JPH07226110A - Copper powder for conductive paste and conductive copper paste using it - Google Patents

Copper powder for conductive paste and conductive copper paste using it

Info

Publication number
JPH07226110A
JPH07226110A JP1429794A JP1429794A JPH07226110A JP H07226110 A JPH07226110 A JP H07226110A JP 1429794 A JP1429794 A JP 1429794A JP 1429794 A JP1429794 A JP 1429794A JP H07226110 A JPH07226110 A JP H07226110A
Authority
JP
Japan
Prior art keywords
paste
conductive
copper powder
copper
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1429794A
Other languages
Japanese (ja)
Inventor
Yoshihiro Miya
好宏 宮
Noburu Kikuchi
宣 菊地
Yuri Oomaeda
百合 大豆生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP1429794A priority Critical patent/JPH07226110A/en
Publication of JPH07226110A publication Critical patent/JPH07226110A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide copper powder for a conductive paste with anti-oxidizing property and high preservation stability and obtain a conductive copper paste with its low initial volume resistance rate and superior adaptability to environment. CONSTITUTION:A conductive copper paste is composed of its contents of copper powder for a conductive paste in which copper powder is surface-processed with a chain-shaped alphatic first amine with 4 to 12 carbons and 10 to 40 weight percent of bonding agent and 0.5 to 5 weight percent of dispersion agent against 100 weight percent of the copper powder for conductive paste.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は酸化され難く、かつ保存
安定性の良い導電性ペースト用銅粉及び硬化膜の初期体
積抵抗率が低く、長期にわたって導電性が変化せず安定
であり、かつ少量の分散剤の添加でもペースト状態で長
期の保存安定性を有する導電性銅ペースト、詳しくは、
紙フェノール樹脂基板、ガラスエポキシ樹脂基板、セラ
ミック基板等の回路基板上に、スクリーン印刷塗布成形
後、熱処理を行い添加樹脂を硬化することで長期にわた
って良好な導電性を有する導電性銅ペーストに関する。
INDUSTRIAL APPLICABILITY The present invention has a low initial volume resistivity of a copper powder for conductive paste and a cured film which are hard to be oxidized and have good storage stability, and are stable without changing conductivity for a long time, and A conductive copper paste that has long-term storage stability in a paste state even with the addition of a small amount of a dispersant.
The present invention relates to a conductive copper paste having good conductivity for a long period of time by applying heat treatment to a circuit board such as a paper phenol resin board, a glass epoxy resin board, and a ceramic board, followed by heat treatment to cure the added resin.

【0002】[0002]

【従来の技術】電子機器から発生する電磁波ノイズに対
する対策として、電磁波シールド用ペーストの開発が行
われている。このシールド方法は基板の信号回路上に絶
縁層を介して該電磁波シールド用ペーストからなるシー
ルド層が形成される構造となっており、シールド層の導
電性がシールド性に大きく影響してくる。そこでペース
トの導電材料として導電性及び耐環境性の良い金属粉
(銀、ニッケル等)が検討されてきたが、銀は価格が高
く、マイグレーションが生じ、ニッケルは導電性に問題
があるため現在銅粉の使用が検討されている。しかし、
銅粉は耐酸化性に劣っているため、製造工程中及び製品
化し、実機使用中に銅粉が酸化し導電性を悪くする(シ
ールド特性を悪くする)という問題点が生じる。
2. Description of the Related Art Electromagnetic wave shielding paste has been developed as a countermeasure against electromagnetic wave noise generated from electronic devices. This shield method has a structure in which a shield layer made of the electromagnetic wave shielding paste is formed on the signal circuit of the substrate via an insulating layer, and the conductivity of the shield layer greatly affects the shield property. Therefore, metal powder (silver, nickel, etc.) with good conductivity and environment resistance has been studied as the conductive material of the paste. However, silver is expensive and migration occurs. The use of flour is being considered. But,
Since the copper powder is inferior in oxidation resistance, there arises a problem that the copper powder is oxidized during the manufacturing process and commercialization and is used in an actual machine to deteriorate conductivity (deteriorate shield property).

【0003】これらの問題点を解決するため、従来種々
の検討が行われている。例えば銅粉の表面処理として銀
を被覆する方法(特公平2−46641号公報、特開平
1−119602号公報等)トリアジン誘導体等の有機
物を被覆する方法(特開昭61−266465号公
報)、ペースト中にウルシ系レジン等の還元剤を添加す
る方法(特公昭61−21577号公報、特公昭63−
52070号公報等)などの方法があり、これらの方法
によれば、ある程度初期の導電性や、耐環境性を向上さ
せることができる。
In order to solve these problems, various studies have hitherto been made. For example, a method of coating silver as a surface treatment of copper powder (Japanese Patent Publication No. 2-46641, JP-A 1-1119602, etc.), a method of coating an organic substance such as a triazine derivative (JP-A 61-266465), Method of adding reducing agent such as sumac resin to paste (Japanese Patent Publication No. 61-21577 and Japanese Patent Publication No. 63-
No. 52070, etc.), and these methods can improve initial conductivity and environmental resistance to some extent.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、銀を被
覆する方法では、アトマイズ法で形成された球状銅粉に
は被覆しやすいが、銅粉形状が球状のためペースト化し
た際良好な導電性が得難い。一方ペースト化した場合、
良好な導電性を発揮する樹枝状銅粉(電解法によって製
造)は銀が被覆し難く、コスト高になるという問題点が
生じる。またトリアジン誘導体等の有機物を被覆した場
合、銅粉の酸化防止効果が発現するまで被覆量を増やす
と、自身の絶縁性のため導電性が悪くなってしまうとい
う問題点が生じる。さらにウルシ系レジン等の還元剤を
添加した場合、ペーストを硬化する際の熱処理に対して
は顕著な酸化防止効果を発揮するが、耐環境性に劣り、
シールド層の導電性が低下するという問題点が生じる。
However, in the method of coating silver, spherical copper powder formed by the atomizing method can be easily coated, but since the shape of the copper powder is spherical, good conductivity is obtained when it is formed into a paste. Hard to get. On the other hand, when it is pasted,
The dendritic copper powder (produced by an electrolytic method) exhibiting good conductivity has a problem that it is difficult to cover with silver and the cost becomes high. Further, in the case of coating with an organic substance such as a triazine derivative, if the coating amount is increased until the antioxidant effect of the copper powder is exhibited, there arises a problem that conductivity deteriorates due to its own insulating property. Further, when a reducing agent such as lacquer type resin is added, it exerts a remarkable antioxidant effect against heat treatment when curing the paste, but is inferior in environmental resistance,
There is a problem that the conductivity of the shield layer is reduced.

【0005】本発明は銅粉の酸化を防止する効果と保存
安定性の良い導電性ペースト用銅粉及びペースト化した
際の導電性、耐環境性を向上した導電性銅ペーストを提
供するものである。
The present invention provides a copper powder for a conductive paste, which has an excellent effect of preventing the oxidation of the copper powder and has a good storage stability, and a conductive copper paste having improved conductivity and environmental resistance when formed into a paste. is there.

【0006】[0006]

【課題を解決するための手段】本発明は銅粉を炭素数が
4〜12の鎖状脂肪族第1アミンで表面処理した導電性
ペースト用銅粉並びに上記の導電性ペースト用銅粉10
0重量部に対し、結合剤を10〜40重量部及び分散剤
を0.5〜5重量部含有してなる導電性銅ペーストに関
する。
According to the present invention, a copper powder for a conductive paste obtained by surface-treating a copper powder with a chain aliphatic primary amine having 4 to 12 carbon atoms and the above-mentioned copper powder for a conductive paste 10 are used.
The present invention relates to a conductive copper paste containing 0 to 40 parts by weight of a binder and 0.5 to 5 parts by weight of a dispersant.

【0007】なお、本発明において、銅粉の表面処理剤
としては、炭素数が4〜12の鎖状脂肪族第1アミン
(以下炭素数が4〜12の第1アミンとする)を用いる
ことが必要とされ、これ以外の表面処理剤では、銅粉の
表面に表面処理剤を強固に付着することができず、また
銅粉が酸化し易いという欠点が生じる。炭素数が4〜1
2の第1アミンとしては、例えばイソブチルアミン(炭
素数4)、2−エチルヘキシルアミン(炭素数8)、オ
クチルアミン(炭素数8)、ラウリルアミン(炭素数1
2)等があげられる。
In the present invention, a chain aliphatic primary amine having 4 to 12 carbon atoms (hereinafter referred to as primary amine having 4 to 12 carbon atoms) is used as the surface treatment agent for copper powder. However, with other surface treatment agents, the surface treatment agent cannot be firmly adhered to the surface of the copper powder, and the copper powder is easily oxidized. 4 to 1 carbon atoms
Examples of the second primary amine include isobutylamine (having 4 carbon atoms), 2-ethylhexylamine (having 8 carbon atoms), octylamine (having 8 carbon atoms), and laurylamine (having 1 carbon atoms).
2) etc.

【0008】炭素数が4〜12の第1アミンの量は、銅
粉100重量部に対し0.1〜1.0重量部とすれば、
酸化防止効果が高く、導電性に優れるので好ましく、
0.1〜0.5重量%とすればより好ましく、0.2〜
0.3重量%とすればさらに好ましい。表面処理する方
法については特に制限はないが、例えば表面処理剤であ
る炭素数が4〜12の第1アミンを溶媒に溶解し、窒素
雰囲気中で銅粉と混合し、溶媒を揮発させて銅粉の表面
に炭素数が4〜12の第1アミンを付着させる方法が好
ましい。銅粉の製法及び形状については特に制限はない
が、高い導電性を得るためには、電解法によって製造さ
れる樹枝状銅粉を用いることが好ましい。その粒径につ
いても特に制限はないが、ファインライン性、導電性を
考慮すると1〜20μmの範囲であることが好ましい。
If the amount of the primary amine having 4 to 12 carbon atoms is 0.1 to 1.0 part by weight based on 100 parts by weight of copper powder,
It has a high antioxidant effect and is excellent in conductivity, so it is preferable.
More preferably 0.1 to 0.5% by weight, 0.2 to
More preferably, it is 0.3% by weight. The method of surface treatment is not particularly limited, but for example, a primary amine having a carbon number of 4 to 12, which is a surface treatment agent, is dissolved in a solvent, mixed with copper powder in a nitrogen atmosphere, and the solvent is volatilized to form copper. A method of attaching a primary amine having 4 to 12 carbon atoms to the surface of the powder is preferable. There is no particular limitation on the production method and shape of the copper powder, but in order to obtain high conductivity, it is preferable to use dendritic copper powder produced by the electrolysis method. The particle size is not particularly limited, but is preferably in the range of 1 to 20 μm in consideration of fine line property and conductivity.

【0009】ペースト化するのに用いられる結合剤とし
ては、レゾール型フェノール樹脂、エポキシ樹脂、感光
性ポリイミド樹脂等を用いることが好ましいが、これら
のうち工程の簡略性などを考慮すると130〜180℃
で10〜60分の熱処理で硬化が可能なレゾール型フェ
ノール樹脂を用いればより好ましい。その添加量は、炭
素数が4〜12の第1アミンで表面処理した導電性ペー
スト用銅粉100重量部に対し、10〜40重量部、好
ましくは15〜35重量部、より好ましくは25〜35
重量部とされ、10重量部未満では銅粉同士を接触させ
る結合力が小さく導電性が悪くなり、40重量部を越え
ると結合剤の絶縁性の影響が大きく現れ導電性を悪くす
る。
As a binder used for forming a paste, it is preferable to use a resol type phenol resin, an epoxy resin, a photosensitive polyimide resin, or the like.
It is more preferable to use a resol-type phenol resin that can be cured by heat treatment for 10 to 60 minutes. The added amount is 10 to 40 parts by weight, preferably 15 to 35 parts by weight, and more preferably 25 to 25 parts by weight with respect to 100 parts by weight of the copper powder for conductive paste surface-treated with a primary amine having 4 to 12 carbon atoms. 35
If the amount is less than 10 parts by weight, the binding force for contacting the copper powders is small and the electrical conductivity becomes poor, and if it exceeds 40 parts by weight, the insulating property of the binder greatly affects the electrical conductivity.

【0010】一方分散剤は、結合剤と銅粉とを分散性よ
く混合するのに用いられ、鎖状脂肪酸アルカリ塩類を用
いることが好ましく、例えばオレイン酸ナトリウム、オ
レイン酸カリウム、ステアリン酸ナトリウム、ステアリ
ン酸カルシウム、ミリスチン酸カルシウム等が用いられ
る。その添加量は、炭素数が4〜12の第1アミンで表
面処理した導電性ペースト用銅粉100重量部に対し、
0.5〜5重量部、好ましくは1.0〜4重量部、より
好ましくは1.5〜2.5重量部とされ、0.5重量部
未満では分散性が低下し、5重量部を越えるとペースト
の導電性及び基板に接着した場合の接着性が低下する。
On the other hand, the dispersant is used for mixing the binder and the copper powder with good dispersibility, and it is preferable to use chain fatty acid alkali salts, for example, sodium oleate, potassium oleate, sodium stearate, steer. Calcium phosphate, calcium myristate, etc. are used. The amount of addition is 100 parts by weight of the copper powder for conductive paste, which is surface-treated with a primary amine having 4 to 12 carbon atoms.
The amount is 0.5 to 5 parts by weight, preferably 1.0 to 4 parts by weight, more preferably 1.5 to 2.5 parts by weight. When it exceeds, the conductivity of the paste and the adhesiveness when adhered to the substrate are deteriorated.

【0011】導電性銅ペーストの製法についても特に制
限はなく、従来公知の方法で製造することができるが、
窒素雰囲気中でニーダーを用いて高粘度混練した後、徐
々に溶剤で希釈混練し、ペースト粘度まで低下させる方
法で製造することが好ましい。このとき使用する溶剤
は、一般的に使われている2−ブトキシエタノール等の
高沸点溶剤を用いることが好ましい。本発明において
は、上記の成分の他に必要に応じて還元剤が添加され
る。還元剤の種類については特に制限はない。
The method for producing the conductive copper paste is not particularly limited, and it can be produced by a conventionally known method.
After kneading with a kneader in a nitrogen atmosphere with high viscosity, it is preferable to gradually dilute and knead with a solvent to reduce the paste viscosity. As the solvent used at this time, it is preferable to use a commonly used high-boiling point solvent such as 2-butoxyethanol. In the present invention, a reducing agent is added, if necessary, in addition to the above components. There is no particular limitation on the type of reducing agent.

【0012】[0012]

【実施例】以下本発明の実施例を説明する。 実施例1〜4 粒径が10μmの樹枝状電解銅粉(福田金属箔粉製、商
品名FCC−SP99X)100重量部を0.1Nの塩
酸溶液中に入れ、窒素雰囲気中で15分間撹拌して樹枝
状電解銅粉に付着している酸化物や他の付着物を除去し
た。
EXAMPLES Examples of the present invention will be described below. Examples 1 to 4 100 parts by weight of dendritic electrolytic copper powder (manufactured by Fukuda Metal Foil Powder, trade name FCC-SP99X) having a particle size of 10 μm was placed in a 0.1N hydrochloric acid solution, and stirred in a nitrogen atmosphere for 15 minutes. Then, oxides and other deposits adhering to the dendritic electrolytic copper powder were removed.

【0013】一方表1に示す炭素数が4〜12の第1ア
ミン(いずれも和光純薬工業製、試薬)0.5重量部を
窒素雰囲気中でアセトン(関東化学製、電子工業用アセ
トン)20重量部に溶解した。
On the other hand, 0.5 part by weight of a primary amine having 4 to 12 carbon atoms shown in Table 1 (all reagents manufactured by Wako Pure Chemical Industries, Ltd.) in a nitrogen atmosphere, acetone (manufactured by Kanto Chemical, acetone for electronic industry) It was dissolved in 20 parts by weight.

【0014】次に酸処理した樹枝状電解銅粉とアセトン
で溶解した炭素数が4〜12の第1アミンとを窒素雰囲
気中でらいかい機を用い、アセトンが揮発するまで撹拌
し、樹枝状電解銅粉の表面に炭素数が4〜12の第1ア
ミンを付着させた。
Next, the acid-treated dendritic electrolytic copper powder and the primary amine having a carbon number of 4 to 12 dissolved in acetone are stirred in a nitrogen atmosphere using a raider to stir until the acetone is volatilized to form a dendritic form. A primary amine having 4 to 12 carbon atoms was attached to the surface of the electrolytic copper powder.

【0015】次いで、らいかい機に結合剤としてメタノ
ール30重量部にレゾール型フェノール樹脂(群栄化学
製、商品名PL−2211)30重量部を溶解した樹脂
溶液、分散剤としてステアリン酸ナトリウム(和光純薬
工業製、試薬)を2重量部及び還元剤としてヒドロキノ
ン(和光純薬工業製、試薬)を1重量部入れ、窒素雰囲
気中で30分間混練した。この後混練物をニーダーに移
し、直ちに表面に表1に示す炭素数が4〜12の第1ア
ミンを付着させた樹枝状電解銅粉を加えて混練しながら
メタノールを揮発させた後、2−ブトキシエタノール
(和光純薬工業製、試薬)を少量ずつ加えて粘度を50
Pa・sに調整した導電性銅ペーストを得た。
Next, a resin solution prepared by dissolving 30 parts by weight of a resol-type phenolic resin (product name: PL-2211, manufactured by Gunei Chemical Co., Ltd.) in 30 parts by weight of methanol as a binder was added to a raider machine, and sodium stearate (as a sum) 2 parts by weight of Kojun Pure Chemicals Reagent and 1 part by weight of hydroquinone (Wako Pure Chemicals Reagent) as a reducing agent were added and kneaded for 30 minutes in a nitrogen atmosphere. After this, the kneaded product was transferred to a kneader, and immediately added dendritic electrolytic copper powder having a primary amine having a carbon number of 4 to 12 shown in Table 1 to the surface to volatilize methanol while kneading. Add butoxyethanol (Wako Pure Chemical Industries, reagent) little by little to increase the viscosity to 50.
A conductive copper paste adjusted to Pa · s was obtained.

【0016】次に得られた導電性銅ペーストを評価する
ため、ガラスエポキシ基板(日立化成工業製、商品名M
CL−E61H30S)上に、上記で得た導電性銅ペー
ストをスクリーン印刷法(200メッシュ、ノーマル張
りスクリーン使用)で回路を形成し、レベリングした
後、熱風乾燥機を用い、150℃で30分間熱処理して
銅ペースト硬化膜を形成した。
Next, in order to evaluate the obtained conductive copper paste, a glass epoxy substrate (manufactured by Hitachi Chemical Co., Ltd., trade name M
CL-E61H30S) is formed into a circuit by the screen printing method (200 mesh, using a normal tension screen) of the conductive copper paste obtained above, leveled, and then heat-treated at 150 ° C. for 30 minutes using a hot air dryer. Then, a copper paste cured film was formed.

【0017】次いでペーストの安定性及び形成した銅ペ
ースト硬化膜から、初期体積抵抗率、耐環境性試験につ
いて評価した。なお評価方法については、式(I)から
初期体積抵抗率を求め、また耐環境性試験については、
80℃または相対湿度(RH)95%で60℃の雰囲気
中に2000時間放置した後、式(II)から抵抗値変化
率を求めた。さらにペーストの安定性については、導電
性銅ペーストを60日間5℃に保持した密閉容器中に放
置した後のペーストの状態を調べ、ペースト成分が分離
しないものを良好とした。これらの結果をまとめて表1
に示す。
Next, the initial volume resistivity and the environment resistance test were evaluated from the stability of the paste and the formed copper paste cured film. For the evaluation method, the initial volume resistivity was calculated from the formula (I), and for the environment resistance test,
After left in an atmosphere of 80 ° C. or 95% relative humidity (RH) and 60 ° C. for 2000 hours, the rate of change in resistance value was calculated from the formula (II). Further, regarding the stability of the paste, the state of the paste was examined after the conductive copper paste was left in a closed container kept at 5 ° C. for 60 days, and those in which the paste components were not separated were considered good. These results are summarized in Table 1
Shown in.

【0018】[0018]

【数1】 [Equation 1]

【0019】[0019]

【数2】 [Equation 2]

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示されるように、実施例1〜4の導
電性銅ペーストは、初期体積抵抗率、耐環境性試験及び
ペーストの安定性が良好であることがわかる。特に実施
例2及び3の導電性銅ペーストが優れることがわかる。
耐環境性試験における抵抗値変化率は40%以下が良好
とされる。また上記とは別に表面に炭素数が4〜12の
第1アミンを付着させた樹枝状電解銅粉を24時間空気
中にさらした後、ペースト化したものについても初期体
積抵抗率を調べたが、2.5×10-4〜7.4×10-4
Ωcmと比較的良好な値を示した。なお初期体積抵抗率
は通常8×10-4以下が良好とされる。また耐環境性試
験における抵抗変化率は40%以下が良好とされる。こ
のような結果から、表面に炭素数が4〜12の第1アミ
ンを付着させた樹枝状電解銅粉は、非酸化性のある銅粉
といえる。
As shown in Table 1, it can be seen that the conductive copper pastes of Examples 1 to 4 have good initial volume resistivity, environmental resistance test and paste stability. It can be seen that the conductive copper pastes of Examples 2 and 3 are particularly excellent.
A resistance value change rate of 40% or less in the environment resistance test is considered good. Separately from the above, the initial volume resistivity was also examined for the paste-formed one after exposing the dendritic electrolytic copper powder having the primary amine having 4 to 12 carbon atoms to the surface in the air for 24 hours. , 2.5 × 10 −4 to 7.4 × 10 −4
It showed a relatively good value of Ωcm. The initial volume resistivity is usually 8 × 10 −4 or less. Further, it is considered that the resistance change rate in the environment resistance test is 40% or less. From these results, it can be said that the dendritic electrolytic copper powder having the primary amine having 4 to 12 carbon atoms attached to the surface is a non-oxidizing copper powder.

【0022】実施例5〜7 実施例2で用いた2−エチルヘキシルアミンを表2に示
す量で表面処理した以外は、実施例1〜4と同様の工程
を経て導電性銅ペーストを得た。以下実施例1〜4と同
様に銅ペースト硬化膜を形成し、実施例1〜4と同様の
評価を行った。その結果を表2に示す。
Examples 5 to 7 Conductive copper pastes were obtained through the same steps as in Examples 1 to 4 except that the surface treatment of 2-ethylhexylamine used in Example 2 was carried out in the amounts shown in Table 2. Thereafter, a copper paste cured film was formed in the same manner as in Examples 1 to 4, and the same evaluation as in Examples 1 to 4 was performed. The results are shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】表2に示されるように、実施例5〜7の導
電性銅ペーストは、初期体積抵抗率、耐環境性試験及び
ペーストの安定性が良好であることがわかる。また表面
に炭素数が4〜12の第1アミンを付着させた樹枝状電
解銅粉を24時間空気中にさらした後、ペースト化した
ものについても初期体積抵抗率を調べたが、2.1×1
-4〜6.3×10-4Ωcmと比較的良好な値を示した。
このような結果から、表面に炭素数が4〜12の第1ア
ミンを付着させた樹枝状電解銅粉は、非酸化性のある銅
粉といえる。 比較例1〜5 炭素数が4〜12の第1アミン以外の表面処理剤として
ベンゾトリアゾール、ラウリン酸、炭素数が3のプロピ
ルアミン、炭素数が16のセシルアミン及び第2アミン
のジ−2−エチルヘキシルアミンをそれぞれ0.5重量
部用いて表面処理した以外は、実施例1〜4と同様の工
程を経て導電性銅ペーストを得た。以下実施例1〜4と
同様に銅ペースト硬化膜を形成し、実施例1〜4と同様
の評価を行った。その結果を表3に示す。
As shown in Table 2, it can be seen that the conductive copper pastes of Examples 5 to 7 have good initial volume resistivity, environmental resistance test and paste stability. In addition, the initial volume resistivity was also examined for the paste-formed one after exposing the dendritic electrolytic copper powder to the surface of which a primary amine having 4 to 12 carbons was attached to the air for 24 hours. × 1
A relatively good value of 0 −4 to 6.3 × 10 −4 Ωcm was shown.
From these results, it can be said that the dendritic electrolytic copper powder having the primary amine having 4 to 12 carbon atoms attached to the surface is a non-oxidizing copper powder. Comparative Examples 1 to 5 Benzotriazole, lauric acid, propylamine having 3 carbon atoms, cesylamine having 16 carbon atoms, and di-2-amine having 2 to 6 carbon atoms as surface treatment agents other than primary amines having 4 to 12 carbon atoms A conductive copper paste was obtained through the same steps as in Examples 1 to 4 except that the surface treatment was performed using 0.5 parts by weight of ethylhexylamine. Thereafter, a copper paste cured film was formed in the same manner as in Examples 1 to 4, and the same evaluation as in Examples 1 to 4 was performed. The results are shown in Table 3.

【0025】[0025]

【表3】 [Table 3]

【0026】比較例1の導電性銅ペーストは、高抵抗の
ため測定不能(1×106Ωcm以上)であり、また比較
例2の導電性銅ペーストは、初期体積抵抗率及び耐環境
性試験の結果が高いことがわかる。さらに比較例3、4
及び5の導電性銅ペーストも初期体積抵抗率が高いこと
がわかる。ペーストの安定性についても比較例5以外の
導電性銅ペーストは、銅粉、結合剤、溶剤等が分離し
た。
The conductive copper paste of Comparative Example 1 cannot be measured (1 × 10 6 Ωcm or more) due to its high resistance, and the conductive copper paste of Comparative Example 2 has an initial volume resistivity and environmental resistance test. It turns out that the result of is high. Furthermore, Comparative Examples 3 and 4
It can be seen that the conductive copper pastes of 5 and 5 also have high initial volume resistivity. Regarding the stability of the paste, copper powder, binder, solvent, etc. were separated from the conductive copper pastes other than Comparative Example 5.

【0027】比較例6〜8 実施例2で用いた2−エチルヘキシルアミンを表4に示
す量で表面処理した以外は、実施例1〜4と同様の工程
を経て導電性銅ペーストを得た。以下実施例1〜4と同
様に銅ペースト硬化膜を形成し、実施例1〜4と同様の
評価を行った。その結果を表4に示す。
Comparative Examples 6 to 8 Conductive copper pastes were obtained through the same steps as in Examples 1 to 4 except that the surface treatment of 2-ethylhexylamine used in Example 2 was carried out in the amounts shown in Table 4. Thereafter, a copper paste cured film was formed in the same manner as in Examples 1 to 4, and the same evaluation as in Examples 1 to 4 was performed. The results are shown in Table 4.

【0028】[0028]

【表4】 [Table 4]

【0029】比較例6の導電性銅ペーストは、初期体積
抵抗率及び耐環境性試験の結果が高く、また比較例7及
び8の導電性銅ペーストは、初期体積抵抗率が高いこと
がわかる。さらに比較例8以外の導電性銅ペーストは、
銅粉、結合剤、溶剤等が分離した。
It can be seen that the conductive copper paste of Comparative Example 6 has high initial volume resistivity and environmental resistance test results, and the conductive copper pastes of Comparative Examples 7 and 8 have high initial volume resistivity. Further, conductive copper pastes other than Comparative Example 8 are
Copper powder, binder, solvent, etc. separated.

【0030】[0030]

【発明の効果】本発明のように銅粉を炭素数が4〜12
の第1アミンで表面処理すれば、銅粉の酸化を防止する
ことができ、かつ保存安定性が良く、また該銅粉をペー
スト化した導電性銅ペーストは、初期体積抵抗率が低
く、かつ耐環境性に優れ、さらにペーストの安定性に優
れ、工業的に極めて好適である。
[Effects of the Invention] As in the present invention, copper powder having a carbon number of 4-12
The surface treatment with the primary amine can prevent oxidation of the copper powder and has good storage stability, and the conductive copper paste prepared by pasting the copper powder has a low initial volume resistivity, and It has excellent environmental resistance and stability of the paste, and is industrially very suitable.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 銅粉を炭素数が4〜12の鎖状脂肪族第
1アミンで表面処理した導電性ペースト用銅粉。
1. A copper powder for a conductive paste, which is obtained by surface-treating a copper powder with a linear aliphatic primary amine having 4 to 12 carbon atoms.
【請求項2】 銅粉100重量部に対し、炭素数が4〜
12の鎖状脂肪族第1アミンを0.1〜1.0重量部用
いた請求項1記載の導電性ペースト用銅粉。
2. A carbon number of 4 to 100 parts by weight of copper powder.
The copper powder for a conductive paste according to claim 1, wherein 0.1 to 1.0 part by weight of the chain aliphatic primary amine of 12 is used.
【請求項3】 請求項1又は2記載の導電性ペースト用
銅粉100重量部に対し、結合剤を10〜40重量部及
び分散剤を0.5〜5重量部含有してなる導電性銅ペー
スト。
3. A conductive copper containing 10 to 40 parts by weight of a binder and 0.5 to 5 parts by weight of a dispersant with respect to 100 parts by weight of the copper powder for conductive paste according to claim 1 or 2. paste.
【請求項4】 結合剤が、レゾール型フェノール樹脂、
エポキシ樹脂または感光性ポリイミド樹脂であり、分散
剤が鎖状脂肪酸アルカリ塩類である請求項3記載の導電
性銅ペースト。
4. The binder is a resole type phenolic resin,
The conductive copper paste according to claim 3, which is an epoxy resin or a photosensitive polyimide resin, and the dispersant is a chain fatty acid alkali salt.
【請求項5】 鎖状脂肪酸アルカリ塩類が、オレイン酸
ナトリウム、オレイン酸カリウム、ステアリン酸ナトリ
ウム、ステアリン酸カルシウムまたはミリスチン酸カル
シウムである請求項3又は4記載の導電性銅ペースト。
5. The conductive copper paste according to claim 3, wherein the chain fatty acid alkali salt is sodium oleate, potassium oleate, sodium stearate, calcium stearate or calcium myristate.
JP1429794A 1994-02-08 1994-02-08 Copper powder for conductive paste and conductive copper paste using it Pending JPH07226110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1429794A JPH07226110A (en) 1994-02-08 1994-02-08 Copper powder for conductive paste and conductive copper paste using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1429794A JPH07226110A (en) 1994-02-08 1994-02-08 Copper powder for conductive paste and conductive copper paste using it

Publications (1)

Publication Number Publication Date
JPH07226110A true JPH07226110A (en) 1995-08-22

Family

ID=11857165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1429794A Pending JPH07226110A (en) 1994-02-08 1994-02-08 Copper powder for conductive paste and conductive copper paste using it

Country Status (1)

Country Link
JP (1) JPH07226110A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176720A (en) * 1999-12-20 2001-06-29 Toray Ind Inc Polyimide precursor paste containing inorganic powder
WO2002052908A1 (en) * 2000-12-22 2002-07-04 Hitachi Chemical Co., Ltd. Printed wiring board and method of manufacturing the same
JP2002356630A (en) * 2001-05-30 2002-12-13 Dowa Mining Co Ltd Copper powder for low-temperature baking or conductive paste
WO2006112129A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd. Conductor powder and process for producing the same, and electrically conductive resin composition
JP2011521092A (en) * 2008-05-28 2011-07-21 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Mixtures of copper-containing metallic effect pigments, methods for producing the same, and coating agents
JP2012126815A (en) * 2010-12-15 2012-07-05 Tosoh Corp Conductive ink composition, and method for producing the same
JP2016037627A (en) * 2014-08-06 2016-03-22 日立化成株式会社 Copper-containing particle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001176720A (en) * 1999-12-20 2001-06-29 Toray Ind Inc Polyimide precursor paste containing inorganic powder
JP4507322B2 (en) * 1999-12-20 2010-07-21 東レ株式会社 Inorganic powder-containing polyimide precursor paste
WO2002052908A1 (en) * 2000-12-22 2002-07-04 Hitachi Chemical Co., Ltd. Printed wiring board and method of manufacturing the same
JP2002356630A (en) * 2001-05-30 2002-12-13 Dowa Mining Co Ltd Copper powder for low-temperature baking or conductive paste
WO2006112129A1 (en) * 2005-04-06 2006-10-26 Murata Manufacturing Co., Ltd. Conductor powder and process for producing the same, and electrically conductive resin composition
JPWO2006112129A1 (en) * 2005-04-06 2008-12-04 株式会社村田製作所 Conductor powder and method for producing the same, conductive resin composition, cured conductive resin, electronic component and electronic component module
JP4748158B2 (en) * 2005-04-06 2011-08-17 株式会社村田製作所 Conductive resin cured product and electronic component module
JP2011521092A (en) * 2008-05-28 2011-07-21 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング Mixtures of copper-containing metallic effect pigments, methods for producing the same, and coating agents
JP2012126815A (en) * 2010-12-15 2012-07-05 Tosoh Corp Conductive ink composition, and method for producing the same
JP2016037627A (en) * 2014-08-06 2016-03-22 日立化成株式会社 Copper-containing particle

Similar Documents

Publication Publication Date Title
JP4363340B2 (en) Conductive silver paste and electromagnetic wave shielding member using the same
US4652465A (en) Process for the production of a silver coated copper powder and conductive coating composition
JP4482930B2 (en) Conductive paste
US8070986B2 (en) Silver paste for forming conductive layers
US8088307B2 (en) Metal paste for forming a conductive layer
US5204025A (en) Conductive paste composition
KR100678533B1 (en) Conductive powder and method for preparing the same
JP6166012B2 (en) Conductive powder and conductive paste
WO2016031286A1 (en) Silver-coated copper powder, and conductive paste, conductive coating material and conductive sheet each of which uses same
KR101398706B1 (en) Conductive paste
JPH07226110A (en) Copper powder for conductive paste and conductive copper paste using it
JP2016094665A (en) Silver coated copper powder and conductive paste using the same, conductive coating and conductive sheet
JPH0931402A (en) Production of carbon-based conductive paste
JPS62160603A (en) Conducting paste
JP2005190907A (en) Surface treatment metal powder, conductive paste using same, and printed wiring board and chip components obtained by using conductive paste
JP2963517B2 (en) Conductive paste composition
JPH0266802A (en) Conductive composition
JP3079396B2 (en) Hybrid IC
JP3083146B2 (en) Conductive paste composition
KR100874904B1 (en) Nano silver suspension and manufacturing method of ink for electronic circuit printing using same
JPH0240269B2 (en)
JP3243655B2 (en) Hybrid IC
JPH04146975A (en) Conductive paste composition
JPH04146974A (en) Conductive paste composition
JPH04146976A (en) Conductive paste composition