JPH0436903A - Copper conductive paste - Google Patents

Copper conductive paste

Info

Publication number
JPH0436903A
JPH0436903A JP14003590A JP14003590A JPH0436903A JP H0436903 A JPH0436903 A JP H0436903A JP 14003590 A JP14003590 A JP 14003590A JP 14003590 A JP14003590 A JP 14003590A JP H0436903 A JPH0436903 A JP H0436903A
Authority
JP
Japan
Prior art keywords
conductive paste
copper powder
resin
thermosetting resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14003590A
Other languages
Japanese (ja)
Inventor
Mikio Nakano
幹夫 中野
Osamu Ito
治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
Original Assignee
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil and Fats Co Ltd filed Critical Nippon Oil and Fats Co Ltd
Priority to JP14003590A priority Critical patent/JPH0436903A/en
Publication of JPH0436903A publication Critical patent/JPH0436903A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To get copper conductive paste which is good in conductivity and low in the value of volume resistivity and also good in adhesiveness, printability, etc. by using conductive paste which contains copper powder and thermosetting resin and containing an additive selected from a group made up of N- alkylglycine, N-alkenileglycine, N-alkylbetaine, N-alkenilebetaine, amidebetaine, imidazoline and a mixture of them in the conductive paste. CONSTITUTION:The conductive paste contains copper powder and thermosetting resin and the thermosetting resin includes, for example, epoxy resin, methymine resin, phenol resin, alkyl resin, etc. Moreover, the conductive paste contains an additive selected from a group made up of N-alkylglycine, N-alkelnile glycine, N-alkylbetaine, N-alkenile betaine, amidebetaine, imidazoline and a mixture thereof. It is especially preferable that a mixing quantity of the additive is 1.0 - 5.0 parts by weight referring to 100 parts by weight of a total of copper powder and thermosetting resin.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、銅系導電性ペーストに関し、更に詳細には、
プリント基板の導体回路用及び基板のシールド用等に利
用可能な銅系導電性ペーストに関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a copper-based conductive paste, and more specifically,
The present invention relates to a copper-based conductive paste that can be used for conductor circuits on printed circuit boards, shields for boards, etc.

〈従来の技術〉 従来、電子部品分野において使用される導電性ペースト
としては、金及び銀等の貴金属粉末類と、有機バインダ
ーとから成るペーストが知られており、例えば該ペース
トは、回路にスクリーン印刷し、焼付けする方法等によ
り使用されている。
<Prior Art> As conductive pastes used in the field of electronic components, pastes made of noble metal powders such as gold and silver and organic binders have been known. It is used by methods such as printing and baking.

しかしながら、金及び銀等の貴金属粉末類は、非常に高
価であるので、近年、電子部品業界においてコスト低減
が重要視されている点を鑑みると、コスト的に問題があ
る。また銀粉末を用いた導電性ペーストにより印刷回路
を形成する場合、例えば湿気雰囲気中で直流電圧を印加
すると、銀の移行現象(マイグレーション)が生じ、回
路の抵抗増大、更には回路の短絡が生じるという欠点が
ある。
However, since noble metal powders such as gold and silver are very expensive, there is a cost problem in view of the recent emphasis on cost reduction in the electronic component industry. In addition, when a printed circuit is formed using a conductive paste using silver powder, for example, when a DC voltage is applied in a humid atmosphere, a migration phenomenon of silver occurs, which increases the resistance of the circuit and even causes a short circuit. There is a drawback.

そこで最近、銀に次いで体積固有抵抗値が低く、しかも
銀よりも廉価な銅を主成分とする導電性ペーストの開発
が種々検討されている。該導電性ペーストは、銅粉末と
、熱硬化性樹脂とを混合したものであるが、該銅粉末は
、他の貴金属に比べて、大気中における被酸化性が大き
いため、貯蔵時、印刷及び加熱等の回路形成時、更には
、形成された回路の使用時において、銅粉末の表面が酸
化され、銅粉末粒子間の接触抵抗が増大し、十分な導電
性を得ることができないという欠点がある。従って、こ
のような銅粉末が有する欠点を解決するために、従来か
ら銅粉末と、樹脂とを組成とする導電性ペーストに、種
々の添加剤を添加することが提案されている。前記添加
剤としては、例えば、特公昭52−24−936号公報
において亜燐酸又はその誘導体が、特公昭61−367
96号公報においてアントラセン又はその誘ぷ体が、特
開昭57−55974号公報においてはヒ1〜ロキノン
類の誘導体が、特開昭61−211378号公報におい
ては不飽和脂肪酸が、また特公昭6]−14−、]、、
 75号公報においては脂肪酸アミドがそれぞれ提案さ
れている。しかしながら、前記添加剤を添加した従来の
導電性ペース1〜は、初期の安定性には優れているもの
の、長期安定性については、体積固有抵抗値の絶対値が
高くなる等の問題がある。
Therefore, recently, various studies have been made to develop a conductive paste mainly composed of copper, which has the second lowest volume resistivity after silver and is cheaper than silver. The conductive paste is a mixture of copper powder and thermosetting resin, but since the copper powder is more susceptible to oxidation in the atmosphere than other precious metals, it is difficult to store, print, and When forming a circuit by heating, and furthermore when using the formed circuit, the surface of the copper powder is oxidized, the contact resistance between the copper powder particles increases, and sufficient conductivity cannot be obtained. be. Therefore, in order to solve the drawbacks of copper powder, it has been proposed to add various additives to a conductive paste composed of copper powder and resin. Examples of the additive include phosphorous acid or its derivatives in Japanese Patent Publication No. 52-24-936, Japanese Patent Publication No. 61-367
No. 96 uses anthracene or its derivatives, JP-A-57-55974 uses H1-quinone derivatives, JP-A No. 61-211378 uses unsaturated fatty acids, and JP-A No. 61-211378 uses unsaturated fatty acids. ]-14-, ],,
Patent No. 75 proposes fatty acid amides. However, although the conventional conductive pastes 1 to 1 containing the additives have excellent initial stability, they have problems with long-term stability, such as an increase in the absolute value of the volume resistivity.

〈発明が解決しようとする課題〉 従って本発明の主要な目的は、導電性に優れ、体積固有
抵抗値が低く、しかも密着性、印刷性等が良好な銅系導
電性ペーストを提供することにある。
<Problems to be Solved by the Invention> Therefore, the main object of the present invention is to provide a copper-based conductive paste that has excellent conductivity, low volume resistivity, and good adhesion, printability, etc. be.

〈課題を解決するための手段〉 本発明によれば、銅粉末及び熱硬化性樹脂を含む導電性
ペーストであって、該導電性ペーストが、更にN−アル
キルグリシン、N−アルケニルグリシン、N−アルキル
ベタイン、N−アルケニルベタイン、アミ;−ベタイン
、イミダゾリン及びこれらの混合物から成る群より選択
される添加剤を含有してなる銅系導電性ペーストが提供
される。
<Means for Solving the Problems> According to the present invention, there is provided a conductive paste containing copper powder and a thermosetting resin, the conductive paste further comprising N-alkylglycine, N-alkenylglycine, N- A copper-based conductive paste is provided containing an additive selected from the group consisting of alkylbetaines, N-alkenylbetaines, amyl-betaines, imidazolines, and mixtures thereof.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明の導電性ペーストに用いる銅粉末は、特に限定さ
れるものではないが、例えば球状、樹枝状、リン片状の
電解銅粉、酸化第一銅、酸化第二銅等を還元した還元銅
粉、ア1−マイズ剖粉、金属銅粉砕物等を好ましく挙げ
ることができる。該銅粉末の粒径は、0.5〜100μ
、特にQ、5〜30μの範囲であるのが好ましい。粒径
が100μを超える場合には、印刷性に問題が生じ、ま
た0、5μ未満では、銅粉末が酸化されやすく、得られ
る塗膜の導電性が低下するので好ましくない。
The copper powder used in the conductive paste of the present invention is not particularly limited, but includes, for example, spherical, dendritic, scale-like electrolytic copper powder, reduced copper obtained by reducing cuprous oxide, cupric oxide, etc. Preferred examples include powder, amylized powder, pulverized metal copper, and the like. The particle size of the copper powder is 0.5 to 100μ
In particular, Q is preferably in the range of 5 to 30μ. When the particle size exceeds 100 μm, problems occur in printability, and when the particle size is less than 0.5 μm, the copper powder is easily oxidized and the conductivity of the resulting coating film is undesirably reduced.

本発明の導電性組成物に用いる熱硬化性樹脂としては、
例えばエポキシ樹脂、メラミン樹脂、フェノール樹脂、
アルキッド樹脂等を好ましく挙げることができる。
The thermosetting resin used in the conductive composition of the present invention includes:
For example, epoxy resin, melamine resin, phenolic resin,
Preferred examples include alkyd resins.

本発明において、前記銅粉末と、熱硬化性樹脂どの配合
割合は、好ましくは銅粉末65〜95重量%、特に好ま
しくは75〜90重量%、即ち熱硬化性樹脂5〜35重
量%、特に好ましくは10〜25重量%であるのが望ま
しい。前記銅粉末の配合割合が65重量%未満では、i
電回路として要求される比抵抗が得られず、また95重
量%を超える場合には、印刷性等のペーストとしての物
性が低下するので好ましくない。
In the present invention, the blending ratio of the copper powder and the thermosetting resin is preferably 65 to 95% by weight of the copper powder, particularly preferably 75 to 90% by weight, that is, 5 to 35% by weight of the thermosetting resin, particularly preferably is preferably 10 to 25% by weight. If the blending ratio of the copper powder is less than 65% by weight, i
If the specific resistance required for an electric circuit cannot be obtained, and if it exceeds 95% by weight, the physical properties of the paste, such as printability, will deteriorate, which is undesirable.

本発明の導電性ペーストは、前記銅粉末の酸化等を防止
するために、更にN−アルキルグリシン、N−アルケニ
ルグリシン、N−アルキルベタイン、N−アルケニルベ
タイン、アミドベタイン、イミダゾリン及びこれらの混
合物から成る群より選択さ九る添加剤を含有する。該N
−アルキルグリシンとしては、例えば炭素数8〜22の
アルキル基を有するN−アルキルグリシン、N−ヤシ油
アルキルグリシン等を、N−アルケニルグリシンとして
は、例えば炭素数8〜22のアルケニル基を有するN−
アルケニルグリシン、N−アルキロ、イルグリシン等を
、N−アルキルベタインとしては、例えば炭素数8〜2
2のアルキル基を有するN−フルキルベタイン5N−ジ
メチルアルキルヤシ油ベタイン、N−ジメチルアルキル
ラウリルベタイン等を、N−アルケニルベタインどして
は、例えば炭素数8〜22のアルケニル基を有するN−
アルケニルベタイン、N−アルキロイルベタイン等を、
アミドベタインとしては、例えばヤシ油アミドベタイン
、アミドプロピルベタイン等を、イミダゾリンとしては
1例えばイミダゾリン、ヤシ油イミダゾリン等をそれぞ
れ好ましく挙げることができ、また市販品を用いること
もできる。前記添加剤の配合量は、前記銅粉末と、熱硬
化性樹脂との合計量3−00重量部に対して、好ましく
は0.5〜10重量部、特に好ましくは1.0〜5.0
重量部であるのが好ましい。前記配合量が、0.5重量
部未満では添加による種々の効果が得られず、また10
重量部を超えると、導電性ペーストとしての物性に悪影
響を及ぼすので好ましくない。
The conductive paste of the present invention further contains N-alkylglycine, N-alkenylglycine, N-alkylbetaine, N-alkenylbetaine, amidobetaine, imidazoline, and mixtures thereof in order to prevent oxidation of the copper powder. 9 additives selected from the group consisting of: The N
- As the alkylglycine, for example, N-alkylglycine having an alkyl group having 8 to 22 carbon atoms, N-coco alkylglycine, etc., and as N-alkenylglycine, for example, N-alkylglycine having an alkenyl group having 8 to 22 carbon atoms, etc. −
Alkenylglycine, N-alkylo, ylglycine, etc., as N-alkylbetaine, have 8 to 2 carbon atoms, for example.
N-furkylbetaine having 2 alkyl groups, 5N-dimethylalkyl coconut oil betaine, N-dimethylalkyllaurylbetaine, etc., N-alkenylbetaine etc., for example, N-furkylbetaine having an alkenyl group having 8 to 22 carbon atoms.
Alkenyl betaine, N-alkyloyl betaine, etc.
Preferred examples of amidobetaine include coconut oil amide betaine and amidopropyl betaine, and examples of imidazoline include imidazoline and coconut oil imidazoline, and commercially available products can also be used. The amount of the additive is preferably 0.5 to 10 parts by weight, particularly preferably 1.0 to 5.0 parts by weight, based on the total amount of the copper powder and thermosetting resin of 3-00 parts by weight.
Parts by weight are preferred. If the amount is less than 0.5 parts by weight, various effects cannot be obtained by addition, and if the amount is less than 0.5 parts by weight,
If it exceeds 1 part by weight, it is not preferable because it will adversely affect the physical properties of the conductive paste.

本発明の導電性ペーストを調製するには、例えば前記銅
粉末、熱硬化性樹脂及び添加剤を有機溶剤と共に混合す
る方法等により得ることができる。
The conductive paste of the present invention can be prepared, for example, by a method of mixing the copper powder, thermosetting resin, and additives with an organic solvent.

該有機溶剤は、本発明の導電性ペーストを、例えば回路
等へ印刷し得るような粘度とするための粘度調整剤であ
って、導電性ペーストとの相溶性及び乾燥速度との関係
を鑑みると多価アルコール又はその誘導体であるのが好
ましい。具体的には例えば、エチレングリコールモノメ
チルエーテル、エチレングリコールモノエチルエーテル
、エチレングリコールモノブチルエーテル、エチレング
リコールジブチルエーテル、エチレングリコールモノメ
チルエーテルアセテート、エチレングリコールモノメチ
ルエーテルアセテート、エチレングリコールモノブチル
エーテルアセテート等の公知の有機溶剤を好ましく挙げ
ることができ、使用に際しては単独若しくは混合物とし
て用いることができる。
The organic solvent is a viscosity modifier for adjusting the viscosity of the conductive paste of the present invention to such a level that it can be printed, for example, on circuits, etc., and in view of its compatibility with the conductive paste and its relationship with drying speed. Preferably, it is a polyhydric alcohol or a derivative thereof. Specifically, known organic solvents such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol dibutyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monobutyl ether acetate, etc. These can be preferably mentioned, and they can be used alone or as a mixture.

また本発明の導電性ペーストを調製する際に、必要に応
じて、消泡剤、増粘剤、皮はり防止剤等を添加すること
も可能である。
Further, when preparing the conductive paste of the present invention, it is also possible to add an antifoaming agent, a thickening agent, an anti-scaling agent, etc. as necessary.

〈発明の効果〉 本発明の導電性ペーストは、銅及び熱硬化性樹脂を主成
分とするので、従来の銀又は金を主成分とする導電性ペ
ーストに比してコスト的に安価であり、しかも特定の添
加剤を含有するため、体積固有抵抗値が低く、しかも密
着性、印刷性等が良好なペーストである。
<Effects of the Invention> Since the conductive paste of the present invention mainly contains copper and a thermosetting resin, it is cheaper in cost than conventional conductive pastes mainly composed of silver or gold. Moreover, since it contains specific additives, the paste has a low volume resistivity value and also has good adhesion, printability, etc.

〈実施例〉 以下本発明を実施例及び比較例により更に詳細に説明す
るが、本発明はこれらに限定されるものではない。
<Examples> The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

尚、例中の部は重量部を示す。In addition, parts in the examples indicate parts by weight.

失庭桝よ 平均粒径5〜20μのアトマイズ銅粉末85部、フェノ
ール樹脂(商品名rBLS−364,HJ昭和高分子株
式会社製、不揮発分60%)15部、N−ジメチルアル
キルラウリルベタイン(商品名「ニツサンアノンBLJ
日本油脂株式会社製)1.5部及びエチレングリコール
モノブチルエーテルを自動乳ばちで2時間混合、分散さ
せた。次いで得られたペーストを、250メツシユ、乳
剤厚20μのステンレス張りのスクリーン印刷で、ガラ
ス−エポキシ基板上に、f@ 2 mm、長さ368■
のジグザグパターンとなるように印刷を行った。
85 parts of atomized copper powder with an average particle size of 5 to 20μ, 15 parts of phenol resin (product name rBLS-364, manufactured by HJ Showa Kobunshi Co., Ltd., non-volatile content 60%), N-dimethylalkyl lauryl betaine (product name) Name: “Nitsan Anon BLJ”
(manufactured by NOF Corporation) and ethylene glycol monobutyl ether were mixed and dispersed in an automatic mortar for 2 hours. The resulting paste was then screen printed on a glass-epoxy substrate with a stainless steel plate of 250 meshes and an emulsion thickness of 20 μm, f@2 mm, length 368 μm.
Printing was performed to create a zigzag pattern.

その後160℃に保持した恒温槽中で30分間加熱し、
塗膜を硬化させた。得られた塗膜の諸特性を以下に示す
方法により測定した。その結果を表1に示す。
After that, it was heated for 30 minutes in a constant temperature bath kept at 160 ° C.
The coating was cured. Various properties of the resulting coating film were measured by the methods shown below. The results are shown in Table 1.

(塗膜の導電性) 加熱硬化後の塗膜の体積固有抵抗の値を、デジタルマル
チメータにより測定した。
(Electroconductivity of coating film) The value of the volume resistivity of the coating film after heat curing was measured using a digital multimeter.

(塗膜の密着性) JIS  K54.OOに従って、ガラス繊維で強化し
たエポキシ樹脂の基板上に焼付けた塗膜上に互いに直行
する縦横11本の平行線を1+nm間隔で引き、基盤目
状の切り傷を付け、その上にセロハンテープを貼り、次
に塗膜面からセロテープを剥がした際の、基板状に残る
塗膜の基盤目個数を調べた。(印刷性) 得られた導電性ペーストを用いてスクリーン印刷し、そ
の印刷の容易性を観察し、下記のとおり評価した。
(Adhesion of coating film) JIS K54. According to OO, 11 vertical and horizontal parallel lines that are perpendicular to each other are drawn at intervals of 1+ nm on the coating film baked on the glass fiber-reinforced epoxy resin substrate, cuts are made in the shape of the substrate, and cellophane tape is pasted on top of them. Next, when the cellophane tape was removed from the coating surface, the number of base lines of the coating film remaining on the substrate was investigated. (Printability) Screen printing was performed using the obtained conductive paste, and the ease of printing was observed and evaluated as follows.

O印;導電回路の形成が良好なもの。O mark: Good conductive circuit formation.

×印;導電回路の形成が困難なもの。×: Difficult to form a conductive circuit.

施例2〜7.比  1 び2 N−ジメチルアルキルラウリルベタインの代わりに、表
1に示す添加剤を用いた以外は、実施例1と同様に導電
性ペース1〜を調製し、各測定を行なった。その結果を
表1に示す。
Examples 2-7. Ratios 1 and 2 Conductive pastes 1 to 1 were prepared in the same manner as in Example 1, except that the additives shown in Table 1 were used instead of N-dimethylalkyl lauryl betaine, and each measurement was performed. The results are shown in Table 1.

(以下余白)(Margin below)

Claims (1)

【特許請求の範囲】[Claims]  銅粉末及び熱硬化性樹脂を含む導電性ペーストであっ
て、該導電性ペーストが、更にN−アルキルグリシン、
N−アルケニルグリシン、N−アルキルベタイン、N−
アルケニルベタイン、アミドベタイン、イミダゾリン及
びこれらの混合物から成る群より選択される添加剤を含
有してなる銅系導電性ペースト。
A conductive paste comprising copper powder and a thermosetting resin, the conductive paste further comprising N-alkylglycine,
N-alkenylglycine, N-alkylbetaine, N-
A copper-based conductive paste comprising an additive selected from the group consisting of alkenylbetaine, amidobetaine, imidazoline and mixtures thereof.
JP14003590A 1990-05-31 1990-05-31 Copper conductive paste Pending JPH0436903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14003590A JPH0436903A (en) 1990-05-31 1990-05-31 Copper conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14003590A JPH0436903A (en) 1990-05-31 1990-05-31 Copper conductive paste

Publications (1)

Publication Number Publication Date
JPH0436903A true JPH0436903A (en) 1992-02-06

Family

ID=15259446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14003590A Pending JPH0436903A (en) 1990-05-31 1990-05-31 Copper conductive paste

Country Status (1)

Country Link
JP (1) JPH0436903A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184881A2 (en) * 2000-08-29 2002-03-06 Shoei Chemical Inc. Conductive paste
US8301352B2 (en) 2009-03-27 2012-10-30 Fujitsu Limited Transmission power control parameter calculation method and device
WO2014208445A1 (en) * 2013-06-27 2014-12-31 東レ株式会社 Electroconductive paste, method for manufacturing an electroconductive pattern, and touch panel
GB2623185A (en) * 2022-09-14 2024-04-10 George Jenkins Anthony Hair clip devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1184881A2 (en) * 2000-08-29 2002-03-06 Shoei Chemical Inc. Conductive paste
EP1184881A3 (en) * 2000-08-29 2003-09-17 Shoei Chemical Inc. Conductive paste
US8301352B2 (en) 2009-03-27 2012-10-30 Fujitsu Limited Transmission power control parameter calculation method and device
WO2014208445A1 (en) * 2013-06-27 2014-12-31 東レ株式会社 Electroconductive paste, method for manufacturing an electroconductive pattern, and touch panel
US20160118155A1 (en) * 2013-06-27 2016-04-28 Toray Industries, Inc. Conductive paste, method of producing conductive pattern, and touch panel
JPWO2014208445A1 (en) * 2013-06-27 2017-02-23 東レ株式会社 Conductive paste, conductive pattern manufacturing method, and touch panel
GB2623185A (en) * 2022-09-14 2024-04-10 George Jenkins Anthony Hair clip devices

Similar Documents

Publication Publication Date Title
JP2619289B2 (en) Copper conductive composition
JP2009070677A (en) Heat curing type conductive paste
JPH0216172A (en) Solderable conductive paint
JPH0436903A (en) Copper conductive paste
JPS6131454A (en) Electrically-conductive copper paste composition
JPS6058268B2 (en) Conductive copper paste composition
JP2009070650A (en) Functional conductive coating, its manufacturing method, and printed wiring board
JPS62230869A (en) Electrically conductive coating compound to be soldered
JPH0649272A (en) Electrically conductive composition
JPS6274967A (en) Conductive coating
JPH01167385A (en) Electrically conductive coating compound
JPH04253773A (en) Conductive composition
JP4089368B2 (en) Conductive paste
JPH0619075B2 (en) Conductive paint that can be soldered
JP2628734B2 (en) Conductive paste
JPH0371508A (en) Copper conductive paste
JPH0472367A (en) Electrically conductive composition
JPS58103565A (en) Electrically conductive paint
JP3316746B2 (en) Conductive paint
JPH0552862B2 (en)
JPH0240269B2 (en)
JPH0415270A (en) Electrically conductive paste
JPH0585588B2 (en)
JPH0511152B2 (en)
JP3144300B2 (en) Conductive composition for forming conductive coating