JPS62160603A - Conducting paste - Google Patents

Conducting paste

Info

Publication number
JPS62160603A
JPS62160603A JP63986A JP63986A JPS62160603A JP S62160603 A JPS62160603 A JP S62160603A JP 63986 A JP63986 A JP 63986A JP 63986 A JP63986 A JP 63986A JP S62160603 A JPS62160603 A JP S62160603A
Authority
JP
Japan
Prior art keywords
parts
weight
copper
resin
copper powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63986A
Other languages
Japanese (ja)
Other versions
JPH0373082B2 (en
Inventor
葭田 真晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Highpolymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Highpolymer Co Ltd filed Critical Showa Highpolymer Co Ltd
Priority to JP63986A priority Critical patent/JPS62160603A/en
Publication of JPS62160603A publication Critical patent/JPS62160603A/en
Publication of JPH0373082B2 publication Critical patent/JPH0373082B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)
  • Conductive Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は導電性ペーストに関し、特に銅粉末入り導電性
波−ストに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a conductive paste, and more particularly to a conductive wave paste containing copper powder.

近年電子機器の発展に伴い、従来銅箔等のエツチングに
よシ導体回路を形成していたものが導電性ペーストを用
いたスクリーン印刷による導体回路の形成へ、又導体同
志の接続のためのハンダ付けが導電性ペーストによる接
着へと移行している。
In recent years, with the development of electronic devices, the conventional method of forming conductor circuits by etching copper foil, etc., has changed to the formation of conductor circuits by screen printing using conductive paste, and the use of solder to connect conductors. Attachment has shifted to adhesion using conductive paste.

また、コンビーータ等電子機器に発生する電磁波が電磁
波障害となり問題になってきているが、電磁波シールド
材料に導電性ペーストを塗布することによってその問題
が解決されている。
Further, electromagnetic waves generated in electronic devices such as converters have become a problem as electromagnetic interference, but this problem has been solved by applying a conductive paste to the electromagnetic shielding material.

〔従来の技術〕[Conventional technology]

導電性波−ストは導電性のフィラー、主に金属粉末と、
合成樹脂から成るバインダー、必要に応じて溶剤、添加
剤から成る複合材料であシ、イーストの性能はこれら素
材の特性及び組合せで決まる。中でも導電性の性質その
ものを左右するものは、導電性のフィラーであることは
当然であり、銀、銅、ニッケル、カーがン粉末と種々存
在するが、高導電性を必要とするものには金属フィラー
が主体であり、カーボンは使われないか、もしくは補助
的に使われるのみである。
Conductive wave strike is made of conductive filler, mainly metal powder,
It is a composite material consisting of a binder made of synthetic resin, a solvent and additives as necessary, and the performance of yeast is determined by the characteristics and combination of these materials. Among them, it is natural that conductive fillers are the ones that affect the conductivity itself, and there are various types such as silver, copper, nickel, and carbon powder, but for those that require high conductivity, it is necessary to use conductive fillers. Metal fillers are the main filler, and carbon is either not used or only used as a supplement.

しかし金属フィラーとしての銀、銅、ニッケル粉末はそ
れぞれ長所、短所があシ、本来の導電性においては銀、
銅粉末が優れているが、銀粉末は貴金属であり価格が最
も高い。コスト的には銅粉末が最も有利であるが、表面
酸化膜の生成速度が速く、本来の導電性を接続すること
が難しい。ニッケル粉末は本来の導電性は銅粉末よりも
落ちる。
However, silver, copper, and nickel powder as metal fillers each have advantages and disadvantages, and in terms of original conductivity, silver,
Copper powder is superior, but silver powder is a precious metal and is the most expensive. Copper powder is the most advantageous in terms of cost, but it forms a surface oxide film at a high rate, making it difficult to connect the original conductivity. Nickel powder has lower inherent conductivity than copper powder.

また価格も一般的には銅粉末より高いが、銀粉末よりも
安く、表面酸化膜の生成速度は銅粉末よシ遅く、導電性
が持続し易い。
Although the price is generally higher than that of copper powder, it is cheaper than silver powder, and the rate of formation of a surface oxide film is slower than that of copper powder, making it easier to maintain conductivity.

上記に示したように、銅粉末は本来の導電性においても
価格的にも、導電性ペースト材料として非常に有利であ
るが、非導電性の酸化膜の生成が非常に速く、空気中で
の取り扱いが難かしいばかりでなく、一時的に還元銅粉
を用いて導電性イーストt ’A 造してもそのままで
は再び酸化が始ま9′眠気伝導性をもちえない。これを
解決するために今まで種々の提案がなされてきた。その
一つは銅粉末に銀粉末等の酸化されにくい金属粉末を混
ぜるか、合金にするか又銅粉末表面をメッキする方法で
ある。この方法は有効ではあるが、この方法だけでは銀
を使用するとやはシコスト的に高く、−設電子機器には
コスト的に使いきれない状態になりつつある。
As shown above, copper powder is very advantageous as a conductive paste material both in terms of its inherent conductivity and in terms of price, but it forms a non-conductive oxide film very quickly and cannot be used in the air. Not only is it difficult to handle, but even if conductive yeast is temporarily prepared using reduced copper powder, oxidation will begin again and it will not have drowsy conductivity. Various proposals have been made to solve this problem. One method is to mix or alloy copper powder with metal powder that is difficult to oxidize, such as silver powder, or to plate the surface of copper powder. Although this method is effective, it is expensive to use silver with this method alone, and it is becoming impossible to use silver in terms of cost for electronic equipment.

又、還元剤等の添加剤として、ベンゾトリアゾール、チ
タン系のカップリング剤、一定粒度ノカーボン粉末等の
提案がなされているが、未だ不充分であり、特に銅粉末
の粒径が細かくなり、表面積が犬きくなるとその効果は
非常に小さくなる。
In addition, as additives such as reducing agents, benzotriazole, titanium-based coupling agents, fixed particle size nocarbon powder, etc. have been proposed, but they are still insufficient, and in particular, the particle size of copper powder becomes fine. As the surface area increases, the effect becomes very small.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はコスト的に有利な銅粉末を用い前記した欠点を
解決し、永続的に空気中でも安定な導電性皮膜を形成し
得る導電性イーストを得るためになされたものである。
The present invention has been made in order to solve the above-mentioned drawbacks by using copper powder which is advantageous in terms of cost, and to obtain a conductive yeast capable of permanently forming a stable conductive film even in the air.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明は、導電性ペース′トとして、 (A)銅粉末70乃至90重量部と (B)フェノール系樹脂、エポキシ系樹脂およびアクリ
ル系樹脂から選ばれた少くとも1種の樹脂30〜10重
量部とからなる有効成分100重量部に対し くC1銅キレート化剤0.1乃至8重量部、好適には0
5乃至5重量部および (D)グリセリン1乃至30重量部、好適には5乃至2
0重量部をその一部として含む溶剤を用いることを特徴
とするものである。
The present invention provides a conductive paste comprising (A) 70 to 90 parts by weight of copper powder and (B) 30 to 10 parts by weight of at least one resin selected from phenolic resins, epoxy resins, and acrylic resins. 0.1 to 8 parts by weight of the C1 copper chelating agent per 100 parts by weight of the active ingredient consisting of 0.1 to 8 parts by weight, preferably 0.
5 to 5 parts by weight and (D) glycerin 1 to 30 parts by weight, preferably 5 to 2 parts by weight.
It is characterized by using a solvent containing 0 parts by weight as a part thereof.

〔作 用〕[For production]

銅粉末入り導電性波−ストを実用化するためには、その
塗膜の電気抵抗値が1 ×10−” Q’Cm〜1X1
0−4Ω・口程度必要であるが、通常銅粉末とフェノー
ル樹脂、エポキシ樹脂、アクリル樹脂等の樹脂を溶剤下
で混合波−スト化してもその塗膜の電気抵抗値は1×1
0 Ω・1以上である。
In order to put copper powder-containing conductive waves into practical use, the electrical resistance value of the coating film must be 1 × 10-”Q'Cm~1X1
Approximately 0-4 Ω is required, but even if copper powder and resin such as phenol resin, epoxy resin, acrylic resin, etc. are mixed in a solvent and made into a waveform, the electrical resistance value of the coating film is 1 × 1.
It is 0 Ω・1 or more.

すなわち、通常提供される銅粉末は既に表面が酸化され
ておシその一粒一粒が非導電性の酸化皮膜におおわれて
いるため、梨−ストに皮膜化することによって金属粒子
同志を接触させてもその電気抵抗は極めて大きいものに
なる。また、慎重な取シ扱いにより酸化皮膜の極めて少
ない還元銅粉末を用いて同様のペーストを皮膜化しても
皮膜生成時に熱をかけたり、低温で溶剤をとばすのに時
間をかけるとその間に酸化皮膜の形成が起シ、やはシミ
気抵抗値は大きくなる。しかもこの傾向は表面積の大き
い細かい銅粉末根太きくなる。
In other words, the surface of normally provided copper powder has already been oxidized and each grain is covered with a non-conductive oxide film, so by forming a film on the copper powder, the metal particles are brought into contact with each other. However, its electrical resistance will be extremely large. In addition, even if a similar paste is made into a film using reduced copper powder with very little oxide film due to careful handling, if heat is applied during film formation or time is taken to evaporate the solvent at low temperature, the oxide film will form during that time. This causes the formation of stains and increases the stain resistance value. Moreover, this tendency is toward thicker fine copper powders with larger surface areas.

しかし、本発明の銅キレート化剤及びグリセリンを添加
して得られた銅粉末入り導電性ペーストは、特に還元さ
れた銅粉末を用いなくても、その塗膜は驚くべきことに
I X 10−’〜I X 10−’Ω・工程度の電気
抵抗値まで低下し、実用上充分に使用できる有用なもの
となる。
However, the copper powder-containing conductive paste obtained by adding the copper chelating agent and glycerin of the present invention surprisingly shows a coating film with an IX 10- The electrical resistance value is reduced to a value of 1.about.I x 10-' Ω/step, making it useful enough for practical use.

その理由は明らかではないが、銅キレート化剤が加熱等
の塗膜形成時に銅粉末の表面酸化膜と反応し、それがグ
リセリンを含む溶剤に溶解される、そして新たに形成さ
れた導電性の銅の表面はその後樹脂に覆われることによ
って大気と遮断されその酸化速度が著しく遅くなるため
と推定される。
The reason is not clear, but the copper chelating agent reacts with the surface oxide film of the copper powder during coating film formation by heating, etc., and it is dissolved in a solvent containing glycerin, and the newly formed conductive It is presumed that this is because the surface of the copper is then covered with resin, which isolates it from the atmosphere and significantly slows down its oxidation rate.

本発明で使用される銅粉末は、通常の電解法で製造され
た市販品で充分であり、その粉末の形状も樹枝状、鱗片
状、球状いづれでも使用できる。
As the copper powder used in the present invention, a commercially available product produced by an ordinary electrolytic method is sufficient, and the shape of the powder may be dendritic, scaly, or spherical.

また、その粒度は0.1乃至200ミクロンが望ましい
が用途に応じて使いわけられるものであり、限定される
ものではない。
Further, the particle size is preferably 0.1 to 200 microns, but it can be used depending on the purpose and is not limited.

本発明で用いられる樹脂は、フェノール樹脂、エポキシ
樹脂およびアクリル系樹脂から選ばれた少くとも1種の
樹脂であシ、それぞれ市販されており利用可能である。
The resin used in the present invention is at least one resin selected from phenol resins, epoxy resins, and acrylic resins, each of which is commercially available and available.

フェノール系樹脂としてはフェノール、クレゾール、キ
シレノール等の7エノール類トホルムアルデヒドからな
る反応物があげられる。
Examples of the phenolic resin include reactants of heptenols such as phenol, cresol, and xylenol, and toformaldehyde.

エポキシ系樹脂としてはビスフェノールAとエピクロル
ヒドリンからなるビスフェノールA型工Iキシ樹脂、フ
ェノールノビラックとエピクロルヒドリンからなるノブ
ラック型エポキシ樹脂、3,4−エホキシーシクロヘキ
シルメチル−3,4−エポキシシクロヘキサンカルボキ
シレート等の脂環式エポキシ樹脂等があげられるが上記
に限定されるものではない。
Examples of epoxy resins include bisphenol A type I-oxy resin made of bisphenol A and epichlorohydrin, noblak type epoxy resin made of phenol novilac and epichlorohydrin, 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, etc. Examples include, but are not limited to, alicyclic epoxy resins.

アクリル系樹脂としてはアクリル酸又はメタアクリル酸
のメチル、エチル、ブチルエステル等ヲモノマーとして
重合されるアクリル樹脂があげられる。
Examples of acrylic resins include acrylic resins polymerized as monomers such as methyl, ethyl, butyl esters of acrylic acid or methacrylic acid.

本発明で使用される銅キレート化剤としては、銅とキレ
ート化合物を作る化合物であって、具体的にはエチレン
ジアミン四酢酸、ニトリロ三酢酸、ノエチレントリアミ
ン五酢酸、シクロヘキサンソアミン四酢酸のナトリウム
、カリウム等のアルカリ金属塩またはカルシウム、バリ
ウム等のアルカリ土類金属塩があげられる。
The copper chelating agent used in the present invention is a compound that forms a chelate compound with copper, and specifically, sodium ethylenediaminetetraacetic acid, nitrilotriacetic acid, noethylenetriaminepentaacetic acid, cyclohexanethoaminetetraacetic acid, Examples include alkali metal salts such as potassium, and alkaline earth metal salts such as calcium and barium.

その配合量は銅粉末70乃至90重量部と樹脂30乃至
10重量部からなる有効成分100重量部に対し0.1
乃至8重景部、好適には0.5乃至5重量部が望ましい
。銅キレート化剤が0.1重量部よシ少量では塗膜の電
気抵抗値は小さくならない。
The blending amount is 0.1 parts by weight per 100 parts by weight of the active ingredient consisting of 70 to 90 parts by weight of copper powder and 30 to 10 parts by weight of resin.
It is desirable to use 0.5 to 5 parts by weight, preferably 0.5 to 5 parts by weight. If the amount of the copper chelating agent is as small as 0.1 part by weight, the electrical resistance value of the coating film will not become small.

また8重量部よシ多量ではコスト的にメリットがないば
かりでなく、塗膜が脆くなったり、導電性以外の他の性
能を悪化してしまうので好ましくない。
Further, if the amount is greater than 8 parts by weight, it is not preferable because not only is there no advantage in terms of cost, but the coating film becomes brittle and other properties other than conductivity are deteriorated.

グリセリンを溶剤の一部又は全部として用いることは、
上記銅キレート化剤をペースト中に一部又は全部を溶解
可能にし、効果の発現を著しいものにする。この配合量
は前記有効成分の100重量部に対して1乃至30重量
部好適には5乃至20重量部が望ましい。1重量部よシ
少量では効果の発現が悪く、30重量部よシ多量では導
電性以外の塗膜の他の性能が悪くなる。すなわち塗膜が
柔らかくなシすぎたり、乾燥又は硬化に時間がかかシす
ぎたり、対溶剤性が悪くなってしまう。
Using glycerin as part or all of the solvent
The above-mentioned copper chelating agent can be partially or completely dissolved in the paste, and the effect can be significantly improved. The amount to be blended is preferably 1 to 30 parts by weight, preferably 5 to 20 parts by weight, per 100 parts by weight of the active ingredient. If the amount is less than 1 part by weight, the effect will not be expressed, and if the amount is more than 30 parts by weight, other properties of the coating film other than conductivity will be deteriorated. That is, the coating film is too soft, takes too long to dry or harden, and has poor solvent resistance.

本発明においてグリセリン以外の溶剤を必要に応じてさ
らに添加することは伺らさしつかえなく、啄−ストの作
業性に応じて行うことができる。この溶剤はグリセリン
の良溶剤である方が良いが、貧溶剤であっても効果は期
待できる。
In the present invention, it is natural to add a solvent other than glycerin if necessary, and this can be done depending on the workability of the plating process. It is better that this solvent be a good solvent for glycerin, but the effect can be expected even if it is a poor solvent.

良溶剤としては、例えばメタノール、エタノール等のア
ルコール類、酢酸エチル、酢酸メチル等のエステル類、
エチルセロンルブ、プチルセロンルブ等のセロソルブ類
、エチレングリコール、プロピレングリコール等のグリ
コール類がアケラれる。
Examples of good solvents include alcohols such as methanol and ethanol, esters such as ethyl acetate and methyl acetate,
Cellosolves such as ethylseronlube and butylseronlube, and glycols such as ethylene glycol and propylene glycol are used.

貧溶剤としてはベンゼン、トルエン等の芳香族炭化水素
、ペンタン、ヘキサン等の脂肪族炭化水素、クロロホル
ム、四塩化炭素、トリクロルエタン等のハロゲン化炭化
水素、アセトン、メチルエチルケトン等のケトン類があ
げられる。
Examples of poor solvents include aromatic hydrocarbons such as benzene and toluene, aliphatic hydrocarbons such as pentane and hexane, halogenated hydrocarbons such as chloroform, carbon tetrachloride and trichloroethane, and ketones such as acetone and methyl ethyl ketone.

〔実施例〕〔Example〕

以下本発明を実施例でもって詳細に説明する。 The present invention will be explained in detail below with reference to Examples.

但し、文中の部は重量部を意味する。However, the parts in the text mean parts by weight.

実施例1 樹枝状電解銅粉末(平均粒径20μ、日本鉱業(株)製
+6)80部、フェノール樹脂(昭和高分子(株)製B
RM−2120)20部、ブチルセロソルブ’20部、
グリセリン10部、エチレンジアミン四酢酸3ナトリウ
ム2部を三本ロールを用いてよく混合した後、200メ
ツシースクリーン印刷し、次いでオーブン中で150℃
、30分の硬化を行い巾1f1m、長さ5α、厚み50
ミクロンの皮膜を得た。
Example 1 80 parts of dendritic electrolytic copper powder (average particle size 20μ, manufactured by Nippon Mining Co., Ltd. +6), phenol resin (B manufactured by Showa Kobunshi Co., Ltd.)
RM-2120) 20 parts, butyl cellosolve' 20 parts,
After thoroughly mixing 10 parts of glycerin and 2 parts of trisodium ethylenediaminetetraacetate using a three-roll mill, the mixture was screen printed at 200 ml and then heated in an oven at 150°C.
, hardened for 30 minutes, width 1f1m, length 5α, thickness 50
A micron film was obtained.

塗膜の電気抵抗値(体積固有抵抗)は2X10−5Ω・
函で、空気中で80℃、500時間暴露後の電気抵抗値
は5 X 10−30・気であった。
The electrical resistance value (volume specific resistance) of the coating film is 2X10-5Ω・
The electrical resistance value after being exposed in air at 80° C. for 500 hours in a box was 5×10−30·q.

実施例2〜6、比較例1〜5 グリセリンの量、銅キレート化剤の量を変えた他は実施
例1と同様の方法で塗膜を作り、電気抵抗値を測定した
Examples 2 to 6, Comparative Examples 1 to 5 Coating films were prepared in the same manner as in Example 1, except that the amount of glycerin and the amount of copper chelating agent were changed, and the electrical resistance values were measured.

結果を第1表に示す。The results are shown in Table 1.

実施例7〜12 銅キレート化剤の種類を変えた他は実施例1と同様の方
法で塗膜を作成し、電気抵抗値を測定した。
Examples 7 to 12 Coating films were prepared in the same manner as in Example 1, except that the type of copper chelating agent was changed, and the electrical resistance values were measured.

結果を第1表に示す。The results are shown in Table 1.

実施例13 フェノール樹脂をエポキシ樹脂(油化シェル社製、エピ
コート828)、硬化剤としてDMP −300,2部
に変えた他は実施例1と同様の方法で塗膜を作成し、電
気抵抗値を測定した。
Example 13 A coating film was prepared in the same manner as in Example 1, except that the phenol resin was changed to an epoxy resin (manufactured by Yuka Shell Co., Ltd., Epicoat 828) and the curing agent was changed to 2 parts of DMP-300, and the electrical resistance value was determined. was measured.

結果を第1表に示す。The results are shown in Table 1.

実施例14 フェノール樹脂をアクリル樹脂(三菱レーヨン社製ダイ
ヤナールBR−73)に、又、ブチルセロソルブをメチ
ルエチルケトンに変えた他は実施例1と同様の方法で塗
膜を作成し、電気抵抗値を測定した。
Example 14 A coating film was created in the same manner as in Example 1, except that the phenol resin was replaced with an acrylic resin (Dyanal BR-73 manufactured by Mitsubishi Rayon Co., Ltd.) and the butyl cellosolve was replaced with methyl ethyl ketone, and the electrical resistance was measured. did.

結果を第1表に示す。The results are shown in Table 1.

(以下余白) 〔発明の効果〕 以上、実施例および比較例で示したように、銅キレート
化剤か又はグリセリンが配合されていないとその電気抵
抗値は1×100・α以上と非常に大きいが、この銅キ
レート化剤およびグリセリンを配合すると塗膜の電気抵
抗値はI X 10’−”〜1x10−4と低下し、導
電性ペーストとして実用上充分に使用できる有用なもの
である。
(The following is a blank space) [Effects of the invention] As shown in the examples and comparative examples above, if a copper chelating agent or glycerin is not blended, the electrical resistance value is extremely high at 1 × 100・α or more. However, when this copper chelating agent and glycerin are blended, the electrical resistance value of the coating film decreases to I x 10'-'' to 1 x 10-4, making it useful enough for practical use as a conductive paste.

Claims (2)

【特許請求の範囲】[Claims] (1)(A)銅粉末70乃至90重量部と (B)フェノール系樹脂、エポキシ系樹脂およびアクリ
ル系樹脂から選ばれた少くとも1種 の樹脂30乃至10重量部とからなる有効 成分100重量部に (C)銅キレート化剤0.1乃至8重量部および (D)グリセリン1乃至30重量部をその一部として含
む溶剤 を配合してなる導電性ペースト。
(1) 100 parts by weight of an active ingredient consisting of (A) 70 to 90 parts by weight of copper powder and (B) 30 to 10 parts by weight of at least one resin selected from phenolic resin, epoxy resin, and acrylic resin. A conductive paste comprising a solvent containing (C) 0.1 to 8 parts by weight of a copper chelating agent and (D) 1 to 30 parts by weight of glycerin.
(2)銅キレート化剤がエチレンジアミン四酢酸、ニト
リロ三酢酸、ジエチレントリアミン五酢酸、シクロヘキ
サンジアミン四酢酸のアルカリ金属塩またはアルカリ土
類金属塩である第一項記載の導電性ペースト。
(2) The conductive paste according to item 1, wherein the copper chelating agent is an alkali metal salt or an alkaline earth metal salt of ethylenediaminetetraacetic acid, nitrilotriacetic acid, diethylenetriaminepentaacetic acid, or cyclohexanediaminetetraacetic acid.
JP63986A 1986-01-08 1986-01-08 Conducting paste Granted JPS62160603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63986A JPS62160603A (en) 1986-01-08 1986-01-08 Conducting paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63986A JPS62160603A (en) 1986-01-08 1986-01-08 Conducting paste

Publications (2)

Publication Number Publication Date
JPS62160603A true JPS62160603A (en) 1987-07-16
JPH0373082B2 JPH0373082B2 (en) 1991-11-20

Family

ID=11479280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63986A Granted JPS62160603A (en) 1986-01-08 1986-01-08 Conducting paste

Country Status (1)

Country Link
JP (1) JPS62160603A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196246A (en) * 1987-10-09 1989-04-14 Ube Ind Ltd Production of copper paste composition and electrically conductive wired material
JP2008161781A (en) * 2006-12-27 2008-07-17 Dkk Toa Corp Filter unit
JP2009534498A (en) * 2006-04-18 2009-09-24 東進セミケム株式会社 Paste composition for printing
WO2012014481A1 (en) * 2010-07-30 2012-02-02 太陽ホールディングス株式会社 Conductive paste for offset printing
CN103582918A (en) * 2011-05-23 2014-02-12 旭硝子株式会社 Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
WO2018179838A1 (en) * 2017-03-30 2018-10-04 ハリマ化成株式会社 Electroconductive paste

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0196246A (en) * 1987-10-09 1989-04-14 Ube Ind Ltd Production of copper paste composition and electrically conductive wired material
JP2009534498A (en) * 2006-04-18 2009-09-24 東進セミケム株式会社 Paste composition for printing
JP2008161781A (en) * 2006-12-27 2008-07-17 Dkk Toa Corp Filter unit
WO2012014481A1 (en) * 2010-07-30 2012-02-02 太陽ホールディングス株式会社 Conductive paste for offset printing
CN103582918A (en) * 2011-05-23 2014-02-12 旭硝子株式会社 Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
WO2018179838A1 (en) * 2017-03-30 2018-10-04 ハリマ化成株式会社 Electroconductive paste
CN110462753A (en) * 2017-03-30 2019-11-15 哈利玛化成株式会社 Conductive paste
JPWO2018179838A1 (en) * 2017-03-30 2020-02-06 ハリマ化成株式会社 Conductive paste

Also Published As

Publication number Publication date
JPH0373082B2 (en) 1991-11-20

Similar Documents

Publication Publication Date Title
JP5402350B2 (en) Method for producing conductive paste and conductive paste
JPH0421721B2 (en)
JPS62160603A (en) Conducting paste
JP3299083B2 (en) Method for producing carbon-based conductive paste
JP2008226727A (en) Conductive paste
JP3828787B2 (en) Method for producing conductive powder and method for producing conductive composition
JPH07226110A (en) Copper powder for conductive paste and conductive copper paste using it
JPH05230400A (en) Electrically conductive paste and electrically conductive coating film
JP3142484B2 (en) Conductive copper paste composition
JP2000133043A (en) Conductive composition for improving contact resistance
JP3185659B2 (en) Conductive composition
JPH04223006A (en) Flame retardant type conductive copper paste composition
JP2963518B2 (en) Conductive paste composition
JP3144300B2 (en) Conductive composition for forming conductive coating
JPS60258273A (en) Electrically conductive coating composition
JP3352551B2 (en) Conductive copper paste composition
JPH04146973A (en) Conductive paste composition
JPH01246705A (en) Conductive paste
JPH04146974A (en) Conductive paste composition
JPH10188670A (en) Flat conductive metal powder, its manufacture, and conductive paste with flat conductive metal powder
JP3142462B2 (en) Conductive copper paste composition
JPS6220570A (en) Electrically-conductive paste
JPH04146972A (en) Conductive paste composition
JP2000021235A (en) Copper-base conductive paste
JPH04756B2 (en)