JPH0240269B2 - - Google Patents

Info

Publication number
JPH0240269B2
JPH0240269B2 JP61099014A JP9901486A JPH0240269B2 JP H0240269 B2 JPH0240269 B2 JP H0240269B2 JP 61099014 A JP61099014 A JP 61099014A JP 9901486 A JP9901486 A JP 9901486A JP H0240269 B2 JPH0240269 B2 JP H0240269B2
Authority
JP
Japan
Prior art keywords
resin
weight
coating film
polyol
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61099014A
Other languages
Japanese (ja)
Other versions
JPS62253675A (en
Inventor
Kazumasa Eguchi
Fumio Nakaya
Shinichi Wakita
Hisatoshi Murakami
Tsunehiko Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP9901486A priority Critical patent/JPS62253675A/en
Publication of JPS62253675A publication Critical patent/JPS62253675A/en
Publication of JPH0240269B2 publication Critical patent/JPH0240269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、金属銅粉をメラミン樹脂およびポリ
オールとポリエステル樹脂又は/およびアルキツ
ド樹脂中に分散させた導電塗料に関し、より詳し
くは銅箔面との密着性が良好で、銅張積層絶縁基
板上に形成された印刷回路の銅箔回路間の非接続
回路部分全体にレジスト膜を塗布し、該レジスト
膜上から接続すべき銅箔回路間をスクリーン印刷
法などによりバイパスのジヤンパー回路を形成さ
せる導電塗料に関する。 (従来技術) 従来よりIC、MSI、LSIなどを実装する印刷回
路として銅張積層絶縁基板が多用されているが、
該基板から印刷回路を形成するには、銅張積層絶
縁基板に光反応性樹脂を塗布した後、マスクをあ
てて光照射によつて所定の導電回路を形成し、未
反応樹脂を除去し、次いで化学エツチングを施し
て銅箔層を溶解除去して印刷回路とするものであ
る。 このような印刷回路は、化学エツチング法によ
つて導電回路が形成されるため、一且印刷回路が
形成されると導電回路の追加修正をすることが困
難なものとなる。しかし実際は、得られた印刷回
路基板を有効に活用するために、又は必要により
印刷回路にバイパスのジヤンパー回路を設けるこ
とが、しばしば行われる。 このジヤンパー回路を形成する方法として、両
端の絶縁被覆を剥離して導体を露出させた機器内
配線用絶縁電線を用いて、必要とする導電回路の
銅箔面に半田付けすることにより行われる。しか
しこの方法では、大量生産された印刷回路基板上
にジヤンパー回路をけるための半田付工程が必要
となり、且つ該基板の厚さが増加するためにコン
パクト化でない問題がある。 この問題を改善する方法として、導電性銀塗料
(以下、銀ペーストという)が銅箔面との良好な
密着性を有するとを利用し、得られた印刷回路の
銅箔回路間の非接続回路部分全体にレジスト膜を
塗布し硬化させた後、該レジスト膜上から接続す
べき銅箔回路間を銀ペーストを用いてスクリーン
印刷法によりバイパスのジヤンパー回路を形成さ
せている。しかしながら、銀ペーストの比抵抗
は、10-4Ω・cm級と良好な導電性を有するが、銀
粉末は高価であり、多量に使用する場合、その材
料費は無視できない問題がある。 (発明が解決しようとする問題点) 最近、銀ペーストに代替し得る比抵抗10-3
10-4Ω・cm級の安価な導電性銅塗料(以下、銅ペ
ーストという)が種々公表されているが、これら
の銅ペーストはバインダーとして熱硬化性のフエ
ノール系樹脂を使用しているため、銅箔面との密
着性が低く、印刷回路のバイパスのジヤンパー回
路として採用できない問題がある。 本発明は、かかる技術的課題を解決することを
目的とするもので、銅箔面との密着性が良好で、
且つ安価であり、比抵抗もすぐれた金属銅粉を含
有する導電塗料を提供することにある。 (問題点を解決するための手段) 本発明者らは、上記の問題を解決するために鋭
意検討を重ねた結果、完成させたものであつてそ
の導電塗料の構成は、金属銅粉100重量部に対し
て、樹脂混和物(メラミン樹脂20〜60重量%およ
びポリオールとポリエステル樹脂又は/およびア
ルキツド樹脂80〜40重量%からなる樹脂混和物)
15〜50重量部および飽和脂肪酸又は不飽和脂肪酸
若しくはそれらの金属塩1〜8重量部とから成る
ことを特徴とするものである。 ここに、本発明で使用する金属銅粉とは、片
状、樹枝状、球状、不定形状などのいずれの形状
であつてもよく、その粒径は100μm以下が好まし
く、特に1〜30μmが好ましい。 粒径が1μm未満のものは酸化されやすく、得ら
れる塗膜の導電性が低下するので好ましくない。 金属銅粉の配合量は、常に100重量部として使
用する。 樹脂混和物中のメラミン樹脂とは、アルキル化
メラミン樹脂であつて、メチル化メラミン又はブ
チル化メラミン樹脂などから選ばれる少なくとも
一種を使用する。メラミン樹脂は、本発明に係る
導電塗料中の金属銅粉および他の成分をよくバイ
ンドするものである。 樹脂混和物中のメラミン樹脂の配合量は、他の
バインダーとして使用するポリオールとポリエス
テル樹脂又は/およびアルキツド樹脂との配合に
おいて、20〜60重量%の範囲で用いられ、好まし
く30〜50重量%である。 メラミン樹脂の配合量が20重量%未満では、金
属銅粉を十分にバインドすることができず、メラ
ミン樹脂の三次元網目構造が不安定となつて、塗
膜の導電性を著しく低下させるので好ましくな
い。逆に、60重量%を超えるときも、塗膜の導電
性を著しく低下させるので好ましくない。 樹脂混和物中のポリオールとは、次の化学構造
式で示されるポリエステルポリオールであつて、
メラミン樹脂と架橋とする。 使用するポリオールは、水酸基価と酸価との合
計が100mg/g以で、好ましくは130mg/g以上で
ある。水酸基価と酸価との合計が10mg/g未満の
ものを使用すると、導電性を消失するので好まし
くない。 樹脂混和物中のポリオールの配合量は、ポリオ
ールとポリエステル樹脂又は/およびアルキツド
樹脂との配合において、50〜95重量%の範囲で用
いられ、好ましくは60〜90重量%である。 ポリオールの配合量が50重量%未満のときは、
塗膜の導電性が良好とならず、逆に95重量%を超
えるときは良好な塗膜の密着性が得られない。 樹脂混和物中のポリエステル樹脂又は/および
アルキツド樹脂は、メラミン樹脂とポリオールと
の縮合反応において、緩和又は抑制作用をし、且
つベヒクルとして塗膜の性質を良好なものにす
る。 使用するポリエステル樹脂又はアルキツド樹脂
の平均分子量は5000以上がよく、好ましくは8000
以上のものが使用される。平均分子量が5000未満
のものを使用すると、塗膜の密着性を著しく低下
するので好ましくない。 樹脂混和物中のポリエステル樹脂又は/および
アルキツド樹脂の配合量は、ポリオールとポリエ
ステル樹脂又は/およびアルキツド樹脂との配合
量において、5〜50重量%の範囲で用いられ、好
ましくは10〜40重量%である。ポリエステル樹脂
又は/およびアルキツド樹脂の配合量が5重量%
未満であるときは、塗膜の密着性が好ましくな
く、逆に50重量%を超えるときは、塗膜の導電性
が著しく低下し好ましくない。 ここに、樹脂混和物中のポリオールとポリエス
テル樹脂又は/およびアルキツド樹脂の配合量
は、メラミン樹脂との配合において、80〜40重量
%の範囲で用いられ、好ましくは70〜50重量%で
ある。 次に、本発明で使用する樹脂混和物(メラミン
樹脂20〜60重量%およびポリオールとポリエステ
ル樹脂又は/およびアルキツド樹脂80〜40重量%
からなる樹脂混和物)の配合量は、金属銅粉100
重量部に対して、15〜50重量部の範囲で用いら
れ、好ましくは20〜40重量部である。 本発明に使用する飽和脂肪酸又は不飽和脂肪酸
若しくはそれらの金属塩とは、樹脂混和物中に金
属銅粉を分散させる分散剤であつて、飽和脂肪酸
にあつては炭素数16〜20のパルミチン酸、ステア
リン酸、アラキン酸など又は不飽和脂肪酸にあつ
ては炭素数16〜18のゾーマリン酸、オレイン酸、
リノレン酸などで、それらの金属塩にあつてはナ
トリウム、カリウム、銅、亜鉛、アルミニウムな
どの金属との塩である。 前記、飽和脂肪酸又は不飽和脂肪酸若しくはそ
れらの金属塩の配合量は、金属銅粉100重量部に
対して、1〜8重量部の範囲で用いられ、好まし
くは2〜6重量部である。 前記分散剤の配合量が1重量部未満では、金属
銅粉を樹脂混和物中に微細分散させるにあたつて
混練りに時間を要し、逆に8重量部を超えるとき
には、塗膜の導電性を低下させるので好ましくな
い。 本発明に係る導電塗料には粘度調整をするため
に通常の有機溶剤を適宜使用することができる。
例えば、セルソルブアセテート、ブチルセルソル
ブアセテートなどの公知の溶剤である。 (実施例) 以下、実施例および比較例にもとづいて本発明
を更に詳細に説明するが、本発明はかかる実施例
のみ限定されるものでない。 粒径5〜10μmの樹枝状金属銅粉、分散剤のス
テアリン酸、オレイン酸およびオレイン酸カリウ
ム、樹脂混和物のメラミン樹脂、ポリエステルポ
リオール、ポリエステル樹脂およびアルキツド樹
脂をそれぞれ第1表に示す割合で配合(重量部)
し、溶剤として若干のブチルセルソルブアセテー
トを加えて、20分間三軸ロールで混練りして導電
塗料を調製した。これをスクリーン印刷法により
ガラス・エポキシ樹脂基板上に巾2mm、厚さ30±
5μm、長さ100mmの導電回路を5本形成し、130〜
180℃×10〜60分間加熱して塗膜を硬化させて塗
膜の導電性を測定した。 一方、銅張積層絶縁基板の銅箔表面を清浄処理
した後、スクリーン印刷法により該銅箔表面に50
×50mm2の塗膜を形成させ、前記と同様に塗膜を加
熱硬化させた後、JISK5400(1979)の碁盤目試験
に準じるように、塗膜上に互に直交する1mm間隔
の平行線を引いて、1cm2中に100個のます目がで
きるように碁盤目状の切り傷を付けたときに、塗
膜が銅箔面から剥離する状態を目視により観察し
た。これらの特性を調べた結果を第1表に示す。
ここに塗膜の導電性とは、加熱硬化された塗膜の
体積固有抵抗率を測定した値である。 結果からわかるように、実施例1〜7は、本発
明に使用する特定の配合材料が適切に組合されて
いるので、塗膜の導電性、銅箔面と塗膜の密着性
などの特性が良好なものとなる。従つて銅箔積層
印刷回路基板の有効活用又は必要により、該印刷
回路上にバイパスのジヤンパー回路形成に本発明
に係る導電塗料が使用されるものとなる。 しかし、比較例についてみると、比較例1は、
ブチル化メラミン樹脂、ポリエステルポリオール
およびポリエステル樹脂が多いため塗膜の導電性
が著しく低下すると共に塗膜の密着性も好ましい
ものとならない。比較例2は、使用するポリエス
テルポリオールの水酸基価の値が低いため、導電
性が全く得られない。 比較例3は、使用するアルキツド樹脂の平均分
子量が5000以下でるため、塗膜の密着性が好まし
いものとならない。比較例4は、金属銅粉が多く
且つポリエステル樹脂又は/およびアルキツド樹
脂が配合されていないため、塗膜の導電性が低下
し、塗膜の密着性も好ましくない。 (発明の効果) 以上説明した如く、本発明に係る導電塗料は、
銀ペーストより安価であり、塗膜の導電性および
銅箔面との塗膜の密着性が好ましい特性を有する
ので、銅箔印刷回路間の非接続回路部分全体にレ
ジスト膜のマスクを施して、該レジスト膜上から
接続すべき銅箔印刷回路間をスクリーン印刷法な
どによりバイパスのジヤンパー回路を形成させる
ことができると共に、化学エツチング法により得
られた銅箔印刷回路基板の追加修正をして、該基
板を有効に活用することができ、産業上の利用価
値が高い。
(Industrial Application Field) The present invention relates to a conductive paint in which metallic copper powder is dispersed in a melamine resin, a polyol, a polyester resin, and/or an alkyd resin, and more specifically, the present invention relates to a conductive paint that has good adhesion to a copper foil surface, A resist film is applied to the entire unconnected circuit portion between the copper foil circuits of the printed circuit formed on the copper-clad laminated insulating substrate, and bypassing is performed between the copper foil circuits to be connected from above the resist film using a screen printing method or the like. The present invention relates to a conductive paint for forming a jumper circuit. (Prior art) Copper-clad laminated insulating substrates have been widely used as printed circuits for mounting ICs, MSIs, LSIs, etc.
In order to form a printed circuit from the substrate, a photoreactive resin is applied to a copper-clad laminated insulating substrate, a mask is applied, a predetermined conductive circuit is formed by light irradiation, and unreacted resin is removed. Then, chemical etching is applied to dissolve and remove the copper foil layer to form a printed circuit. In such a printed circuit, the conductive circuit is formed by a chemical etching method, and therefore, once the printed circuit is formed, it is difficult to make additional modifications to the conductive circuit. However, in reality, in order to make effective use of the obtained printed circuit board, or if necessary, a bypass jumper circuit is often provided in the printed circuit. A method for forming this jumper circuit is to use an insulated wire for wiring inside a device whose insulation coating is peeled off from both ends to expose the conductor, and to solder it to the copper foil surface of the required conductive circuit. However, this method requires a soldering process to mount the jumper circuit on a mass-produced printed circuit board, and the thickness of the board increases, so there is a problem that it cannot be made compact. As a method to improve this problem, we utilized the fact that conductive silver paint (hereinafter referred to as silver paste) has good adhesion to the copper foil surface, and created a non-connected circuit between the copper foil circuits of the obtained printed circuit. After a resist film is applied to the entire portion and cured, a bypass jumper circuit is formed between the copper foil circuits to be connected from above the resist film by screen printing using silver paste. However, although the silver paste has a specific resistance of 10 −4 Ω·cm and has good conductivity, silver powder is expensive, and when used in large quantities, the material cost is a non-negligible problem. (Problem to be solved by the invention) Recently, specific resistance 10 -3 ~ which can be substituted for silver paste
Various inexpensive conductive copper paints (hereinafter referred to as copper pastes) of the 10 -4 Ω cm class have been published, but these copper pastes use thermosetting phenolic resin as a binder, so There is a problem in that it has poor adhesion to the copper foil surface and cannot be used as a jumper circuit for bypassing printed circuits. The present invention aims to solve such technical problems, and has good adhesion to the copper foil surface.
Another object of the present invention is to provide a conductive paint containing metallic copper powder that is inexpensive and has excellent resistivity. (Means for Solving the Problems) The present inventors have completed extensive studies to solve the above problems, and the composition of the conductive paint is 100% by weight of metallic copper powder. %, resin mixture (resin mixture consisting of 20-60% by weight of melamine resin and 80-40% by weight of polyol and polyester resin or/and alkyd resin)
It is characterized by consisting of 15 to 50 parts by weight and 1 to 8 parts by weight of saturated fatty acids, unsaturated fatty acids, or metal salts thereof. Here, the metallic copper powder used in the present invention may have any shape such as flake, dendritic, spherical, or irregular shape, and its particle size is preferably 100 μm or less, particularly preferably 1 to 30 μm. . Particles with a particle size of less than 1 μm are undesirable because they are easily oxidized and the conductivity of the resulting coating film decreases. The amount of metallic copper powder used is always 100 parts by weight. The melamine resin in the resin mixture is an alkylated melamine resin, and at least one selected from methylated melamine, butylated melamine resin, etc. is used. The melamine resin binds well the metallic copper powder and other components in the conductive paint according to the present invention. The blending amount of the melamine resin in the resin mixture is in the range of 20 to 60% by weight, preferably 30 to 50% by weight, in the blending of the polyol used as another binder and the polyester resin or/and alkyd resin. be. If the blending amount of the melamine resin is less than 20% by weight, it is not possible to bind the metallic copper powder sufficiently, and the three-dimensional network structure of the melamine resin becomes unstable, which significantly reduces the conductivity of the coating film, so it is preferable. do not have. On the other hand, when it exceeds 60% by weight, it is also not preferable because it significantly reduces the conductivity of the coating film. The polyol in the resin mixture is a polyester polyol represented by the following chemical structural formula,
Crosslinked with melamine resin. The polyol used has a total hydroxyl value and acid value of 100 mg/g or more, preferably 130 mg/g or more. If the total of the hydroxyl value and acid value is less than 10 mg/g, the conductivity will be lost, which is not preferable. The blending amount of the polyol in the resin mixture is in the range of 50 to 95% by weight, preferably 60 to 90% by weight in blending the polyol with the polyester resin or/and alkyd resin. When the amount of polyol is less than 50% by weight,
The conductivity of the coating film will not be good, and conversely, if it exceeds 95% by weight, good adhesion of the coating film will not be obtained. The polyester resin and/or alkyd resin in the resin mixture has a moderating or suppressing effect on the condensation reaction between the melamine resin and the polyol, and serves as a vehicle to improve the properties of the coating film. The average molecular weight of the polyester resin or alkyd resin used is preferably 5000 or more, preferably 8000.
The above are used. It is not preferable to use one with an average molecular weight of less than 5,000, as it will significantly reduce the adhesion of the coating film. The amount of polyester resin or/and alkyd resin in the resin mixture is in the range of 5 to 50% by weight, preferably 10 to 40% by weight based on the amount of polyol and polyester resin or/and alkyd resin. It is. The amount of polyester resin or/and alkyd resin is 5% by weight
When it is less than 50% by weight, the adhesion of the coating film is unfavorable, and on the other hand, when it exceeds 50% by weight, the conductivity of the coating film is unfavorably reduced. Here, the amount of the polyol and the polyester resin or/and the alkyd resin in the resin mixture is in the range of 80 to 40% by weight, preferably 70 to 50% by weight in combination with the melamine resin. Next, the resin mixture used in the present invention (melamine resin 20 to 60% by weight and polyol and polyester resin or/and alkyd resin 80 to 40% by weight)
The blending amount of the resin mixture (consisting of
It is used in a range of 15 to 50 parts by weight, preferably 20 to 40 parts by weight. The saturated fatty acids, unsaturated fatty acids, or metal salts thereof used in the present invention are dispersants for dispersing metallic copper powder in a resin mixture, and in the case of saturated fatty acids, palmitic acid having 16 to 20 carbon atoms is used. , stearic acid, arachidic acid, etc., or unsaturated fatty acids having 16 to 18 carbon atoms, zomarinic acid, oleic acid,
Linolenic acid, etc., and their metal salts include salts with metals such as sodium, potassium, copper, zinc, and aluminum. The amount of the saturated fatty acid, unsaturated fatty acid, or metal salt thereof is in the range of 1 to 8 parts by weight, preferably 2 to 6 parts by weight, based on 100 parts by weight of the metallic copper powder. If the amount of the dispersant is less than 1 part by weight, it will take time to knead to finely disperse the metallic copper powder into the resin mixture, while if it exceeds 8 parts by weight, the conductivity of the coating film will be reduced. This is not preferable because it reduces the quality of the product. A conventional organic solvent can be appropriately used in the conductive paint according to the present invention in order to adjust the viscosity.
For example, known solvents such as cellosolve acetate and butyl cellosolve acetate are used. (Examples) Hereinafter, the present invention will be explained in more detail based on Examples and Comparative Examples, but the present invention is not limited only to these Examples. Dendritic metal copper powder with a particle size of 5 to 10 μm, stearic acid, oleic acid, and potassium oleate as dispersants, melamine resin, polyester polyol, polyester resin, and alkyd resin as resin mixtures are blended in the proportions shown in Table 1. (parts by weight)
Then, a small amount of butyl cellosolve acetate was added as a solvent, and the mixture was kneaded with a triaxial roll for 20 minutes to prepare a conductive paint. This was printed onto a glass/epoxy resin substrate with a width of 2 mm and a thickness of 30± by screen printing.
Formed 5 conductive circuits of 5 μm and 100 mm in length, 130 ~
The coating film was cured by heating at 180°C for 10 to 60 minutes, and the conductivity of the coating film was measured. On the other hand, after cleaning the copper foil surface of the copper-clad laminated insulating board, the surface of the copper foil was coated with 50%
After forming a coating film of ×50 mm 2 and curing the coating film by heating in the same manner as above, parallel lines at 1 mm intervals that are perpendicular to each other were drawn on the coating film in accordance with the grid test of JISK5400 (1979). When a checkerboard-like cut was made so that 100 squares were formed in 1 cm 2 , peeling of the coating film from the copper foil surface was visually observed. Table 1 shows the results of examining these characteristics.
The electrical conductivity of a coating film is a value obtained by measuring the volume resistivity of a heat-cured coating film. As can be seen from the results, in Examples 1 to 7, the specific compounded materials used in the present invention were appropriately combined, so properties such as the conductivity of the coating film and the adhesion between the copper foil surface and the coating film were improved. It will be good. Therefore, depending on the effective use or necessity of the copper foil laminated printed circuit board, the conductive paint according to the present invention will be used to form a bypass jumper circuit on the printed circuit. However, looking at comparative examples, comparative example 1 is
Since there are large amounts of butylated melamine resin, polyester polyol, and polyester resin, the conductivity of the coating film is significantly reduced and the adhesion of the coating film is also not favorable. In Comparative Example 2, the polyester polyol used had a low hydroxyl value, so no conductivity was obtained at all. In Comparative Example 3, the average molecular weight of the alkyd resin used was less than 5000, so the adhesion of the coating film was not favorable. Comparative Example 4 contains a large amount of metallic copper powder and contains no polyester resin or/and alkyd resin, so the conductivity of the coating film decreases and the adhesion of the coating film is also unfavorable. (Effects of the invention) As explained above, the conductive paint according to the present invention has
It is cheaper than silver paste and has favorable characteristics such as the conductivity of the coating film and the adhesion of the coating film to the copper foil surface, so a resist film mask is applied to the entire unconnected circuit part between the copper foil printed circuits. A bypass jumper circuit can be formed between the copper foil printed circuits to be connected from on the resist film by screen printing or the like, and the copper foil printed circuit board obtained by chemical etching can be additionally modified. The substrate can be effectively utilized and has high industrial utility value.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 金属銅粉100重量部に対して、樹脂混和物
(メラミン樹脂20〜60重量%、およびポリオール
とポリエステル樹脂又は/およびアルキツド樹脂
80〜40重量%からなる樹脂混和物)15〜50重量部
および飽和脂肪酸又は不飽和脂肪酸若しくはそれ
らの金属塩1〜8重量部を配合して成ることを特
徴とする導電塗料。 2 前記、ポリオールとポリエステル樹脂又は/
およびアルキツド樹脂との配合は、次の重量%比

ポリオール/ポリエステル樹脂又は/およびアルキツド
樹脂 =95〜50/5〜50 であることを特徴とする特許請求の範囲第1項記
載の導電塗料。
[Scope of Claims] 1. Resin mixture (20 to 60% by weight of melamine resin, and polyol and polyester resin or/and alkyd resin to 100 parts by weight of metallic copper powder)
1. A conductive paint comprising 15 to 50 parts by weight of a resin mixture consisting of 80 to 40% by weight and 1 to 8 parts by weight of a saturated fatty acid or an unsaturated fatty acid or a metal salt thereof. 2 The above polyol and polyester resin or/
and alkyd resin in the following weight percentage ratio:
The conductive coating material according to claim 1, wherein the ratio of polyol/polyester resin or/and alkyd resin is 95 to 50/5 to 50.
JP9901486A 1986-04-28 1986-04-28 Electrically conductive coating Granted JPS62253675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9901486A JPS62253675A (en) 1986-04-28 1986-04-28 Electrically conductive coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9901486A JPS62253675A (en) 1986-04-28 1986-04-28 Electrically conductive coating

Publications (2)

Publication Number Publication Date
JPS62253675A JPS62253675A (en) 1987-11-05
JPH0240269B2 true JPH0240269B2 (en) 1990-09-11

Family

ID=14235274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9901486A Granted JPS62253675A (en) 1986-04-28 1986-04-28 Electrically conductive coating

Country Status (1)

Country Link
JP (1) JPS62253675A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156771A (en) * 1989-05-31 1992-10-20 Kao Corporation Electrically conductive paste composition
JPH03173007A (en) * 1989-12-01 1991-07-26 Kao Corp Conductive paste and conductive film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516449A (en) * 1978-07-24 1980-02-05 Hitachi Ltd Semiconductor device
JPS5537848A (en) * 1978-09-08 1980-03-17 Hitachi Ltd Method of clamping secondary conductor for induction motor
JPS5897892A (en) * 1981-12-07 1983-06-10 三井東圧化学株式会社 Method of forming conductive circuit
JPS6058268A (en) * 1983-09-08 1985-04-04 Tsudakoma Ind Co Ltd Motor controlling method of roller contact type liquid agent applying apparatus
JPS6131454A (en) * 1984-07-23 1986-02-13 Tatsuta Electric Wire & Cable Co Ltd Electrically-conductive copper paste composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5516449A (en) * 1978-07-24 1980-02-05 Hitachi Ltd Semiconductor device
JPS5537848A (en) * 1978-09-08 1980-03-17 Hitachi Ltd Method of clamping secondary conductor for induction motor
JPS5897892A (en) * 1981-12-07 1983-06-10 三井東圧化学株式会社 Method of forming conductive circuit
JPS6058268A (en) * 1983-09-08 1985-04-04 Tsudakoma Ind Co Ltd Motor controlling method of roller contact type liquid agent applying apparatus
JPS6131454A (en) * 1984-07-23 1986-02-13 Tatsuta Electric Wire & Cable Co Ltd Electrically-conductive copper paste composition

Also Published As

Publication number Publication date
JPS62253675A (en) 1987-11-05

Similar Documents

Publication Publication Date Title
JP2006049147A (en) Conductive paste
JPH0753843B2 (en) Conductive paint that can be soldered
US2851380A (en) Conductive ink and article coated therewith
JP3299083B2 (en) Method for producing carbon-based conductive paste
JPH0240269B2 (en)
JP2009070650A (en) Functional conductive coating, its manufacturing method, and printed wiring board
JPH0575027B2 (en)
JPH0585588B2 (en)
JPH07226110A (en) Copper powder for conductive paste and conductive copper paste using it
JPH0662900B2 (en) Conductive paint
JP4482873B2 (en) Conductive paste, circuit board, solar cell, and chip-type ceramic electronic component
JP2628734B2 (en) Conductive paste
JPH0714427A (en) Conductive paste
JPH0415270A (en) Electrically conductive paste
JPH06336562A (en) Conductive paste
JPH0436903A (en) Copper conductive paste
JPH0619075B2 (en) Conductive paint that can be soldered
JPH09255900A (en) Thermosetting type carbon-based electroconductive coating material
JP2963518B2 (en) Conductive paste composition
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder
JP3316746B2 (en) Conductive paint
JPH07262822A (en) Conductive paste
JPH07307110A (en) Conductive paste
JPH0511152B2 (en)
JPH07307112A (en) Conductive paste

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees