JPS58101168A - Electrically conductive paint - Google Patents

Electrically conductive paint

Info

Publication number
JPS58101168A
JPS58101168A JP19922281A JP19922281A JPS58101168A JP S58101168 A JPS58101168 A JP S58101168A JP 19922281 A JP19922281 A JP 19922281A JP 19922281 A JP19922281 A JP 19922281A JP S58101168 A JPS58101168 A JP S58101168A
Authority
JP
Japan
Prior art keywords
powder
paint
electrically conductive
alloy powder
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19922281A
Other languages
Japanese (ja)
Other versions
JPS6253034B2 (en
Inventor
Yasuhiro Ogawa
泰弘 小川
Sankichi Shinoda
三吉 信太
Akiyoshi Takeshima
竹島 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19922281A priority Critical patent/JPS58101168A/en
Publication of JPS58101168A publication Critical patent/JPS58101168A/en
Publication of JPS6253034B2 publication Critical patent/JPS6253034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To prepare an electrically conductive paint having excellent migration resistance as well as electrical conductivity, and useful as the conductor of a printed circuit for electronic part, etc., at a low cost, by using powder of a specific Ag-Al-Cu alloy as electrically conductive powder in combination with a resin and a solvent. CONSTITUTION:Powder of an alloy composed of 10-70wt% Ag, 0.1-10wt% Al and the remaining part of Cu is used as electrically conductive powder. The powder is preferably immersed in an organic solvent solution of 1,2,3-benzotriazole, and dried after separating the solution. The electrically conductive powder is kneaded together with e.g. a thermosetting resin and a solvent to obtain the objective paint.

Description

【発明の詳細な説明】 本発明は導電性ペイントに関し、安価で導電性にすぐれ
、しかも耐マイグレーション性にすぐれた導電性ペイン
トの提供を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive paint, and an object of the present invention is to provide a conductive paint that is inexpensive, has excellent conductivity, and has excellent migration resistance.

従来、この種の導電性ペイントには、導電粉として、ム
U、ムg 、 Pd などの貴金属粉が用いられてきた
。一般的には、導電粉に五gを用い、フェノール樹脂、
エポキシ樹脂、キシレン樹脂などの熱硬化型樹脂と、エ
チルカルピトールのような溶剤と共に混練したAgペイ
ントを、フェノール樹脂基板などにスクリーン印刷等の
方法で塗布した後、加熱硬化し、可変抵抗器などの電極
、あるいは電子回路用の印刷配線導体として使用されて
きた。
Conventionally, noble metal powders such as MuU, MuG, and Pd have been used as conductive powders in this type of conductive paint. Generally, 5g of conductive powder is used, phenolic resin,
Ag paint, which is mixed with thermosetting resin such as epoxy resin or xylene resin and a solvent such as ethyl calpitol, is applied to a phenolic resin substrate by a method such as screen printing, and then heated and cured to produce variable resistors, etc. It has been used as an electrode for electronic circuits or as a printed wiring conductor for electronic circuits.

しかし、近年、電子機器の小型化や薄型化に伴ない、電
子部品の小型化が強く要望される傾向にあり、このよう
な状況下では、Agペイント硬化膜中のAgが大気中の
湿気と直流電界との相互作用により、Agペイント電極
相互間を移行する現象、いわゆるマイグレーションを起
こし、その結果、回路の短絡を起こし、しばしばトラブ
ルの大きな要因となっている。
However, in recent years, as electronic devices have become smaller and thinner, there has been a strong demand for smaller electronic components. Interaction with a DC electric field causes a phenomenon in which Ag paint migrates between electrodes, so-called migration, which results in short circuits and is often a major cause of trouble.

このようなAgペイントの欠点を補うために、ムg−P
d粉を用いた導電性ペイントが市販されているが、まだ
完全とはいえない。また、ムg−Pd粉を用いた導電性
ペイントは、 Pdの価格がムgの価格に較べて極めて
高く、さらに、貴金属類、特にムgの価格高騰が激しい
近年の情勢では、経済性の点で極めて不利である。
In order to compensate for these drawbacks of Ag paint, Mug-P
Conductive paints using D powder are commercially available, but they are still not perfect. In addition, the price of Pd is extremely high compared to the price of Mug, and the price of precious metals, especially Mug, has been rapidly increasing in recent years. This is extremely disadvantageous in this respect.

以上のような理由から、耐マイグレーション性の良い安
価な導電性ペイントの出現が望まれている。
For the above-mentioned reasons, there is a desire for an inexpensive conductive paint with good migration resistance.

本発明はこのような点に鑑みて成されたものであり、発
明者らは、卑金属を主成分とする合金粉を調査検討した
結果、ムg−ム1−Cu 合金粉を導電粉とした導電性
ペイントが、耐マイグレーション性にすぐれ、しかも導
電性をかなりのレベルで満足することを見い出した。
The present invention has been made in view of these points, and as a result of research and study on alloy powders whose main component is base metal, the inventors have found that Mug-Mu-1-Cu alloy powder is used as conductive powder. It has been discovered that the conductive paint has excellent migration resistance and satisfies the electrical conductivity at a considerable level.

次に1本発明の構成を詳述する。Next, the configuration of the present invention will be explained in detail.

本発明にかかる導電性ペイントは、その導電粉が少なく
ともムg10〜7o 重量%とム1O11〜10重量%
を含有し、残部がCU という組成のAg−ムl −C
u合金粉であることを特徴とする導電性ペイントである
In the conductive paint according to the present invention, the conductive powder contains at least 10 to 7% by weight of Mug and 11 to 10% by weight of Mu1O.
Ag-mul-C with a composition of CU and the remainder CU
This is a conductive paint characterized by being made of U alloy powder.

この種の樹脂硬化型の導電性ペイントの導電粉において
望まれる条件は、 a、導電性があること、 b、加熱硬化時における耐熱酸化性があること、がちけ
られる。
The conditions desired for the conductive powder of this type of resin-curing conductive paint are: (a) it has conductivity; and (b) it has thermal oxidation resistance during heat curing.

合金粉の一成分であるCuは、導電性にすぐれた金属で
あるが、耐熱酸化性、耐食性は良いとはいえない。した
がって、ペイント硬化処理における加熱によって、しば
しばCu粉の表面に多計の酸化スケールが発生し、ペイ
ント硬化膜の十分な導電性が得られない。このよりなC
u粉の欠点は、合金元素としてAgを添加することによ
り改善される。しかしながら、耐マイグレーション性に
おいて、CUがマイグレーションを起こしにくいという
ことから、五g−Cu合金粉はムg粉に較べると改善さ
れる傾向にあるが、十分な耐マイグレーション性は得ら
れない。このよりなAg −Cu合金粉の難点は、さら
にA/を合金元素として添加することにより大幅に改良
される。合金化が何故にこのような耐マイグレーション
性の改良をもたらすかは明確ではないが、 Al 自身
がマイグレーションを起こしにくいということと、ムl
がAgに較べて極めて卑な金属であるということが、A
g−ム1−ICu合金粉が導電性ペイントとして使用さ
れた場合のすぐれた耐マイグレーション性をひき出して
いるものと推察される。また、合金元素としてのA/の
添加は、ムg−Cu合金粉の耐熱酸化性とも改善する傾
向にある。これは、ムe酸化物が合金粉の過度の酸化を
防止しているものと推察される。
Cu, which is a component of the alloy powder, is a metal with excellent electrical conductivity, but it cannot be said to have good thermal oxidation resistance and corrosion resistance. Therefore, heating in the paint curing process often generates a large amount of oxide scale on the surface of the Cu powder, making it impossible to obtain sufficient electrical conductivity of the cured paint film. This more C
The disadvantages of U powder can be improved by adding Ag as an alloying element. However, in terms of migration resistance, 5g-Cu alloy powder tends to be improved compared to mug powder because CU is less likely to cause migration, but sufficient migration resistance cannot be obtained. This disadvantage of the stiff Ag--Cu alloy powder can be greatly improved by further adding A/ as an alloying element. It is not clear why alloying brings about such an improvement in migration resistance, but it is important to note that Al itself is difficult to cause migration and that it is highly resistant to migration.
The fact that A is an extremely base metal compared to Ag
It is presumed that the g-mu1-ICu alloy powder exhibits excellent migration resistance when used as a conductive paint. Furthermore, the addition of A/ as an alloying element tends to improve the thermal oxidation resistance of the mug-Cu alloy powder. This is presumed to be because the mu-e oxide prevents excessive oxidation of the alloy powder.

さらに1人l自身の耐環境性によっても、その添加によ
り耐食性の効果を呈するものと考えられる。
Furthermore, it is thought that the addition of these substances will have an effect on corrosion resistance, depending on the environmental resistance of each person.

しかしながら、ムlの添加量が適量を越えると、合金粉
自体の導電性が降下するため、望ましい特性は得られな
い。
However, if the amount of mulch added exceeds an appropriate amount, the conductivity of the alloy powder itself decreases, making it impossible to obtain desirable characteristics.

ムg −kl −Cu  合金粉が、導電性ペイントの
導電粉として、上述の長所を見い出し得る合金組成は、
ムg10〜70重量%、ムlo、1〜10重量%。
The alloy composition in which Mug-kl-Cu alloy powder can find the above-mentioned advantages as a conductive powder for conductive paint is as follows:
Mug 10-70% by weight, Mulo 1-10% by weight.

残Cuである。ムg量の下限は合金粉の耐熱酸化性から
、上限は経済性からそれぞれ制約される量である。また
、AJ量の下限はその添加効果を見い出し得る最少量、
上限は合金粉の導電性の面から制約される量である。
The remaining Cu. The lower limit of the amount of magnesium is determined by the heat oxidation resistance of the alloy powder, and the upper limit is determined by economic efficiency. In addition, the lower limit of the amount of AJ is the minimum amount that can find the effect of its addition.
The upper limit is the amount limited by the electrical conductivity of the alloy powder.

以上のように、ムg−ム4−Cu合金粉を用いた導電性
ペイントは、導電性、耐マイグレーション性の面で実用
上十分な性能を見い出し得るものである。しかしながら
、一般的にCuおよびCu系合合の耐食性は過度の腐食
環境においては必ずしも良好ではないように、本発明に
おける合金粉においても、そのような雰囲気に放置され
た場合、耐食性は必ずしも満足できるものではない。し
かして、このような欠点は、合金粉に、1,2.3−ベ
ンゾトリアゾールをアセトンなどの有機溶媒に溶かした
溶液に浸漬した後、溶液を分離して乾燥させるという処
理(以下、ベンゾトリアゾール処理と呼ぶ)により解決
される。推察するに、上記のベンゾトリアゾール処理に
よって合金粉表面に薄いキレート化合物の皮膜を形成す
ることにより、防食効果を発揮しているものと思われる
As described above, the conductive paint using the Mu-4-Cu alloy powder can be found to have practically sufficient performance in terms of conductivity and migration resistance. However, in general, the corrosion resistance of Cu and Cu-based composites is not necessarily good in an excessively corrosive environment, and the alloy powder of the present invention does not necessarily have satisfactory corrosion resistance when left in such an atmosphere. It's not a thing. However, these drawbacks can be solved by a process (hereinafter referred to as benzotriazole) in which alloy powder is immersed in a solution of 1,2,3-benzotriazole dissolved in an organic solvent such as acetone, and then the solution is separated and dried. (called processing). It is presumed that the benzotriazole treatment described above forms a thin chelate compound film on the surface of the alloy powder, thereby exerting an anticorrosion effect.

本発明に従えば、ムg−人J−Cu合金粉、あるいは、
ベンゾトリアゾール処理を行なったAg−ム1−Cu合
金粉を、熱硬化型の樹脂と溶剤と共に混練して導電性ペ
イントとなす。この導電性ペイントは、通常の五gペイ
ントと同様にフェノール樹脂基板等にスクリー・ン印刷
等の方法で塗布した後、大気中で加熱硬化して、電極や
導電路として利用される。合金粉の粒径は0.05〜1
0μの範囲、好ましくは0.5〜6μ程度が良い。10
μ以上になるとスクリーン印刷時の印刷性が悪化し、最
終加熱硬化後の面抵抗が大きくなる。
According to the present invention, Mug-J-Cu alloy powder, or
The benzotriazole-treated Ag-1-Cu alloy powder is kneaded with a thermosetting resin and a solvent to form a conductive paint. This conductive paint is applied to a phenolic resin substrate or the like by a method such as screen printing in the same way as ordinary 5G paint, and then heated and cured in the atmosphere to be used as electrodes or conductive paths. The particle size of alloy powder is 0.05-1
A range of 0μ, preferably about 0.5 to 6μ is good. 10
If it exceeds μ, the printability during screen printing will deteriorate and the surface resistance after final heat curing will increase.

次に、本発明をよシ具体化するために実施例について詳
述する。
Next, examples will be described in detail to further embody the present invention.

本発明に従うムg−ム1−Cu合金粉は、次のようにし
て作製した。本発明に従う合金組成に合わせて、Ag、
ムl 、 Cuの各素材を秤量し、全量を1kgとした
。これを窒素ガス中で溶解し、さらに、溶湯噴霧法によ
って粉体化した。噴霧媒として窒素ガスを利用し、水中
投入冷却した。得られた合金粉の粒径は6〜100μ程
度のものであるが、これを機械式粉砕機にて再度粉体化
し、′平均粒径約2μとした。
Mug-mu 1-Cu alloy powder according to the present invention was produced as follows. Depending on the alloy composition according to the invention, Ag,
Each of the materials, Mul and Cu, was weighed to give a total weight of 1 kg. This was dissolved in nitrogen gas and further pulverized by a molten metal spray method. Nitrogen gas was used as a spray medium, and the mixture was cooled in water. The particle size of the obtained alloy powder was about 6 to 100 μm, but this was powdered again using a mechanical crusher to give an average particle size of about 2 μm.

上記の方法によって得られた合金粉の一部については、
ベンゾトリアゾール処理を行なった。ベンゾ) IJア
ゾール処理は次の手順で行なった。
For some of the alloy powder obtained by the above method,
Benzotriazole treatment was performed. Benzo) IJ azole treatment was performed in the following procedure.

1.2.3−ベンゾトリアゾール1oIRgをアセトン
10011/中に溶解させ、この溶液に合金粉10pを
浸漬し十分に分散させた。この後、合金粉と溶液を分離
し、合金粉を乾燥した。
1.2.3-benzotriazole 1oIRg was dissolved in acetone 10011/, and alloy powder 10p was immersed in this solution and sufficiently dispersed. After that, the alloy powder and the solution were separated, and the alloy powder was dried.

以上の方法によって得られた合金粉2y、あるいはベン
ゾトリアゾール処理を行なった合金粉2fを、’Fシレ
ンm脂1f、エチルカルピトール0.29と共にフーバ
ーマーラを用いて混練した。
The alloy powder 2y obtained by the above method or the alloy powder 2f treated with benzotriazole was kneaded with 'F silene m fat 1f and ethyl carpitol 0.29 using a Hubermala.

フーパーマーラによる混練は、荷重1ooポンド。For kneading with a Hooper Mala, the load is 10 lbs.

40回転を4回繰り返して行なった。40 rotations were repeated four times.

上記作製した導電性ペイントをスクリーン印刷法を用い
てフェノール樹脂基板上に所定の形状に印刷後、大気中
190’010分間の条件で加熱硬化した。
The conductive paint prepared above was printed in a predetermined shape on a phenolic resin substrate using a screen printing method, and then cured by heating in the atmosphere for 190'010 minutes.

上記印刷パターンの両端間の抵抗値を測定した結果と、
さらに40’095SRHの恒温恒湿槽に120時間放
置した後で測定した結果を次表に示す。表には参考とし
て、市販のムg粉、 Cu粉を導電粉とした場合の結果
を併せて示す。
The results of measuring the resistance value between both ends of the above printed pattern,
Furthermore, the results of measurements after being left in a constant temperature and humidity chamber of 40'095 SRH for 120 hours are shown in the following table. For reference, the table also shows the results when commercially available mug powder and Cu powder were used as conductive powder.

また、耐マイグレーション性の試験として、−ト記作製
したペイントを、フェノール樹脂基板上に、間隙0.5
flのパターンにスクリーン印刷し、加熱硬化させた後
、間隙部に純水0.2@lを滴下した状態で、間隙間に
直流3vの電圧を印加し1間隙間に流れる電流を測定し
たところ、電圧印加後1分間経過後の電流値は、いずれ
も10μA程度であった。これに対し、ムg粉を導電粉
としたペイントについて同様の試験を行なったところ、
電圧印加後1分間経過時点で間隙部でAgの移行が観察
され短絡を起こした。したがって、本発明にかかる導電
性ペイントは、従来のムgペイントに較べて、耐マイグ
レーション性が極めてすぐれていると言える。
In addition, as a migration resistance test, the paint prepared above was placed on a phenolic resin substrate with a gap of 0.5
After screen printing the fl pattern and curing it by heating, we applied a DC voltage of 3V to the gap and measured the current flowing through the gap for 1 hour with 0.2 liters of pure water dripped into the gap. The current values 1 minute after voltage application were about 10 μA in both cases. On the other hand, when we conducted a similar test on paint using mug powder as conductive powder, we found that
One minute after voltage application, migration of Ag was observed in the gap, causing a short circuit. Therefore, it can be said that the conductive paint according to the present invention has extremely superior migration resistance compared to conventional mug paint.

上記した説明および表から明らかなように、本発明にか
かる導電性ペイントは、従来のムgペイントに比較して
、導電性、耐食性の面で多少力る面があるものの、十分
実用に供し得る特性を示すものであり、特に耐マイグレ
ーション性にすぐれておシ、経済的には、従来のムgペ
イントに較べて極めて安価に作製し得ることから、その
工業的価値は大なるものがある。
As is clear from the above description and table, the conductive paint according to the present invention has some disadvantages in terms of conductivity and corrosion resistance compared to conventional mug paint, but it can be put to practical use. It exhibits characteristics, particularly excellent migration resistance, and economically, it can be produced at a much lower cost than conventional mug paint, so it has great industrial value.

Claims (2)

【特許請求の範囲】[Claims] (1)導電粉、樹脂、および溶剤からなり、前記導電粉
が、少なくともAg10〜70重量%とAeo、1〜1
0重量%を含有し、残部がCuの組成よりなる合金粉で
あることを特徴とする導電性ペイント。
(1) Consisting of conductive powder, resin, and solvent, wherein the conductive powder contains at least 10 to 70% by weight of Ag and 1 to 1% of Aeo.
1. A conductive paint characterized by being an alloy powder containing 0% by weight of Cu and the remainder being Cu.
(2)合金粉が、1,2.3−ベンゾトリアゾールを有
機溶媒に溶かした溶液に浸漬後、前記溶液
(2) After immersing the alloy powder in a solution of 1,2,3-benzotriazole dissolved in an organic solvent,
JP19922281A 1981-12-10 1981-12-10 Electrically conductive paint Granted JPS58101168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19922281A JPS58101168A (en) 1981-12-10 1981-12-10 Electrically conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19922281A JPS58101168A (en) 1981-12-10 1981-12-10 Electrically conductive paint

Publications (2)

Publication Number Publication Date
JPS58101168A true JPS58101168A (en) 1983-06-16
JPS6253034B2 JPS6253034B2 (en) 1987-11-09

Family

ID=16404168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19922281A Granted JPS58101168A (en) 1981-12-10 1981-12-10 Electrically conductive paint

Country Status (1)

Country Link
JP (1) JPS58101168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195721B2 (en) * 2003-08-18 2007-03-27 Gurin Michael H Quantum lilypads and amplifiers and methods of use

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7195721B2 (en) * 2003-08-18 2007-03-27 Gurin Michael H Quantum lilypads and amplifiers and methods of use

Also Published As

Publication number Publication date
JPS6253034B2 (en) 1987-11-09

Similar Documents

Publication Publication Date Title
US4888135A (en) Electrically conductive powder and electrically conductive composition using the same
US5286416A (en) Galvanically compatible conductive filler useful for electromagnetic shielding and corrosion protection
JPS58101168A (en) Electrically conductive paint
JP3299083B2 (en) Method for producing carbon-based conductive paste
JPS58104970A (en) Electrically conductive paint
JPS58103565A (en) Electrically conductive paint
JPS58103567A (en) Electrically conductive paint
JPS58101167A (en) Electrically conductive paint
JPS63125582A (en) Conductive paint
JPS58103566A (en) Electrically conductive paint
JPS58104969A (en) Electrically conductive paint
JPS5874759A (en) Electrically conductive copper paste composition
JPS63125583A (en) Conductive paint
JPS6356643B2 (en)
JPH09255900A (en) Thermosetting type carbon-based electroconductive coating material
TWM562484U (en) Resistance material and resistor
TWM562485U (en) Resistance material, conductive terminal material and resistor
JPS60161467A (en) Electrically conductive electrodeposition coating material
CN208077708U (en) resistor
JPH0436903A (en) Copper conductive paste
JPS60226570A (en) Copper powder for electrically-conductive coating compound and its preparation
JPH02185575A (en) Conductive resin composition
JP2834116B2 (en) Paint for resistance
JPS62141045A (en) Electrically conductive pressure-sensitive composition
JPS6220570A (en) Electrically-conductive paste