JPS58104970A - Electrically conductive paint - Google Patents
Electrically conductive paintInfo
- Publication number
- JPS58104970A JPS58104970A JP20441381A JP20441381A JPS58104970A JP S58104970 A JPS58104970 A JP S58104970A JP 20441381 A JP20441381 A JP 20441381A JP 20441381 A JP20441381 A JP 20441381A JP S58104970 A JPS58104970 A JP S58104970A
- Authority
- JP
- Japan
- Prior art keywords
- alloy powder
- powder
- paint
- conductive
- conductive paint
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
- H05K1/092—Dispersed materials, e.g. conductive pastes or inks
- H05K1/095—Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
Landscapes
- Paints Or Removers (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は導電性ペイントに関し、安価で導電性にすぐれ
、しかも耐マイグレーション性にすぐれた導電性ペイン
トの提供を目的とするものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive paint, and an object of the present invention is to provide a conductive paint that is inexpensive, has excellent conductivity, and has excellent migration resistance.
従来、この種の導電性ペイントには、導電粉として、A
u、Ag、Pdなどの貴金属粉が用いられてきた。一般
的には、導電粉にAqを用い、フェノール樹脂、エポキ
シ樹脂、キシレン樹脂などの熱硬化型樹脂と、エチルカ
ルピトールのような溶剤と共に混練したAgペイントを
、フェノール樹脂基版などにスクリーン印刷等の方法で
塗布した後、加熱硬化し、可変抵抗器などの電極、ある
いは電子回路用の印刷配線導体として使用されてきた。Conventionally, this type of conductive paint contains A as a conductive powder.
Noble metal powders such as u, Ag, and Pd have been used. Generally, Aq is used as conductive powder, and Ag paint is mixed with a thermosetting resin such as phenol resin, epoxy resin, or xylene resin, and a solvent such as ethyl calpitol, and screen printing is performed on a phenolic resin base plate. After being applied by a method such as the above, it is cured by heating and used as an electrode for variable resistors or as a printed wiring conductor for electronic circuits.
しかし、近年、電子機器の小型化や博型化に伴ない、電
子部品の小型化が強く要望される傾向にあり、このよう
な状況下では、A9ペイントの使用が、Agペイント硬
化膜中のAqか大気中の湿気と直流電界との相互作用に
より、勾ペイント電極相互間を移行する現象、いわゆる
マイグレーションを起こし、その結果、回路の短絡を起
こし、しばしばトラブルの大きな要因となっている。However, in recent years, as electronic devices have become smaller and larger in size, there has been a strong demand for smaller electronic components. The interaction between Aq or atmospheric moisture and a DC electric field causes a phenomenon in which gradient paint moves between electrodes, so-called migration, which causes short circuits and is often a major cause of trouble.
このようなAgペイントの欠点を補うために、Aq−P
d粉を用いた導電性ペイントが市販されているが、まだ
完全とはいえない。また、Aq−Pd粉を用いた導電性
ペイントは、Pdの価格がAqの価格に較べて極めて高
く、さらに、貴金属類、特にAqの価格高騰が激しい近
年の情勢では、経済性の点で極めて不利である。In order to compensate for these drawbacks of Ag paint, Aq-P
Conductive paints using D powder are commercially available, but they are still not perfect. In addition, conductive paint using Aq-Pd powder is extremely economical due to the fact that the price of Pd is extremely high compared to the price of Aq, and in recent years the price of precious metals, especially Aq, has skyrocketed. It is disadvantageous.
以上のような理由から、耐マイグレーション性の良い安
価な導電性ペイントの出現が望まれている。For the above-mentioned reasons, there is a desire for an inexpensive conductive paint with good migration resistance.
本発明はこのような点に鑑みて成されたものであり、発
明者らは、卑金属を主成分とする合金粉を調査検討した
結果、Ag−8i−Cu合金粉を導電粉とした導電性ペ
イントが、耐マイグレーション性にすぐれ、しかも導電
性をかなりのレベルで満足することを見い出した。The present invention has been made in view of these points, and as a result of research and study on alloy powders whose main components are base metals, the inventors have developed a conductive powder using Ag-8i-Cu alloy powder as a conductive powder. It has been discovered that the paint has excellent migration resistance and satisfies a considerable level of conductivity.
次に、本発明の構成を詳述する。Next, the configuration of the present invention will be explained in detail.
本発明にかかる導電性ペイントは、その導電粉が少なく
ともA(Jl 0〜70重量係とsio、1〜4重量係
を含有し、残部Cuという組成のAg−8i−Cu合金
粉であることを特徴とする導電性ペイントである。In the conductive paint according to the present invention, the conductive powder is an Ag-8i-Cu alloy powder containing at least A (Jl 0 to 70 weight factor and sio, 1 to 4 weight factor), and the balance being Cu. This is a conductive paint with special characteristics.
この種の樹脂硬化型の導電性ペイントの導電粉において
望まれる条件は、
a 導電性があること、
b 加熱硬化時における耐熱酸化性があること、やくあ
けられる。The conditions desired for the conductive powder of this type of resin-curing conductive paint are: a) conductivity; and b) resistance to thermal oxidation during heat curing.
合金粉の一成分であるCuは、導電性にすぐれた金属で
あるが、耐熱酸化性、耐食性は良いとは言えない。した
がって、ペイント硬化処理における加熱によって、しば
しばCu粉の表面に多鯖の酸化スケールが発生し、ペイ
ント硬化膜の十分な導電性が得られない。このようなC
u粉の欠点は、合金元素としてAqを添加することによ
り改善される。Cu, which is one component of the alloy powder, is a metal with excellent electrical conductivity, but it cannot be said to have good thermal oxidation resistance and corrosion resistance. Therefore, due to the heating during the paint curing process, large oxide scales are often generated on the surface of the Cu powder, making it impossible to obtain sufficient electrical conductivity of the cured paint film. C like this
The disadvantages of U powder can be improved by adding Aq as an alloying element.
しかしながら、耐マイグレーション性において、Cuが
マイグレーションを起こしにくいというυから、Ag−
Cu合金粉はAq粉に較べると改善される傾向にあるが
、十分な耐マイグレーション性は得られない。このよう
なA g −Cu合金粉の難点は、さらにSiを合金元
素として添加することにより大幅に改良される。合金化
が何故にこのような耐マイグレーション性の改良をもた
らすかは明確ではないが、Si自身がマイグレーション
を起こしにくいということと、SiがAqKWべて極め
て卑な元素であるということが、Ag−3t−Cu合金
粉が導電性ペイントとして使用された場合のすぐれた耐
マイ−グレージョン性をひき出しているものと推察され
る。また、合金元素としてのStの添加は、Aq−Cu
合金粉の耐熱酸化性をも改善する傾向にある。However, in terms of migration resistance, since Cu is less likely to cause migration, Ag-
Although Cu alloy powder tends to be improved compared to Aq powder, sufficient migration resistance cannot be obtained. Such drawbacks of the A g -Cu alloy powder can be greatly improved by further adding Si as an alloying element. It is not clear why alloying brings about such an improvement in migration resistance, but the fact that Si itself is difficult to cause migration and the fact that Si is an extremely base element compared to AqKW makes it difficult for Ag- It is presumed that the 3t-Cu alloy powder exhibits excellent migration resistance when used as a conductive paint. In addition, the addition of St as an alloying element
It also tends to improve the thermal oxidation resistance of alloy powder.
これは、 Si酸化物が合金粉の過度の酸化を防止して
いるものと推察される。さらに、Si自身の耐環境性に
よっても、その添加により耐食性の効果を呈するものと
考えられる。しかしながら、Stの添加量が適量を越え
ると合金粉自体の導電性が降下するため、望ましい特性
は得られない。This is presumably because Si oxide prevents excessive oxidation of the alloy powder. Furthermore, due to the environmental resistance of Si itself, it is thought that the addition of Si provides corrosion resistance effects. However, if the amount of St added exceeds an appropriate amount, the conductivity of the alloy powder itself decreases, making it impossible to obtain desirable characteristics.
Ag−8i−Cu合金粉が、導電性ペイントの導電粉と
して、上述の長所を見い出し得る合金組成は、Ag10
〜70重量係、Sio、1〜4重量係、残部Cuである
、Aq量の下限は合金粉の耐熱酸化性から、上限は経済
性からそれぞれ制約される量である。The alloy composition in which Ag-8i-Cu alloy powder can find the above-mentioned advantages as a conductive powder for conductive paint is Ag10.
~70 weight ratio, Sio, 1~4 weight ratio, balance Cu. The lower limit of the amount of Aq is determined by the heat oxidation resistance of the alloy powder, and the upper limit is determined by economic efficiency.
また、Si量の下限はその添加効果を見い出し得る最少
量、上限は合金物の導電性の面から制約される量である
。Further, the lower limit of the amount of Si is the minimum amount at which the effect of its addition can be found, and the upper limit is the amount restricted from the viewpoint of the conductivity of the alloy.
以上のように、Ag−5t−Cu合金粉を用いた導電性
ペイントは、導電性、耐マイグレーション性の而で実用
上十分な性能を見い出し得るものである。しかしながら
、一般的にCuおよびCu系合金の耐食性は過度の腐食
環境においては必ずしも良好ではないように、本発明に
おける合金粉においても、そのような雰囲気に放置され
た場合、耐食性は必ずしも満足できるものではない。し
かして、このような欠点は、合金粉に、1.2.3−ベ
ンゾトリアゾールをアセトンなどの有機溶媒に溶かした
溶液°に浸漬した後、溶液を分離して乾燥させるという
処理(以下、ベンゾトリアゾール処理と呼ぶ)により解
決される。推察するに、上記のベンゾトリアゾール処理
によって合金粉表面に薄いキレート化合物の皮膜を形成
することにより、防食効果を発揮しているものと思われ
る。As described above, the conductive paint using Ag-5t-Cu alloy powder has practically sufficient performance in terms of conductivity and migration resistance. However, in general, the corrosion resistance of Cu and Cu-based alloys is not necessarily good in excessively corrosive environments, and the alloy powder of the present invention does not necessarily have satisfactory corrosion resistance when left in such an atmosphere. isn't it. However, these drawbacks can be overcome by a process in which alloy powder is immersed in a solution of 1,2,3-benzotriazole dissolved in an organic solvent such as acetone, and then the solution is separated and dried (hereinafter referred to as benzotriazole). This problem can be solved by triazole treatment (referred to as triazole treatment). It is presumed that the benzotriazole treatment described above forms a thin chelate compound film on the surface of the alloy powder, thereby exerting an anticorrosive effect.
本発明に従えば、Ag−8t−Cu合金粉、あるいは、
ベンゾトリアゾール処理を行なったAg−8t−Cu合
金粉を、熱硬化型の樹脂と溶剤と共に混練して、導電性
ペイントとなす。この導電性ペイントは、通常のAqペ
イントと同様に、フェノール ′樹脂基板等にスクリー
ン印刷等の方法で塗布した後、大気中で加熱硬化して、
電極、導電路として利用される。合金物め粒径は0.0
5〜10μの範囲、好ましくは、0.5〜6μ程度が良
い。10μ以上になると、スクリーン印刷時の印刷性が
悪化し、最終加熱硬化後の面抵抗が大きくなる。According to the present invention, Ag-8t-Cu alloy powder, or
Ag-8t-Cu alloy powder treated with benzotriazole is kneaded with a thermosetting resin and a solvent to form a conductive paint. This conductive paint, like ordinary Aq paint, is applied to a phenol resin substrate by a method such as screen printing, and then heated and cured in the atmosphere.
Used as electrodes and conductive paths. Alloy grain size is 0.0
A range of 5 to 10 μm, preferably about 0.5 to 6 μm is good. If it exceeds 10μ, the printability during screen printing will deteriorate and the surface resistance after final heat curing will increase.
次に、本発明をより具体化するために実施例について詳
述する。Next, examples will be described in detail in order to make the present invention more concrete.
本発明に従うAg−8i−Cu合金粉は、次のようにし
て作製した。本発明に従う合金組成に合わせてAg、S
i、Cuの各素材を秤量し、全量を1kgとした(Si
はCu−3t 母合金により添加した)。Ag-8i-Cu alloy powder according to the present invention was produced as follows. Ag, S according to the alloy composition according to the present invention
Each material of i and Cu was weighed, and the total amount was 1 kg (Si
was added by Cu-3t master alloy).
これを窒素ガス中で溶解し、さらに、溶湯噴霧法によっ
て粉体化した。噴霧媒として窒素ガスを利用し、水中投
入冷却した。得られた合金粉の粒径は6〜1oOμ程度
のものであるが、これを機械式粉砕機にて再度粉体化し
、平均粒径約2μとした。This was dissolved in nitrogen gas and further pulverized by a molten metal spray method. Nitrogen gas was used as a spray medium, and the mixture was cooled in water. The particle size of the obtained alloy powder was about 6 to 100 μm, but this was powdered again using a mechanical crusher to have an average particle size of about 2 μm.
上記の方法によって得られた合金粉の一部にっ−ては、
ベンゾトリアゾール処理を行なった。べ/シトリアゾー
ル処理は次の手順で行なった。1゜2.3−ヘンソトリ
ア/−ル1oqをアセトン100mA’中に溶解させ、
この溶液に合金粉10りを浸漬し十分に分散させた。こ
の後、合金粉と溶液を分離し、合金粉を乾燥した。In some of the alloy powders obtained by the above method,
Benzotriazole treatment was performed. The be/citriazole treatment was carried out in the following manner. 1゜Dissolve 1 oq of 2.3-Hensotria/- in 100 mA' of acetone,
Ten pieces of alloy powder were immersed in this solution and thoroughly dispersed. After that, the alloy powder and the solution were separated, and the alloy powder was dried.
以上の方法によって得られた合金粉2y、あるいはベン
ゾトリアゾール処理を行なった合金粉2ノを、キシレン
樹脂IP、エチルカルピトール0.2yと共にフーバー
マーラを用いて混練した。Alloy powder 2y obtained by the above method or alloy powder 2no treated with benzotriazole was kneaded with xylene resin IP and 0.2y of ethylcarpitol using a Hubermala.
フーバーマーラによる混練は、荷重100ポンド、40
回転を4回繰り返して行なった。For kneading with a Hoover Mala, the load is 100 lbs., 40 lbs.
Rotation was repeated four times.
上記作製した導電性ペイントをスクリーン印刷法を用い
てフェノール樹脂基板上に所定の形状に印刷後、大気中
190″C10分間の条件で加熱硬化した。The conductive paint prepared above was printed in a predetermined shape on a phenolic resin substrate using a screen printing method, and then cured by heating at 190''C in the atmosphere for 10 minutes.
上記印刷パターンの両端間の抵抗値を測定した結果と、
さらに40°096%RHの恒温恒湿槽に120時間放
置した後で測定した結果を次表に示す。表には参考とし
て、市販のAg粉、Cu粉を導電粉とした場合の結果を
併せて示す。The results of measuring the resistance value between both ends of the above printed pattern,
The following table shows the measurement results after being left in a constant temperature and humidity chamber at 40°, 096% RH for 120 hours. For reference, the table also shows the results when commercially available Ag powder and Cu powder were used as conductive powder.
(以 下 余 白2
]
考
また、耐マイグレーション性の試験として、上記作製し
たペイントを、フェノール樹脂基板上に、間隙0.6閣
のパターンをスクリーン印刷し、加熱硬化させた後、間
隙部に純水0 、2mlを滴下した状態で、間隙間に直
流3vの電圧を印加し、間隙間に流れる電流を測定し九
ところ、電圧印加後2時間経過後の電流値は、いずれも
I Q lt A程度であった。(See Margin 2 below.) Also, as a test for migration resistance, the paint prepared above was screen printed with a pattern with a gap of 0.6 mm on a phenolic resin substrate, and after curing by heating, a pattern was printed in the gap. With 0.2ml of pure water dropped, a DC voltage of 3V was applied to the gap, and the current flowing through the gap was measured.The current values 2 hours after voltage application were both IQlt. It was grade A.
これに対し、Ag粉を導電粉上したペイントについて同
様の試験を行なったところ、電圧印加後1分間経過時点
で間隙部で勾の移行が観察され短絡を起こした。したが
って、本発明にかがる導電性ペイントは、従来のA9ペ
イントに較べて、耐マイグレーション性が極めてすぐれ
ていると言える。On the other hand, when a similar test was conducted on a paint in which Ag powder was applied as a conductive powder, a gradient shift was observed in the gap portion one minute after the voltage was applied, and a short circuit occurred. Therefore, it can be said that the conductive paint according to the present invention has extremely superior migration resistance compared to the conventional A9 paint.
上記した説明および表から明らかなように、本発明にか
かる導電性ペイントは、従来のAqペイントに比較して
、導電性、耐食性の面で多少劣る面があるものの、十分
実用に供し得る特性を示すものであり、特に耐マイグレ
ーション性にすぐれており、経済的には、従来のAqペ
イントに較べて極めて安価に作製し得ることから、その
工業的価値は大なるものがある。As is clear from the above description and table, although the conductive paint according to the present invention is somewhat inferior in terms of conductivity and corrosion resistance compared to conventional Aq paint, it has sufficient characteristics for practical use. It has particularly excellent migration resistance, and economically, it can be produced at a much lower cost than conventional Aq paints, so it has great industrial value.
Claims (1)
導電粉が、少なくともAg10〜70重蛍% 、Si0
.1〜4重量%を含有し、残部がCu1)組成よりなる
合金粉であることを特徴とする導電性ペイント。 (2)合金粉が、1j2,3−ベンゾトリアゾールを有
機溶媒に溶かした溶液に浸漬後、前記溶液を分離し、乾
燥させたものであることを特徴とする特許請求の範囲第
(1)項記載の導電性ペイント。[Claims] (1) consisting of conductive powder, resin, and solvent;
The conductive powder contains at least 10 to 70% Ag, Si0
.. A conductive paint characterized by being an alloy powder containing 1 to 4% by weight, with the remainder having a composition of Cu1). (2) Claim (1) characterized in that the alloy powder is obtained by immersing in a solution of 1j2,3-benzotriazole dissolved in an organic solvent, separating the solution and drying it. Conductive paint as described.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20441381A JPS58104970A (en) | 1981-12-16 | 1981-12-16 | Electrically conductive paint |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20441381A JPS58104970A (en) | 1981-12-16 | 1981-12-16 | Electrically conductive paint |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58104970A true JPS58104970A (en) | 1983-06-22 |
Family
ID=16490124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20441381A Pending JPS58104970A (en) | 1981-12-16 | 1981-12-16 | Electrically conductive paint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58104970A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004050753A1 (en) * | 2002-11-29 | 2004-06-17 | Dow Corning Toray Silicone Co., Ltd. | Silver-based powder, method of preparation thereof, and curable silicone composition |
WO2009084645A1 (en) * | 2007-12-28 | 2009-07-09 | Mitsui Mining & Smelting Co., Ltd. | Copper powder for electrically conductive paste, and electrically conductive paste |
WO2010004852A1 (en) * | 2008-07-11 | 2010-01-14 | 三井金属鉱業株式会社 | Copper powder for conductive paste, and conductive paste |
-
1981
- 1981-12-16 JP JP20441381A patent/JPS58104970A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004050753A1 (en) * | 2002-11-29 | 2004-06-17 | Dow Corning Toray Silicone Co., Ltd. | Silver-based powder, method of preparation thereof, and curable silicone composition |
JP2004176165A (en) * | 2002-11-29 | 2004-06-24 | Dow Corning Toray Silicone Co Ltd | Silver powder, production method therefor, and hardenable silicone composition |
CN1311014C (en) * | 2002-11-29 | 2007-04-18 | 陶氏康宁东丽株式会社 | Silver-based powder, method of preparation thereof, and curable silicone composition |
US7700678B2 (en) | 2002-11-29 | 2010-04-20 | Dow Corning Toray Company, Ltd. | Silver-based powder, method of preparation thereof, and curable silicone composition |
KR101049693B1 (en) * | 2002-11-29 | 2011-07-19 | 다우 코닝 도레이 캄파니 리미티드 | Silver powder, preparation method thereof and curable silicone composition |
WO2009084645A1 (en) * | 2007-12-28 | 2009-07-09 | Mitsui Mining & Smelting Co., Ltd. | Copper powder for electrically conductive paste, and electrically conductive paste |
JP2010013726A (en) * | 2007-12-28 | 2010-01-21 | Mitsui Mining & Smelting Co Ltd | Copper powder for electroconductive paste, and electroconductive paste |
WO2010004852A1 (en) * | 2008-07-11 | 2010-01-14 | 三井金属鉱業株式会社 | Copper powder for conductive paste, and conductive paste |
CN102015164A (en) * | 2008-07-11 | 2011-04-13 | 三井金属矿业株式会社 | Copper powder for conductive paste, and conductive paste |
JPWO2010004852A1 (en) * | 2008-07-11 | 2011-12-22 | 三井金属鉱業株式会社 | Copper powder for conductive paste and conductive paste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3879749B2 (en) | Conductive powder and method for producing the same | |
US4567111A (en) | Conductive pigment-coated surfaces | |
JPS58104970A (en) | Electrically conductive paint | |
US6838021B2 (en) | Irregular shaped copper particles and methods of use | |
KR102560073B1 (en) | conductive paste | |
JPH06184409A (en) | Electrically conductive curable composition | |
JPS58103565A (en) | Electrically conductive paint | |
JPS6253035B2 (en) | ||
JPS6350384B2 (en) | ||
JPS63125583A (en) | Conductive paint | |
JPS58104969A (en) | Electrically conductive paint | |
JPS58101167A (en) | Electrically conductive paint | |
JPS6253034B2 (en) | ||
JPS58103566A (en) | Electrically conductive paint | |
JPH0137429B2 (en) | ||
JPS6058268B2 (en) | Conductive copper paste composition | |
JPS6356643B2 (en) | ||
JPH0472367A (en) | Electrically conductive composition | |
JPH0436903A (en) | Copper conductive paste | |
JPS6121577B2 (en) | ||
JPH09255900A (en) | Thermosetting type carbon-based electroconductive coating material | |
JP2017134889A (en) | Powder for conductive filler | |
JPH06329960A (en) | Conductive paste | |
JP2834116B2 (en) | Paint for resistance | |
JPH0266803A (en) | Conductive composition |