kneading with a Hoover Mara, the load is 100 pounds,
40 rotations were repeated four times. The conductive paint prepared above was printed in a predetermined shape on a phenolic resin substrate using a screen printing method, and then cured by heating at 190° C. for 10 minutes in the atmosphere. The following table shows the results of measuring the resistance value between both ends of the above printed pattern, and the results after being left in a constant temperature and humidity chamber at 40°C and 95% RH for 120 hours. For reference, the table also shows the results when commercially available Ag powder and Cu powder were used as conductive powder.

【表】【table】

【表】 また、耐マイグレーシヨン性の試験として、上
記作製したペイントを、フエノール樹脂基板上
に、間隙0.5mmのパターンにスクリーン印刷し、
加熱硬化させた後、間隙部に純水0.2mlを滴下し
た状態で、間隙間に直流3Vの電圧を印加し、間
隙間に流れる電流を測定したところ、電圧印加後
2時間経過後の電流値は、いずれも10μA程度で
あつた。これに対し、Ag粉を導電粉としたペイ
ントについて同様の試験を行なつたところ、電圧
印加後1分間経過時点で間隙部でAgの移行が観
察され短絡を起こした。したがつて、本発明にか
かる導電性ペイントは、従来のAgペイントに較
べて、耐マイグレーシヨン性が極めてすぐれてい
ると言える。 上記した説明および表から明らかなように、本
発明にかかる導電性ペイントは、従来のAgペイ
ントに比較して、導電性、耐食性の面で多少劣る
面があるものの、十分実用に供し得る特性を示す
ものであり、特に耐マイグレーシヨン性にすぐれ
ており、経済的には、従来のAgペイントに較べ
て極めて安価に作製し得ることから、その工業的
価値は大なるものがある。
[Table] In addition, as a migration resistance test, the paint prepared above was screen printed in a pattern with a gap of 0.5 mm on a phenolic resin substrate.
After heating and curing, 0.2ml of pure water was dropped into the gap, and a DC voltage of 3V was applied to the gap, and the current flowing through the gap was measured.The current value after 2 hours after voltage application was were about 10 μA in all cases. On the other hand, when a similar test was conducted on a paint using conductive Ag powder, migration of Ag was observed in the gap 1 minute after voltage application, causing a short circuit. Therefore, it can be said that the conductive paint according to the present invention has extremely superior migration resistance compared to conventional Ag paint. As is clear from the above explanation and table, although the conductive paint according to the present invention is somewhat inferior in terms of conductivity and corrosion resistance compared to conventional Ag paint, it has sufficient characteristics for practical use. It has particularly excellent migration resistance, and economically, it can be produced at a much lower cost than conventional Ag paints, so it has great industrial value.

Claims (1)

【特許請求の範囲】 1 導電粉、樹脂、および溶剤からなり、前記導
電粉が、少なくともAg10〜70重量%とAl0.1〜10
重量%を含有し、残部がCuの組成よりなる合金
粉であることを特徴とする導電性ペイント。 2 合金粉が、1,2,3―ベンゾトリアゾール
を有機溶媒に溶かした溶液に浸漬後、前記溶液を
分離し、乾燥させたものであることを特徴とする
特許請求の範囲第1項記載の導電性ペイント。
[Claims] 1. Consists of conductive powder, resin, and solvent, and the conductive powder contains at least 10 to 70% by weight of Ag and 0.1 to 10% by weight of Al.
% by weight, and the balance is Cu. 2. The alloy powder according to claim 1, wherein the alloy powder is obtained by immersing in a solution of 1,2,3-benzotriazole in an organic solvent, separating the solution, and drying it. conductive paint.
JP19922281A 1981-12-10 1981-12-10 Electrically conductive paint Granted JPS58101168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19922281A JPS58101168A (en) 1981-12-10 1981-12-10 Electrically conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19922281A JPS58101168A (en) 1981-12-10 1981-12-10 Electrically conductive paint

Publications (2)

Publication Number Publication Date
JPS58101168A JPS58101168A (en) 1983-06-16
JPS6253034B2 true JPS6253034B2 (en) 1987-11-09

Family

ID=16404168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19922281A Granted JPS58101168A (en) 1981-12-10 1981-12-10 Electrically conductive paint

Country Status (1)

Country Link
JP (1) JPS58101168A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195721B2 (en) * 2003-08-18 2007-03-27 Gurin Michael H Quantum lilypads and amplifiers and methods of use

Also Published As

Publication number Publication date
JPS58101168A (en) 1983-06-16

Similar Documents

Publication Publication Date Title
JPS6016041B2 (en) Paste for forming thick film conductors
GB2068976A (en) Electrically conductive coating compositions
US4388347A (en) Conductive pigment-coated surfaces
US4485153A (en) Conductive pigment-coated surfaces
US4312896A (en) Novel soldering process comprising coating a dielectric substrate with electroconductive metal protected by nickel carbide
US4567111A (en) Conductive pigment-coated surfaces
JPS6253035B2 (en)
JPS6253034B2 (en)
JPS58103565A (en) Electrically conductive paint
JPS6253033B2 (en)
JPS58104970A (en) Electrically conductive paint
JPH0137429B2 (en)
JPS58221206A (en) Manufacture of electrically conductive powder for electrically conductive paint
JPS6326791B2 (en)
JPH0137430B2 (en)
JPS58165397A (en) Conductive paste
JPS58103566A (en) Electrically conductive paint
JPS61185806A (en) Conductive resin paste
JPH0259563B2 (en)
JPS6356643B2 (en)
JPS6121577B2 (en)
JP2834116B2 (en) Paint for resistance
JPS5932505B2 (en) Conductive paint using lacquer-based resin
JPS6035386B2 (en) Conductive paint using Ni powder
JPS6220570A (en) Electrically-conductive paste