JPH09255900A - Thermosetting type carbon-based electroconductive coating material - Google Patents

Thermosetting type carbon-based electroconductive coating material

Info

Publication number
JPH09255900A
JPH09255900A JP8093508A JP9350896A JPH09255900A JP H09255900 A JPH09255900 A JP H09255900A JP 8093508 A JP8093508 A JP 8093508A JP 9350896 A JP9350896 A JP 9350896A JP H09255900 A JPH09255900 A JP H09255900A
Authority
JP
Japan
Prior art keywords
weight
graphite
resin
coating
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8093508A
Other languages
Japanese (ja)
Other versions
JP3400236B2 (en
Inventor
Katsutomo Oozeki
克知 大関
Masahiro Okahara
正宏 岡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP09350896A priority Critical patent/JP3400236B2/en
Publication of JPH09255900A publication Critical patent/JPH09255900A/en
Application granted granted Critical
Publication of JP3400236B2 publication Critical patent/JP3400236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject coating material useful for a printed circuit board with a carbon coated film, excellent in adhesivity, electrical conductivity, high-temperature stability of electrical conductivity, etc., by dispersing specific carbonaceous powder to a solution of a prescribed titonte-based coupling agent. SOLUTION: The coating material is obtained by dispersing (B) 30wt.% of carbonaceous powder as electroconductive particles composed of 12-18wt.% of natural flaky graphite having 10-30μm average particle diameter and 12-18wt.% carbon black to (A) a solution prepared by dissolving (A1 ) 0.7-2.5wt.% of a titanbate-based coupling agent composed of 25-30 wt.% of a resol type phenol resin having 3-10wt.% of a free phenol based on a resin in a nonvolatile component at 180 deg.C, 0.6-1.8wt.% of a polyvinyl butyral resin composed of >=60wt.% of a polyvinyl butyral resin having 1,000-1,800 degree of polymerization and an organotitanium compound in (A2 ) a solvent composed of butyl celloslove, butyl barbital (acetate) or its mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、プリント回路基
板の印刷導電回路を形成する熱硬化型カーボン系導電塗
料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermosetting carbon-based conductive paint for forming a printed conductive circuit of a printed circuit board.

【0002】[0002]

【従来の技術】紙フェノール積層板やポリエステルフィ
ルムなどの基材に印刷して回路を形成する導電塗料は、
金属や炭素質粉末などの導電粒子と、結着剤としての熱
硬化性樹脂および塗料溶媒としての有機溶剤とを主成分
として、分散剤を用いて有機溶媒中に導電粒子を分散さ
せている。例えば、特公昭60−58268号公報には
銅粉末、熱硬化性樹脂、不飽和脂肪酸と有機チタン化合
物からなる導電性銅ペーストが開示されている。
2. Description of the Related Art Conductive paints that are printed on substrates such as paper phenolic laminates and polyester films to form circuits are
Conductive particles are dispersed in an organic solvent with a dispersant as a main component of conductive particles such as metal or carbonaceous powder and a thermosetting resin as a binder and an organic solvent as a coating solvent. For example, Japanese Examined Patent Publication No. 60-58268 discloses a conductive copper paste containing copper powder, a thermosetting resin, an unsaturated fatty acid and an organic titanium compound.

【0003】しかしながらプリント回路基板用の導電塗
料としては、コストやマイグレーションの観点から、銅
や銀の金属質導電粒子を用いた塗料よりも炭素質粉末を
用いたカーボン系の塗料が用いられることが多い。すな
わち、導電粒子として銀や銅などの貴金属や卑金属の金
属質粉末に比べ、黒鉛やカーボンブラックなどの炭素質
粉末の方が価格が低いことに加え、銅の導電塗料を用い
たプリント回路基板では、銅が酸化されやすいために、
形成した銅の印刷導電回路の被膜に対し特別な酸化防止
処理を施す必要がある。また、電気化学的な金属腐食で
あるマイグレーションが顕著な銀を金属質粉末として用
いたプリント回路基板では、形成した銀の印刷導電回路
の被膜に水分とハロゲン物質とが接触しないように、保
護被膜を形成する必要があるなど、金属質導電粒子を用
いた塗料の場合には耐性被膜を形成する必要から、製品
としての回路基板のコストが高くなる。
However, as a conductive paint for a printed circuit board, a carbon-based paint using a carbonaceous powder is used rather than a paint using metallic conductive particles of copper or silver from the viewpoint of cost and migration. Many. That is, in comparison with metallic powders of noble metals and base metals such as silver and copper as conductive particles, carbonaceous powders such as graphite and carbon black are lower in price, and in printed circuit boards using a conductive coating of copper. , Because copper is easily oxidized,
A special anti-oxidation treatment needs to be applied to the formed copper printed conductive circuit coating. Further, in a printed circuit board using silver as a metallic powder, which has a remarkable migration due to electrochemical metal corrosion, a protective film is formed to prevent moisture and a halogen substance from contacting the formed film of the printed conductive circuit of silver. In the case of a coating material using metallic conductive particles, it is necessary to form a resistant coating film, which increases the cost of the circuit board as a product.

【0004】さらに近年では、カーボン系導電塗料にお
いても、形成される印刷導電回路被膜の低抵抗値化が進
められ、この種の被膜の導電性を表すシート抵抗値が3
0〜50Ω/□程度の塗料が市販されている。このよう
なカーボン系導電塗料は、黒鉛とカーボンブラックなど
の炭素質粉末からなる導電粒子と、熱硬化性樹脂のフェ
ノール樹脂などを1〜1.5対1の割合とし、ブチルセ
ロソルブ、やブチルカルビトール、ブチルカルビトール
アセテートなどのエチレングリコール系の有機溶剤を溶
媒として用い、炭素質粉末の導電粒子を分散させたもの
である。プリント回路基板上にこの塗料をスクリーン印
刷し、基板の劣化を防ぐために160℃以下の温度で1
5〜30分の熱硬化処理を施し、基板上に印刷導電回路
の被膜を形成する。
Furthermore, in recent years, even in the case of carbon-based conductive paints, the resistance value of the printed conductive circuit film formed has been reduced, and the sheet resistance value showing the conductivity of this kind of film is 3%.
Paints of about 0 to 50Ω / □ are commercially available. Such a carbon-based conductive coating material contains conductive particles made of carbonaceous powder such as graphite and carbon black, and a thermosetting resin such as phenol resin in a ratio of 1 to 1.5: 1, and butyl cellosolve or butyl carbitol. Conductive particles of carbonaceous powder are dispersed by using an ethylene glycol organic solvent such as butyl carbitol acetate as a solvent. Screen-print this paint on a printed circuit board, and at a temperature of 160 ° C or less to prevent deterioration of the board,
A heat-curing treatment is applied for 5 to 30 minutes to form a film of a printed conductive circuit on the substrate.

【0005】この後の基板製造工程としてはハンダ処理
や温水洗浄処理などがあるが、現状の市販塗料ではこれ
らの工程を経る際に、±20〜100%程度の大きな電
気抵抗値の増減変化を生じ、回路設計時の電気抵抗値を
満足しなくなるという問題がある。これは印刷導電回路
被膜の内部におけるクラックの発生、被膜の収縮、導電
粒子の分布変化、あるいは印刷導電回路の被膜を構成す
る材料の変性などの現象が複雑に作用することによるも
のである。
Subsequent substrate manufacturing processes include a soldering process and a hot water cleaning process. However, in the current commercial paint, a large increase / decrease in electric resistance value of about ± 20 to 100% occurs during these processes. However, there is a problem that the electric resistance value at the time of circuit design is not satisfied. This is because phenomena such as generation of cracks inside the printed conductive circuit coating, contraction of the coating, change in distribution of conductive particles, and modification of the material forming the coating of the printed conductive circuit are complicated.

【0006】[0006]

【発明が解決しようとする課題】この発明は、上記の問
題点を解決するため、塗料材料の構成を改善することに
よりカーボン系導電塗料から形成される印刷導電回路被
膜の電気抵抗値の変化を抑制しようとするものである。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention improves the electrical resistance of a printed conductive circuit coating formed from a carbon-based conductive paint by improving the composition of the paint material. It is something that we try to suppress.

【0007】[0007]

【課題を解決するための手段】この発明の熱硬化型カー
ボン系導電塗料は、レゾール型フェノール樹脂、ポリビ
ニルブチラール、および有機チタン化合物からなるチタ
ネート系カップリング剤を塗料溶媒に溶解させた溶液中
に、黒鉛とカーボンブラックの炭素質粉末を導電粒子と
して分散させた熱硬化型カーボン系導電塗料において、
(a)前記黒鉛12〜18重量%およびカーボンブラッ
ク12〜18重量%からなる炭素質粉末30重量%、前
記レゾール型フェノール樹脂25〜30重量%、前記ポ
リビニルブチラール樹脂0.6〜1.8重量%、前記有機
チタン化合物からなるチタネート系カップリング剤0.
7〜2.5重量%、ならびにブチルセロソルブ、ブチル
カルビトールおよびブチルカルビトールアセテートから
選択される単一または混合物の有機溶剤からなる塗料溶
媒を残量として含有する構成である。さらに、(b)前
記レゾール型フェノール樹脂の180℃における不揮発
分中の遊離フェノールの量がレゾール型フェノール樹脂
に対して3〜10重量%であり、(c)前記炭素質粉末
の黒鉛は、天然のリン状もしくはリン片状の黒鉛粒子で
あって、その平均粒子径は10〜30μmであり、
(d)前記ポリビニルブチラール樹脂は、重合度が10
00〜1800の範囲のものを60重量%以上含有して
いることを特徴とするものである。
A thermosetting carbon type conductive coating material of the present invention is a solution of a titanate coupling agent composed of a resol type phenol resin, polyvinyl butyral and an organic titanium compound in a coating solvent. In a thermosetting carbon-based conductive paint in which carbonaceous powder of graphite and carbon black is dispersed as conductive particles,
(A) 30% by weight of carbonaceous powder consisting of 12 to 18% by weight of the graphite and 12 to 18% by weight of carbon black, 25 to 30% by weight of the resol type phenol resin, 0.6 to 1.8% by weight of the polyvinyl butyral resin. %, A titanate-based coupling agent consisting of the above-mentioned organic titanium compound.
The composition contains 7 to 2.5% by weight, and the balance of the coating solvent consisting of an organic solvent of a single or a mixture selected from butyl cellosolve, butyl carbitol and butyl carbitol acetate. Further, (b) the amount of free phenol in the nonvolatile content of the resol-type phenol resin at 180 ° C. is 3 to 10% by weight based on the resol-type phenol resin, and (c) the carbonaceous powder graphite is natural. Of phosphorus-like or flaky graphite particles having an average particle diameter of 10 to 30 μm,
(D) The polyvinyl butyral resin has a degree of polymerization of 10
It is characterized by containing 60% by weight or more in the range of 00 to 1800.

【0008】この発明は上記の構成により達成される。
すなわち、導電粒子である炭素質粉末の黒鉛粒子として
は、結晶化度の高い天然のリン状あるいはリン片状のも
のを用いると、電気抵抗値の低い印刷導電回路被膜が得
られるので好ましい。天然の黒鉛は結晶化度の違いか
ら、リン片状、リン状、土状の黒鉛に類別されるが、こ
の発明に適する天然黒鉛は、真の黒鉛の結晶化度に一番
近いリン片状黒鉛と、次いで結晶化度の高いリン状黒鉛
である。この黒鉛粒子の平均粒子径は10〜30μmの
範囲が好ましい。平均粒子径が10μmに満たない場合
には、粒子間の接触抵抗が大きくなり、印刷導電回路被
膜の電気抵抗値は高くなる。さらに印刷導電回路を得る
ために行う熱硬化処理の温度を150℃よりも高くする
と電気抵抗値の変化率が大きくなる。これは被膜中の粒
子が移動の起こりやすい充填作用の状態にあるためであ
る。また、黒鉛粒子の平均粒子径が30μmを越える場
合も、印刷導電回路被膜中の導電粒子の充填率が下が
り、導電被膜の電気抵抗値が高くなり、電気抵抗値の変
化率が大きくなる。さらに、この種の導電塗料は、主と
してスクリーン印刷法により被印刷基板に転写を行い、
熱硬化させて印刷導電回路の被膜を形成するので、スク
リーン印刷に用いるスクリーンメッシュの目詰まりを防
止する観点から、含有する黒鉛粒子の最大粒子径はスク
リーンメッシュの開口径よりも小さい90μm以下であ
ることが必要である。
The present invention is achieved by the above configuration.
That is, it is preferable to use, as the graphite particles of the carbonaceous powder as the conductive particles, natural phosphorous or flaky graphite particles having a high crystallinity because a printed conductive circuit film having a low electric resistance value can be obtained. Natural graphite is classified into flake-like, phosphorus-like, and earth-like graphite according to the difference in crystallinity. Natural graphite suitable for this invention is a flake-like graphite that is closest to the crystallinity of true graphite. Graphite and phosphorous graphite having the next highest degree of crystallinity. The average particle size of the graphite particles is preferably in the range of 10 to 30 μm. When the average particle diameter is less than 10 μm, the contact resistance between particles becomes large and the electric resistance value of the printed conductive circuit film becomes high. Further, if the temperature of the thermosetting process for obtaining the printed conductive circuit is made higher than 150 ° C., the change rate of the electric resistance value becomes large. This is because the particles in the coating are in a filling state in which migration easily occurs. Also, when the average particle diameter of the graphite particles exceeds 30 μm, the filling rate of the conductive particles in the printed conductive circuit coating decreases, the electric resistance of the conductive coating increases, and the rate of change of the electric resistance increases. Furthermore, this type of conductive paint is mainly transferred to the printed substrate by screen printing,
Since the film of the printed conductive circuit is formed by heat curing, the maximum particle size of the graphite particles contained is 90 μm or less, which is smaller than the opening size of the screen mesh, from the viewpoint of preventing clogging of the screen mesh used for screen printing. It is necessary.

【0009】カーボンブラック粒子は黒鉛粒子よりも細
かいので、炭素質粉末の導電粒子として黒鉛粒子を併用
することにより、黒鉛粒子単一の場合に比べて粒子の充
填状態が改善され、得られる印刷導電被膜の電気抵抗値
が減小する。数種のカーボンブラックのうち、導電塗料
に好適なものは導電用のアセチレンブラックである。黒
鉛とカーボンブラックの配合重量比としては、黒鉛/カ
ーボンブラック=40/60〜60/40が好ましい。
すなわち塗料中の導電粒子の量が30重量%の場合で
は、黒鉛粒子の量は12〜18重量%、カーボンブラッ
ク粒子の量は12〜18重量%である。この配合割合は
前述の粒子の充填状態から決定され、黒鉛粒子の平均粒
子径が粗く30μm程度の場合には、黒鉛粒子相互間の
粒間容積が大きいので、この粒間を埋めるために必要な
カーボンブラックの量は多くなる。一方、黒鉛粒子の平
均粒子径が細かく10μm程度の場合には、黒鉛粒子相
互間の粒間容積は小さいから、粒間を埋めるために必要
なカーボンブラックの量は少なくなる。なお、黒鉛粒子
の平均粒子径が細かい場合に、カーボンブラックを過度
に多く配合すると粒子間の接触抵抗が増加し、電気抵抗
値の増大を招く。
Since the carbon black particles are finer than the graphite particles, the combined use of the graphite particles as the conductive particles of the carbonaceous powder improves the packing state of the particles as compared with the case where only the graphite particles are used, and the obtained printed conductive particles can be obtained. The electric resistance of the coating is reduced. Among several types of carbon black, the one suitable for the conductive coating is acetylene black for conductivity. The blending weight ratio of graphite and carbon black is preferably graphite / carbon black = 40/60 to 60/40.
That is, when the amount of conductive particles in the coating material is 30% by weight, the amount of graphite particles is 12 to 18% by weight and the amount of carbon black particles is 12 to 18% by weight. This blending ratio is determined from the packed state of the particles described above. When the average particle size of the graphite particles is coarse and about 30 μm, the intergranular volume between the graphite particles is large, so that it is necessary to fill the intergranular spaces. The amount of carbon black increases. On the other hand, when the average particle size of the graphite particles is fine and is about 10 μm, the interparticle volume between the graphite particles is small, so that the amount of carbon black required to fill the intergranular particles is small. When the average particle diameter of the graphite particles is small, if the carbon black is added in an excessively large amount, the contact resistance between the particles will increase and the electrical resistance value will increase.

【0010】塗料中の導電粒子の分散状態は、得られる
印刷導電回路被膜の電気抵抗値の変化率と密接な関係に
あり、塗料中における導電粒子の分散状態が良好な程、
電気抵抗値の変化率は小さくなる。導電粒子の分散状態
を向上させるためには、ポリビニルブチラール(以下
「PVB」という)樹脂および有機チタン化合物からな
るチタネート系カップリング剤を併用することが望まし
い。また、これらの材料は、塗料を熱硬化させて得られ
る印刷導電回路の被膜に可撓性を付与することができる
ので、熱衝撃による応力を緩和して、電気抵抗値の変化
を抑制する効果を示す。これらのうちPVB樹脂の配合
量は、炭素質粉末の導電粒子に対して2〜6重量%が適
当であり、好ましくは3〜5重量%、より好ましくは4
重量%である。これらの値は、塗料中の導電粒子量を3
0重量%として、塗料全体の配合組成で表すと、それぞ
れ0.6〜1.8重量%、0.9〜1.5重量%および1.
2重量%となる。PVB樹脂が導電粒子量に対して2重
量%未満では、得られる印刷導電回路被膜の電気抵抗値
が高く、また、電気抵抗値の変化率も大きい。これは塗
料中における導電粒子の分散状態が悪く、さらに得られ
る印刷導電回路被膜に必要な可撓性が十分に与えられて
いないためである。逆に6重量%を越えても、得られる
印刷導電回路被膜の電気抵抗値が高く、電気抵抗値の変
化率が大きくなる。これは炭素質の導電粒子への樹脂の
被覆量が多くなること、およびPVB樹脂などの熱可塑
性樹脂の特徴である熱変性の影響が無視できなくなるこ
とによるものである。
The dispersion state of the conductive particles in the coating material is closely related to the rate of change of the electric resistance value of the obtained printed conductive circuit film, and the better the dispersion state of the conductive particles in the coating material,
The rate of change of the electric resistance value becomes small. In order to improve the dispersed state of the conductive particles, it is desirable to use a polyvinyl butyral (hereinafter referred to as “PVB”) resin and a titanate coupling agent composed of an organic titanium compound in combination. Further, these materials can impart flexibility to the coating film of the printed conductive circuit obtained by thermosetting the coating material, so that the stress due to thermal shock is relieved and the change in electric resistance value is suppressed. Indicates. Among these, the amount of the PVB resin compounded is appropriately 2 to 6% by weight, preferably 3 to 5% by weight, more preferably 4% by weight based on the conductive particles of the carbonaceous powder.
% By weight. These values represent the amount of conductive particles in the paint to 3
Expressed as 0% by weight, the composition of the entire coating composition is 0.6 to 1.8% by weight, 0.9 to 1.5% by weight, and 1.
It becomes 2% by weight. When the PVB resin is less than 2% by weight with respect to the amount of conductive particles, the obtained printed conductive circuit coating has a high electric resistance value and a large change rate of the electric resistance value. This is because the conductive particles are not well dispersed in the paint, and the resulting printed conductive circuit coating does not have sufficient flexibility. On the other hand, if it exceeds 6% by weight, the electric resistance value of the obtained printed conductive circuit film is high and the rate of change of the electric resistance value is large. This is because the amount of resin coated on the carbonaceous conductive particles is large, and the influence of thermal denaturation, which is a characteristic of thermoplastic resins such as PVB resin, cannot be ignored.

【0011】PVB樹脂は熱可塑性の合成樹脂であり、
分子量、すなわち重合度の差によりグレード分けされて
市販されている。この発明の導電塗料に配合するPVB
樹脂としては、一定の重合度の樹脂を単一で用いてもよ
いし、重合度の異なるPVB樹脂を適宜配合して用いて
もよいが、1000〜1800の重合度の範囲のもの
を、PVB樹脂全体の少なくとも60重量%以上含有し
ていることが好ましい。低分子量のPVB樹脂を用いる
と、炭素質粉末の導電粒子を被覆する量が多くなるた
め、得られる印刷導電回路被膜の電気抵抗値が高くな
る。また、低分子量の熱可塑性樹脂ほど、熱変性を受け
易いために電気抵抗値の変化率も増大する。高分子量の
PVB樹脂を用いると、炭素質粉末の導電粒子、とりわ
け黒鉛粒子の分散状態が悪くなり、得られる印刷導電回
路被膜の電気抵抗値が高くなる。
PVB resin is a thermoplastic synthetic resin,
They are marketed by grade according to the difference in molecular weight, that is, the degree of polymerization. PVB blended with the conductive paint of this invention
As the resin, a single resin having a certain degree of polymerization may be used alone, or PVB resins having different degrees of polymerization may be appropriately mixed and used, but those having a degree of polymerization of 1000 to 1800 may be used as PVB. It is preferable to contain at least 60% by weight or more of the entire resin. When a low molecular weight PVB resin is used, the amount of conductive particles of carbonaceous powder coated increases, and the electrical resistance value of the resulting printed conductive circuit coating increases. In addition, the lower the molecular weight of the thermoplastic resin, the more easily it is subject to thermal denaturation, so that the rate of change of the electric resistance value increases. When a high molecular weight PVB resin is used, the dispersed state of the carbonaceous powder conductive particles, especially the graphite particles, deteriorates, and the electric resistance value of the obtained printed conductive circuit coating increases.

【0012】PVB樹脂と共に用いるチタネート系カッ
プリング剤は、疎水基側にベンゼン環を有する有機チタ
ン化合物が適当であり、配合量としては炭素質導電粒子
のカーボンブラックに対して6〜14重量%が好まし
く、さらに好ましくは8〜12重量%、最適な配合量は
10重量%である。この値をカーボンブラックが12〜
18重量%配合された塗料全体の組成で表すと、それぞ
れ0.7〜2.5重量%、1.0〜2.2重量%および1.
2〜1.8重量%となる。カーボンブラックに対するチ
タネート系カップリング剤の配合量が6重量%未満で
は、電気抵抗値の変化率が大きい。これは塗料中におけ
るカーボンブラックの良好な分散状態が得られ難いこ
と、および形成される印刷導電回路の被膜に可撓性が与
えられないことによるものである。一方、カーボンブラ
ックに対するチタネート系カップリング剤の配合量が1
4重量%を越えると、炭素質の導電粒子への被覆量が多
くなるために印刷導電回路被膜の電気抵抗値が上昇する
ので好ましくない。さらに、チタネート系カップリング
剤の沸点は250℃以上であるから、印刷導電回路の被
膜を得るための熱硬化処理はもとより、前記ハンダ処理
や温水洗浄処理などの基板製造工程の温度の範囲におい
ても液状態である。このためチタネート系カップリング
剤を多量に配合した塗料の場合には、前記の熱履歴を受
けることにより、形成される印刷導電回路被膜の密着性
が著しく悪化する。
The titanate coupling agent used with the PVB resin is preferably an organic titanium compound having a benzene ring on the hydrophobic group side, and the compounding amount is 6 to 14% by weight based on the carbon black of the carbonaceous conductive particles. It is more preferably 8 to 12% by weight, and the most suitable amount is 10% by weight. This value is 12 ~ for carbon black
Expressed in terms of the composition of the entire 18% by weight blended material, it is 0.7 to 2.5% by weight, 1.0 to 2.2% by weight and 1.
It becomes 2 to 1.8% by weight. If the amount of the titanate coupling agent blended with the carbon black is less than 6% by weight, the change rate of the electric resistance value is large. This is because it is difficult to obtain a good dispersed state of carbon black in the coating material, and flexibility is not given to the film of the printed conductive circuit to be formed. On the other hand, the amount of titanate coupling agent to carbon black is 1
If it exceeds 4% by weight, the amount of coating on the carbonaceous conductive particles increases and the electric resistance value of the printed conductive circuit coating increases, which is not preferable. Furthermore, since the boiling point of the titanate-based coupling agent is 250 ° C. or higher, not only in the thermosetting process for obtaining the film of the printed conductive circuit, but also in the temperature range of the substrate manufacturing process such as the soldering process or the hot water washing process. It is in a liquid state. Therefore, in the case of a coating material containing a large amount of a titanate-based coupling agent, the heat history described above causes the adhesion of the formed printed conductive circuit coating to be significantly deteriorated.

【0013】導電塗料の溶媒として使用する有機溶剤と
しては、この種の塗料の溶媒として一般的なエチレング
リコール系のブチルセロソルブ、ブチルカルビトールま
たはブチルカルビトールアセテートを単一でまたは混合
して使用することが適当である。溶剤には、スクリーン
印刷時の版上で乾燥したり、特異な刺激臭を発生したり
することがなく、さらに熱硬化処理工程後の印刷導電被
膜の内部に塗料溶媒が残存しないことなどが要求される
が、上記の溶剤はこれらの条件を満たすものである。
As the organic solvent used as a solvent for the conductive paint, ethylene glycol butyl cellosolve, butyl carbitol or butyl carbitol acetate, which is a general solvent for this type of paint, may be used alone or in combination. Is appropriate. It is required that the solvent does not dry on the plate during screen printing, does not generate a peculiar irritating odor, and that the coating solvent does not remain inside the printed conductive film after the thermosetting process. However, the above solvents satisfy these conditions.

【0014】この発明に用いるレゾール型フェノール樹
脂の中には、通常フェノール樹脂の原料として用いた遊
離フェノールが最低2%程度は残存している。この遊離
フェノールの沸点は約180℃であるため、塗膜の熱硬
化を行う160℃以下の温度で熱硬化処理を行っても、
印刷導電回路被膜の内部に残留している。この状態で回
路基板製造工程におけるハンダ処理のように250℃以
上の温度雰囲気に接すると、遊離フェノールが急激に揮
発して印刷導電回路の被膜にクラックを生じ、電気抵抗
値の変化を引き起こす。従って、180℃における不揮
発分の分析において、不揮発分中の遊離フェノールの含
有量はできるだけ少ないことが望まれるが、10重量%
以下であれば、印刷導電回路の被膜中に残存しても大き
な影響を与えない。このように180℃における不揮発
分中の遊離フェノールの含有量を制限したフェノール樹
脂を用いることが、この発明の目的を達成する一要件で
ある。
In the resol type phenol resin used in the present invention, at least about 2% of free phenol, which is usually used as a raw material for the phenol resin, remains. Since the boiling point of this free phenol is about 180 ° C., even if the heat curing treatment is carried out at a temperature of 160 ° C. or lower for heat curing the coating film,
Remains inside the printed conductive circuit coating. In this state, when exposed to an atmosphere of a temperature of 250 ° C. or higher as in the soldering process in the circuit board manufacturing process, the free phenol is rapidly volatilized to cause a crack in the coating film of the printed conductive circuit, which causes a change in the electric resistance value. Therefore, in the analysis of non-volatile matter at 180 ° C, it is desirable that the content of free phenol in the non-volatile matter is as low as possible, but 10 wt%
If it is below, even if it remains in the film of the printed conductive circuit, it does not have a great influence. It is one of the requirements for achieving the object of the present invention to use the phenol resin in which the content of the free phenol in the nonvolatile matter at 180 ° C is limited.

【0015】[0015]

【発明の実施の形態】天然のリン状もしくはリン片状の
平均粒子径10〜30μmの黒鉛12〜18重量%およ
びカーボンブラック12〜18重量%からなる炭素質粉
末30重量%、180℃における不揮発分中の遊離フェ
ノールの量がレゾール型フェノール樹脂に対して3〜1
0重量%のレゾール型フェノール樹脂25〜30重量
%、重合度1000〜1800のものが60重量%以上
存在するポリビニルブチラール樹脂0.6〜1.8重量
%、有機チタン化合物からなるチタネート系カップリン
グ剤0.7〜2.5重量%、ならびにブチルセロソルブ、
ブチルカルビトールおよびブチルカルビトールアセテー
トから選択される単一または混合物の有機溶媒からなる
塗料溶媒を残量として含有する原料を、十分に混合およ
び混練して得た熱硬化型のカーボン系導電塗料を用いて
得られる印刷導電回路の被膜は、プリント回路基板に対
する十分な密着性を有し、電気特性が良好である。
BEST MODE FOR CARRYING OUT THE INVENTION 30% by weight of carbonaceous powder consisting of 12 to 18% by weight of natural phosphorus-like or scaly graphite having an average particle size of 10 to 30 μm and 12 to 18% by weight of carbon black, and nonvolatile at 180 ° C. The amount of free phenol in the fraction is 3 to 1 with respect to the resol type phenol resin.
25% to 30% by weight of resol type phenolic resin of 0% by weight, 0.6% to 1.8% by weight of polyvinyl butyral resin having a polymerization degree of 1000 to 1800 and more than 60% by weight, and a titanate coupling composed of an organic titanium compound. 0.7-2.5% by weight of the agent, and butyl cellosolve,
A thermosetting carbon-based conductive paint obtained by thoroughly mixing and kneading a raw material containing as a residual amount a paint solvent consisting of a single or mixed organic solvent selected from butyl carbitol and butyl carbitol acetate. The film of the printed conductive circuit obtained by using it has sufficient adhesion to the printed circuit board and has good electrical characteristics.

【0016】[0016]

【実施例】以下、本発明を表1〜4に示す実施例および
比較例を用いて具体的に説明する。
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples shown in Tables 1 to 4.

【0017】[塗料の調製]実施例および比較例の試料
をライカイ機で十分に混合した後、この混合物を3本ロ
ールミルで十分に混練して塗料とし、検討に用いた。こ
こで、混合および混練が不十分であると、得られる印刷
導電回路被膜の電気抵抗値の変化率が大きくなるので注
意を要する。
[Preparation of Paint] The samples of Examples and Comparative Examples were thoroughly mixed by a liquor machine, and then the mixture was sufficiently kneaded by a three-roll mill to prepare a paint, which was used for the study. Here, if the mixing and kneading are insufficient, the change rate of the electric resistance value of the obtained printed conductive circuit coating becomes large, so that care must be taken.

【0018】[試料の作製]上記のように調製した各種
の塗料を用い、スクリーン印刷機でプリント回路基板上
に長さ50mm、幅10mmのベタ面パターンを印刷
し、レベリングを行った後、150℃、15分の熱硬化
処理を施した。
[Preparation of Sample] Using various paints prepared as described above, a solid surface pattern having a length of 50 mm and a width of 10 mm was printed on a printed circuit board by a screen printing machine, and after leveling, 150 A heat curing treatment was performed at 15 ° C. for 15 minutes.

【0019】[試料の評価] (1)シート抵抗値 上記の方法で形成した印刷導電回路の被膜の電気抵抗値
を2短針法で測定し、印刷導電回路被膜形成時の電気抵
抗値(R0)とした。なお、シート抵抗値(RS)はこの
ベタ面パターンの測定電気抵抗値から、以下の式により
算出した。
[Evaluation of Samples] (1) Sheet Resistance Value The electric resistance value of the film of the printed conductive circuit formed by the above method was measured by the 2-short needle method, and the electric resistance value (R 0 at the time of forming the printed conductive circuit film) was measured. ). The sheet resistance value (R S ) was calculated from the measured electrical resistance value of this solid surface pattern by the following formula.

【0020】[0020]

【数1】 [Equation 1]

【0021】通常、この計算式においては、印刷導電回
路の被膜の厚さを考慮する必要があるが、本発明におけ
る実施試料および比較試料として記載した塗料で形成し
た印刷導電回路被膜の厚さは全て19〜21μmの範囲
にあったため、膜厚の補正は行わずに比較した。
Usually, in this calculation formula, it is necessary to consider the thickness of the coating of the printed conductive circuit, but the thickness of the printed conductive circuit coating formed by the paint described as the working sample and the comparative sample in the present invention is Since all were in the range of 19 to 21 μm, the comparison was performed without correcting the film thickness.

【0022】(2)抵抗値変化率 さらに、260℃のハンダ槽中に5秒間試料を浸漬した
後に、再度電気抵抗値を測定し、電気抵抗値の変化率を
求めた。電気抵抗値の変化率(ΔR)は、印刷導電回路
の被膜形成時の電気抵抗値(R0)と熱を受けた後の電
気抵抗値(R)から次式により求めた。
(2) Rate of change in resistance value Further, after the sample was immersed in a solder bath at 260 ° C. for 5 seconds, the electric resistance value was measured again to obtain the rate of change in the electric resistance value. The rate of change (ΔR) of the electric resistance value was calculated from the electric resistance value (R 0 ) at the time of forming the film of the printed conductive circuit and the electric resistance value (R) after receiving heat by the following formula.

【0023】[0023]

【数2】 [Equation 2]

【0024】(3)密着性 形成した印刷導電被膜のプリント回路基板に対する密着
状態を判断するために、ベタ面パターンにセロハンテー
プを貼り付けた後、引き剥がし、セロハンテープへの被
膜の付着状態を観察した。
(3) Adhesion In order to judge the adhesion state of the formed printed conductive film to the printed circuit board, the cellophane tape is attached to the solid surface pattern and then peeled off to check the adhesion state of the film to the cellophane tape. I observed.

【0025】〈実施例1〉(実施試料1〜4、比較試料
1〜3) −黒鉛の性状について− カーボンブラックとしてアセチレンブラックを用い、黒
鉛とカーボンブラックの配合比率は50/50とした。
重合度が1000のPVB樹脂(積水化学工業(株)製、
商品名:エスレック BH−S)を導電粒子(黒鉛とカ
ーボンブラック)に対して4重量%、チタネート系カッ
プリング剤(味の素(株)製、商品名:プレンアクト K
R9SA)をカーボンブラックに対して10重量%配合
した。さらに、180℃における不揮発分中の遊離フェ
ノール量4重量%のレゾール型フェノール樹脂を導電粒
子と同重量になるように加え、ブチルセロソルブを全体
の30重量%になるように配合し、前述の塗料の調製法
に従って黒鉛の性状の異なる導電塗料を作製し、これを
用いて試料を作製した。黒鉛の性状およびそれぞれの黒
鉛によって作製した塗料から得た印刷導電回路被膜の特
性評価結果を表1に示す。
<Example 1> (Examples 1 to 4 and comparative samples 1 to 3) -Regarding properties of graphite-Acetylene black was used as carbon black, and the compounding ratio of graphite and carbon black was 50/50.
PVB resin with a degree of polymerization of 1000 (manufactured by Sekisui Chemical Co., Ltd.,
Trade name: S-REC BH-S) 4% by weight with respect to conductive particles (graphite and carbon black), titanate coupling agent (manufactured by Ajinomoto Co., Inc., trade name: Planeact K)
R9SA) was blended in an amount of 10% by weight with respect to carbon black. Further, a resol-type phenol resin having a free phenol content of 4% by weight in a nonvolatile content at 180 ° C. was added so as to have the same weight as the conductive particles, and butyl cellosolve was added so as to be 30% by weight of the whole, and Conductive paints having different graphite properties were prepared according to the preparation method, and samples were prepared using the conductive paints. Table 1 shows the properties of graphite and the characteristic evaluation results of the printed conductive circuit coatings obtained from the coating materials prepared from the respective graphites.

【0026】[0026]

【表1】 [Table 1]

【0027】リン状あるいはリン片状の黒鉛粒子で、平
均粒子径が10〜30μmの導電塗料(実施試料1〜
4)から得られた印刷導電回路被膜のシート抵抗値は3
0Ω/□以下であり、電気抵抗値の変化率も±10%以
内にある。これに対し、リン状の黒鉛粒子であっても平
均粒子径が10μm未満であると(比較試料1)、得ら
れた印刷導電回路被膜のシート抵抗値は35Ω/□と高
く、電気抵抗値の変化率も15%と大きい。これは黒鉛
粒子の粒子径が細かいために導電粒子間の接触抵抗が大
きくなり、さらに高温雰囲気に接した時の導電粒子の移
動が起こり易いためである。また、平均粒子径が30μ
mより大きい40μmの比較試料2においてもシート抵
抗値は32Ω/□と高くなり、電気抵抗値の変化率も−
25%と大きい。これは印刷導電回路被膜内の導電粒子
の充填率が低く、ハンダ漕に浸漬させた時に被膜の収縮
が生じるためである。さらに平均粒子径が20μmであ
っても、土状の黒鉛を用いた比較試料3は、シート抵抗
値が72Ω/□であり被膜の電気伝導性が劣る。これは
土状などの結晶性の低い黒鉛は、固有電気抵抗が高いた
めに、得られた印刷導電回路被膜の電気抵抗値も高くな
ることによる。
Phosphorous or scaly graphite particles having an average particle diameter of 10 to 30 μm (conductive sample 1
The sheet resistance value of the printed conductive circuit coating obtained from 4) is 3
It is 0 Ω / □ or less, and the rate of change in electric resistance value is also within ± 10%. In contrast, if the average particle size of the phosphorous graphite particles is less than 10 μm (Comparative Sample 1), the sheet resistance value of the obtained printed conductive circuit coating is as high as 35 Ω / □, The rate of change is also large at 15%. This is because the graphite particles have a small particle diameter, so that the contact resistance between the conductive particles becomes large, and further, the conductive particles easily move when contacting with a high temperature atmosphere. The average particle size is 30μ
The sheet resistance value was as high as 32 Ω / □ even in Comparative Sample 2 of 40 μm larger than m, and the change rate of the electric resistance value was −.
It is as large as 25%. This is because the filling rate of the conductive particles in the printed conductive circuit coating is low and the coating shrinks when immersed in a solder bath. Further, even if the average particle diameter is 20 μm, the comparative sample 3 using the earth-like graphite has a sheet resistance value of 72 Ω / □, and the electric conductivity of the coating film is poor. This is because graphite having a low crystallinity, such as soil, has a high specific electric resistance, so that the electric resistance value of the obtained printed conductive circuit coating also becomes high.

【0028】〈実施例2〉(実施試料5〜7、比較試料
4〜5) −黒鉛とカーボンブラックの配合比率について− 黒鉛は平均粒子径が16μmの天然のリン状のものを用
い、その他の材料については実施例1と同様にして、黒
鉛とカーボンブラックの配合比率の異なる塗料を作製
し、これを用いて試料を作製した。検討した黒鉛とカー
ボンブラックの配合比率およびそれぞれの配合比率によ
って作製した塗料から得た印刷導電回路被膜の特性評価
結果を表2に示す。
<Example 2> (Examples 5 to 7 and comparative samples 4 to 5) -Regarding the compounding ratio of graphite and carbon black-Natural phosphorus-like graphite having an average particle size of 16 μm was used as graphite. Regarding materials, coating materials having different blending ratios of graphite and carbon black were prepared in the same manner as in Example 1, and samples were prepared using the coating materials. Table 2 shows the examined blending ratios of graphite and carbon black, and the characteristic evaluation results of the printed conductive circuit coatings obtained from the coating materials prepared by the respective blending ratios.

【0029】[0029]

【表2】 [Table 2]

【0030】黒鉛とカーボンブラックの配合比率が、4
0/60〜60/40の範囲にある導電塗料(実施試料
5〜7)から得られた印刷導電被膜のシート抵抗値は3
0Ω/□以下であり、電気抵抗値の変化率も±10%以
内にある。これに対し、黒鉛の配合比率を低くした比較
試料4(黒鉛/カーボンブラック=30/70)ではシ
ート抵抗値は40Ω/□であり、電気抵抗値の変化率は
40%と高い。黒鉛/カーボンブラック=30/70で
は導電粒子である炭素質粉末中に占める微細な粒子の量
が多く、導電粒子間の接触抵抗が大きくなり電気抵抗値
が増加すると共に、印刷導電被膜内部での導電粒子の移
動が起こりやすくなるために電気抵抗値の変化が大きく
なる。一方、黒鉛の配合比率を高くした比較試料5(黒
鉛/カーボンブラック=70/30)の場合には、シー
ト抵抗値は低いが、電気抵抗値の変化率は大きい。これ
は実施例1の比較試料2と同様に導電粒子の充填率が低
く、熱による印刷導電回路被膜の収縮が生じるためであ
る。
The blending ratio of graphite and carbon black is 4
The sheet resistance value of the printed conductive coating obtained from the conductive paint in the range of 0/60 to 60/40 (Examples 5 to 7) is 3
It is 0 Ω / □ or less, and the rate of change in electric resistance value is also within ± 10%. On the other hand, in Comparative Sample 4 (graphite / carbon black = 30/70) in which the blending ratio of graphite was low, the sheet resistance value was 40Ω / □, and the change rate of the electric resistance value was 40%, which is high. In the case of graphite / carbon black = 30/70, the amount of fine particles in the carbonaceous powder which is the conductive particles is large, the contact resistance between the conductive particles is increased and the electric resistance value is increased. Since the conductive particles easily move, the change in the electric resistance value increases. On the other hand, in the case of Comparative Sample 5 (graphite / carbon black = 70/30) in which the blending ratio of graphite is high, the sheet resistance value is low, but the change rate of the electric resistance value is large. This is because the filling rate of the conductive particles is low as in the comparative sample 2 of Example 1, and the printed conductive circuit coating shrinks due to heat.

【0031】〈実施例3〉(実施試料8〜12、比較試
料6〜7) −PVB(ポリビニルブチラール)樹脂の配合量につい
て− 黒鉛は平均粒子径が16μmの天然のリン状のものを用
い、その他の材料については実施例1と同様にして、P
VB樹脂の配合量の異なる塗料を作製し、これを用いて
試料を作製した。検討したPVB樹脂の配合量(対炭素
質粉末)およびそれぞれの配合量によって作製した塗料
から得た印刷導電回路被膜の特性評価結果を表3に示
す。
<Example 3> (Examples 8 to 12 and comparative samples 6 to 7) -Regarding compounding amount of PVB (polyvinyl butyral) resin-Natural phosphorus-like graphite having an average particle size of 16 μm was used as graphite. For other materials, as in Example 1, P
A coating material having different VB resin compounding amounts was prepared, and this was used to prepare a sample. Table 3 shows the blended amount of the PVB resin examined (with respect to the carbonaceous powder) and the characteristic evaluation result of the printed conductive circuit coating film obtained from the coating material prepared according to each blended amount.

【0032】[0032]

【表3】 [Table 3]

【0033】PVB樹脂の配合量が、導電粒子である炭
素質粉末に対して2〜6重量%である導電塗料(実施試
料8〜12)から得られた印刷導電被膜のシート抵抗値
は30Ω/□以下であり、電気抵抗値の変化率も±10
%以内にある。これに対し、PVB配合量が1重量%の
比較試料6では、導電粒子、特に黒鉛の分散が不十分で
あり、得られた印刷導電回路被膜内の粒子の充填状態が
不良であり、シート抵抗値が55Ω/□と高い。また、
印刷導電回路被膜には可撓性が与えられていないため
に、ハンダ槽に浸漬させると被膜がプリント回路基板と
の熱膨張の差を緩和することができず、被膜にクラック
が発生し、電気抵抗値の変化が大きくなる。一方、PV
B配合量が6重量%を越えて7重量%の比較試料7で
は、PVB樹脂が導電粒子である炭素質粉末の表面を過
度に被覆する結果、得られた印刷導電被膜の電気抵抗値
が高くなった。また、PVB樹脂は熱可塑性樹脂である
から、高温下において熱による変性を受け易いため、電
気抵抗値の変化率も35%と大きくなった。
A sheet resistance value of a printed conductive coating film obtained from a conductive coating material (working samples 8 to 12) containing PVB resin in an amount of 2 to 6% by weight with respect to carbonaceous powder as conductive particles is 30 Ω /. □ or less, the rate of change in electrical resistance is ± 10
%. On the other hand, in Comparative Sample 6 having a PVB content of 1% by weight, the conductive particles, particularly graphite, were not sufficiently dispersed, and the filling state of the particles in the obtained printed conductive circuit coating was poor, resulting in a sheet resistance The value is as high as 55Ω / □. Also,
Since the printed conductive circuit coating does not have flexibility, when immersed in a solder bath, the coating cannot absorb the difference in thermal expansion from the printed circuit board, causing cracks in the coating, and The change in resistance becomes large. On the other hand, PV
In Comparative Sample 7 in which the content of B was more than 6% by weight and 7% by weight, the PVB resin excessively covered the surface of the carbonaceous powder which was the conductive particles, and as a result, the electric resistance value of the obtained printed conductive coating was high. became. Further, since the PVB resin is a thermoplastic resin, it is susceptible to modification by heat at a high temperature, so that the rate of change of the electric resistance value is as large as 35%.

【0034】〈実施例4〉(実施試料13〜17、比較
試料8〜9) −チタネート系カップリング剤の配合量について− 黒鉛は平均粒子径が16μmの天然のリン状のものを用
い、その他の材料については実施例1と同様にして、チ
タネート系カップリング剤の配合量の異なる塗料を作製
し、これを用いて試料を作製した。検討したチタネート
系カップリング剤の配合量(対カーボンブラック粒子)
およびそれぞれの配合量によって作製した塗料から得た
印刷導電回路被膜の特性評価結果を表4に示す。
<Example 4> (Examples 13 to 17 and comparative samples 8 to 9) -Regarding compounding amount of titanate coupling agent-Natural phosphorus-like graphite having an average particle size of 16 μm was used as graphite. As for the materials described in (1), in the same manner as in Example 1, coating materials having different titanate coupling agent compounding amounts were prepared, and samples were prepared using the coating materials. Amount of titanate coupling agent studied (against carbon black particles)
Table 4 shows the evaluation results of the characteristics of the printed conductive circuit film obtained from the coating materials prepared with the respective blending amounts.

【0035】[0035]

【表4】 [Table 4]

【0036】有機チタン化合物からなるチタネート系カ
ップリング剤の配合量が、カーボンブラック粒子に対し
て6〜14重量%である導電塗料(実施試料13〜1
7)から得られた印刷導電被膜のシート抵抗値は30Ω
/□以下であり、電気抵抗値の変化率も±20%以内に
あり、特に配合量が8〜12重量%である導電塗料(実
施試料14〜16)から得られた印刷導電被膜の電気抵
抗値の変化率は±5%以内と良好である。カーボンブラ
ック粒子に対して配合量が5重量%(比較試料8)で
は、シート抵抗値は高く、電気抵抗値の変化率も大き
い。これはカーボンブラック粒子の分散状態が不十分で
あるためである。一方、配合量が14重量%を越えて1
5重量%(比較試料9)では、電気抵抗値の変化率は実
施試料17と同等であるが、シート抵抗値は40Ω/□
と高く、さらに印刷導電被膜のプリント回路基板に対す
る密着性に劣り、形成した被膜はセロハンテープ側に付
着した。これはチタネート系カップリング剤の配合量が
多すぎるために、導電粒子を被覆する量が多いこと、お
よび印刷導電被膜を得るために150℃の加熱硬化処理
を行っても、被膜中にチタネート系カップリング剤が液
状のまま存在するため、印刷導電回路の被膜が十分に硬
化できなかったことによるものである。
A conductive coating material containing 6 to 14% by weight of a titanate-based coupling agent composed of an organotitanium compound based on carbon black particles (samples 13 to 1).
The sheet resistance value of the printed conductive film obtained from 7) is 30Ω.
/ □ or less, the rate of change of the electric resistance value is within ± 20%, and the electric resistance of the printed conductive coating film obtained from the conductive paint (implementation samples 14 to 16) in which the compounding amount is 8 to 12% by weight in particular. The rate of change of value is within ± 5%, which is good. When the blending amount is 5% by weight with respect to the carbon black particles (Comparative Sample 8), the sheet resistance value is high and the change rate of the electric resistance value is large. This is because the dispersed state of the carbon black particles is insufficient. On the other hand, if the blending amount exceeds 14% by weight, 1
At 5% by weight (Comparative sample 9), the rate of change in electrical resistance value was the same as that of sample 17, but the sheet resistance value was 40Ω / □.
And the adhesion of the printed conductive coating to the printed circuit board was poor, and the formed coating adhered to the cellophane tape side. This is because the amount of the titanate-based coupling agent is too large, so that the amount of the conductive particles to be coated is large, and even if the heat curing treatment at 150 ° C. is performed to obtain the printed conductive film, the titanate-based coupling agent is contained in the film. This is because the coating of the printed conductive circuit could not be sufficiently cured because the coupling agent remained in a liquid state.

【0037】〈実施例5〉(実施試料18〜21、比較
試料10〜12) −PVB(ポリビニルブチラール)樹脂の重合度につい
て− 黒鉛は平均粒子径が16μmの天然のリン状のものを用
い、その他の材料については実施例1と同様にして、重
合度の異なるPVB樹脂の配合量を変えた塗料を作製
し、これを用いて試料を作製した。検討した重合度の異
なるPVB樹脂の配合量およびそれぞれの配合量によっ
て作製した塗料から得た印刷導電回路被膜の特性評価結
果を表5に示す。
Example 5 (Examples 18 to 21, Comparative Samples 10 to 12) -Polymerization Degree of PVB (Polyvinyl Butyral) Resin-Natural phosphorus-like graphite having an average particle size of 16 μm is used. With respect to the other materials, coating materials were prepared in the same manner as in Example 1 except that the blending amounts of PVB resins having different polymerization degrees were changed, and the coating materials were used to prepare samples. Table 5 shows the blending amounts of the PVB resins having different degrees of polymerization studied and the characteristic evaluation results of the printed conductive circuit coatings obtained from the coating materials prepared with the blending amounts.

【0038】[0038]

【表5】 [Table 5]

【0039】配合するPVB樹脂の重合度が1000〜
1800であり、さらにそのPVB樹脂が60重量%以
上含まれている導電塗料(実施試料18〜21)では、
得られる印刷導電被膜のシート抵抗値は30Ω/□以下
であり、電気抵抗値の変化率も±10%以内にある。し
かし、重合度1000のPVB樹脂50重量%と重合度
800のPVB樹脂50重量%を含む導電塗料(比較試
料10)ならびに重合度が800のPVB樹脂のみを含
む導電塗料(比較試料11)では、シート抵抗値は53
Ω/□および97Ω/□と高く、電気抵抗値の変化率も
比較試料10では85%と大きい。これは、重合度の低
い樹脂では活性点が多くなるために導電粒子を過剰に被
覆して、得られる被膜の電気導電性を損ねること、およ
び重合度の低い熱可塑性の樹脂は耐熱性が劣るために、
ハンダ槽に浸漬するなどの高温環境下にすると、電気抵
抗値の変化が起こり易くなることによるものである。一
方、重合度が2100のPVB樹脂のみを含む導電塗料
(比較試料12)では、導電粒子である炭素質粉末、特
に黒鉛粒子の分散性が劣るためにシート抵抗値が大きく
なる。
The degree of polymerization of the PVB resin to be blended is from 1000 to
1800, and the conductive paint containing the PVB resin in an amount of 60% by weight or more (Examples 18 to 21),
The sheet resistance value of the obtained printed conductive coating is 30 Ω / □ or less, and the rate of change in electric resistance value is also within ± 10%. However, in the conductive paint containing 50% by weight of PVB resin having a degree of polymerization of 1000 and 50% by weight of PVB resin having a degree of polymerization of 800 (Comparative sample 10) and the conductive paint containing only PVB resin having a degree of polymerization of 800 (Comparative sample 11), Sheet resistance is 53
Ω / □ and 97Ω / □, which are high, and the rate of change in electric resistance value is also as large as 85% in Comparative Sample 10. This is because a resin having a low degree of polymerization has many active sites, so that the conductive particles are excessively coated and the electric conductivity of the obtained coating is impaired, and a thermoplastic resin having a low degree of polymerization has poor heat resistance. for,
This is because the electric resistance value is likely to change in a high temperature environment such as immersion in a solder bath. On the other hand, in the conductive paint containing only PVB resin having a degree of polymerization of 2100 (Comparative Sample 12), the dispersibility of the carbonaceous powder as the conductive particles, particularly the graphite particles, is poor, and the sheet resistance value becomes large.

【0040】〈実施例6〉(実施試料22〜25、比較
試料13〜14) −レゾール型フェノール樹脂の不揮発分中の遊離フェノ
ールの量について− 黒鉛は平均粒子径が16μmの天然のリン状のものを用
い、その他の材料については実施例1と同様にして、1
80℃での不揮発分中の遊離フェノール量が異なるレゾ
ール型フェノール樹脂を用いて塗料を作製し、これを用
いて試料を作製した。検討した遊離フェノール量および
それぞれの作製した塗料から得た印刷導電回路被膜の特
性評価結果を表6に示す。
Example 6 (Examples 22 to 25, Comparative Samples 13 to 14) -Amount of Free Phenol in Nonvolatile Content of Resol-Type Phenolic Resin-Graphite is a natural phosphorus-like compound having an average particle size of 16 μm. The same materials as in Example 1 were used for other materials.
A coating material was prepared using resol-type phenol resins having different amounts of free phenol in the non-volatile matter at 80 ° C., and this was used to prepare a sample. Table 6 shows the amount of free phenol examined and the evaluation results of the characteristics of the printed conductive circuit coatings obtained from the respective prepared coatings.

【0041】[0041]

【表6】 [Table 6]

【0042】フェノール樹脂に対する、180℃での不
揮発分中の遊離フェノールの量は、精製を行っても2%
程度は残存する。この遊離フェノールの量が10重量%
までの導電塗料(実施試料22〜25)では、電気抵抗
値の変化率を±10%以内に抑制することができる。し
かしながら、遊離フェノールの量が10重量%を越える
導電塗料(比較試料13、14)では、電気抵抗値の変
化率が増大する。これは150℃で熱硬化させた印刷導
電回路の被膜中に残存する遊離フェノールが多いため
に、ハンダ槽に試料を浸漬させる場合などの高温環境下
において、被膜から遊離フェノールが揮発し、印刷導電
回路の被膜にクラックを生じさせ、導電粒子の導電接触
を断つことによるものである。
The amount of free phenol in the nonvolatile matter at 180 ° C. with respect to the phenol resin was 2% even after purification.
The degree remains. The amount of this free phenol is 10% by weight
The conductive paints up to (Examples 22 to 25) can suppress the rate of change of the electric resistance value within ± 10%. However, in the conductive paints in which the amount of free phenol exceeds 10% by weight (Comparative Samples 13 and 14), the rate of change in electric resistance value increases. This is because a large amount of free phenol remains in the coating of the printed conductive circuit that is heat-cured at 150 ° C, so the free phenol volatilizes from the coating in a high temperature environment such as when a sample is immersed in a solder bath, and the printed conductive This is because cracks are generated in the film of the circuit and the conductive contact of the conductive particles is broken.

【0043】[0043]

【発明の効果】天然のリン状もしくはリン片状の平均粒
子径10〜30μmの黒鉛12〜18重量%およびカー
ボンブラックを12〜18重量%からなる炭素質粉末3
0重量%、180℃における不揮発分中の遊離フェノー
ル量がレゾール型フェノール樹脂に対して10重量%以
下のレゾール型フェノール樹脂25〜30重量%、重合
度が1000〜1800のものが60重量%以上存在す
るポリビニルブチラール樹脂0.6〜1.8重量%、有機
チタン化合物からなるチタネート系カップリング剤0.
7〜2.5重量%、ならびにブチルセロソルブ、ブチル
カルビトールおよびブチルカルビトールアセテートから
選択される単一または混合物の有機溶媒からなる塗料溶
媒を残量として含有する原料を、十分に混合および混練
して得た熱硬化型のカーボン系導電塗料を、スクリーン
印刷法によりプリント回路基板に印刷し、150℃の温
度で少なくとも10分間の熱硬化処理を施すことによ
り、プリント回路基板に対する十分な密着性を有する印
刷導電回路の被膜が形成される。さらに、この印刷導電
回路被膜の電気伝導性を表すシート抵抗値は15〜30
Ω/□と低い値であり、ハンダ槽に浸漬するなどの印刷
導電回路被膜を形成する際の温度よりも高温の環境下に
おいても、電気抵抗値の変化率が±10%以下という極
めて安定した電気特性を有する印刷導電回路が得られ
る。このため、回路設計に対する変動の少ないカーボン
被膜付きのプリント回路基板を得ることが可能である。
EFFECTS OF THE INVENTION Carbonaceous powder 3 comprising 12 to 18% by weight of natural phosphorous or scaly graphite having an average particle size of 10 to 30 μm and 12 to 18% by weight of carbon black.
25 wt% to 30 wt% of resol type phenolic resin whose amount of free phenol in the non-volatile matter at 0 ° C. and 180 ° C. is 10 wt% or less with respect to resol type phenolic resin, and whose polymerization degree is 1000 to 1800 is 60 wt% or more. 0.6 to 1.8% by weight of polyvinyl butyral resin present and a titanate coupling agent comprising an organic titanium compound.
A raw material containing 7 to 2.5% by weight and a coating solvent consisting of a single or a mixture of organic solvents selected from butyl cellosolve, butyl carbitol and butyl carbitol acetate as the balance is thoroughly mixed and kneaded. The obtained thermosetting carbon-based conductive paint is printed on a printed circuit board by a screen printing method, and is subjected to a thermosetting treatment at a temperature of 150 ° C. for at least 10 minutes to have sufficient adhesion to the printed circuit board. A coating of printed conductive circuitry is formed. Further, the sheet resistance value showing the electrical conductivity of this printed conductive circuit coating is 15 to 30.
It has a low value of Ω / □ and is extremely stable with a change rate of electrical resistance of ± 10% or less even in an environment at a temperature higher than the temperature when forming a printed conductive circuit film such as dipping in a solder bath. A printed conductive circuit having electrical properties is obtained. For this reason, it is possible to obtain a printed circuit board with a carbon coating that has little variation in circuit design.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レゾール型フェノール樹脂、ポリビニル
ブチラール、および有機チタン化合物からなるチタネー
ト系カップリング剤を塗料溶媒に溶解させた溶液中に、
黒鉛とカーボンブラックの炭素質粉末を導電粒子として
分散させた熱硬化型カーボン系導電塗料において、
(a)前記黒鉛12〜18重量%およびカーボンブラッ
ク12〜18重量%からなる炭素質粉末30重量%、前
記レゾール型フェノール樹脂25〜30重量%、前記ポ
リビニルブチラール樹脂0.6〜1.8重量%、前記有機
チタン化合物からなるチタネート系カップリング剤0.
7〜2.5重量%、ならびにブチルセロソルブ、ブチル
カルビトールおよびブチルカルビトールアセテートから
選択される単一または混合物の有機溶剤からなる塗料溶
媒を残量として含有し、(b)前記レゾール型フェノー
ル樹脂の180℃における不揮発分中の遊離フェノール
の量がレゾール型フェノール樹脂に対して3〜10重量
%であり、(c)前記炭素質粉末の黒鉛は、天然のリン
状もしくはリン片状の黒鉛粒子であって、その平均粒子
径は10〜30μmであり、(d)前記ポリビニルブチ
ラール樹脂は、重合度1000〜1800の範囲のもの
を60重量%以上含有している、ことを特徴とする熱硬
化型カーボン系導電塗料。
1. A solution in which a titanate coupling agent comprising a resol type phenol resin, polyvinyl butyral, and an organic titanium compound is dissolved in a coating solvent,
In a thermosetting carbon-based conductive coating in which carbonaceous powder of graphite and carbon black is dispersed as conductive particles,
(A) 30% by weight of carbonaceous powder consisting of 12 to 18% by weight of the graphite and 12 to 18% by weight of carbon black, 25 to 30% by weight of the resol type phenol resin, 0.6 to 1.8% by weight of the polyvinyl butyral resin. %, A titanate-based coupling agent consisting of the above-mentioned organic titanium compound.
7-2.5% by weight and a residual amount of a coating solvent consisting of a single or a mixture of organic solvents selected from butyl cellosolve, butyl carbitol and butyl carbitol acetate, and (b) containing the resol type phenolic resin. The amount of free phenol in the non-volatile matter at 180 ° C. is 3 to 10% by weight with respect to the resol type phenol resin, and (c) the carbonaceous powder graphite is a natural phosphorus-like or scaly graphite particle. And an average particle diameter of 10 to 30 μm, and (d) the polyvinyl butyral resin contains 60% by weight or more of a polyvinyl butyral resin having a degree of polymerization of 1000 to 1800. Carbon conductive paint.
JP09350896A 1996-03-21 1996-03-21 Thermosetting carbon-based conductive paint Expired - Fee Related JP3400236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09350896A JP3400236B2 (en) 1996-03-21 1996-03-21 Thermosetting carbon-based conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09350896A JP3400236B2 (en) 1996-03-21 1996-03-21 Thermosetting carbon-based conductive paint

Publications (2)

Publication Number Publication Date
JPH09255900A true JPH09255900A (en) 1997-09-30
JP3400236B2 JP3400236B2 (en) 2003-04-28

Family

ID=14084297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09350896A Expired - Fee Related JP3400236B2 (en) 1996-03-21 1996-03-21 Thermosetting carbon-based conductive paint

Country Status (1)

Country Link
JP (1) JP3400236B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196087A (en) * 2009-02-23 2010-09-09 Fukuda Metal Foil & Powder Co Ltd Dispersion ink of ultrafine particle of metal and method for producing the same
US20110151108A1 (en) * 2009-12-18 2011-06-23 Faber-Castell Ag Lead for painting and method of painting with a lead
RU2472825C1 (en) * 2011-11-09 2013-01-20 Открытое акционерное общество "Инженерно-маркетинговый центр Концерна "Вега" Electroconductive paint for radar-absorbent filler
CN109705678A (en) * 2018-12-20 2019-05-03 东来涂料技术(上海)股份有限公司 A kind of car repair toning graphite black paint and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436343A (en) * 1977-08-25 1979-03-17 Matsushita Electric Ind Co Ltd Electrically-conductive coating
JPH04198271A (en) * 1990-11-27 1992-07-17 Mitsui Mining Co Ltd Conductive paste composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436343A (en) * 1977-08-25 1979-03-17 Matsushita Electric Ind Co Ltd Electrically-conductive coating
JPH04198271A (en) * 1990-11-27 1992-07-17 Mitsui Mining Co Ltd Conductive paste composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196087A (en) * 2009-02-23 2010-09-09 Fukuda Metal Foil & Powder Co Ltd Dispersion ink of ultrafine particle of metal and method for producing the same
US20110151108A1 (en) * 2009-12-18 2011-06-23 Faber-Castell Ag Lead for painting and method of painting with a lead
US8703231B2 (en) * 2009-12-18 2014-04-22 Faber-Castell Ag Lead for painting and method of painting with a lead
RU2472825C1 (en) * 2011-11-09 2013-01-20 Открытое акционерное общество "Инженерно-маркетинговый центр Концерна "Вега" Electroconductive paint for radar-absorbent filler
CN109705678A (en) * 2018-12-20 2019-05-03 东来涂料技术(上海)股份有限公司 A kind of car repair toning graphite black paint and preparation method thereof

Also Published As

Publication number Publication date
JP3400236B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
JP4363340B2 (en) Conductive silver paste and electromagnetic wave shielding member using the same
JP6094489B2 (en) Solid electrolytic capacitor element and manufacturing method thereof
JP2010044967A (en) Conductive adhesive and led substrate using it
WO2007026812A1 (en) Conductive paste and wiring board using same
JP2619289B2 (en) Copper conductive composition
KR101398706B1 (en) Conductive paste
JP2013199648A (en) Polymer thick film solder alloy/metal conductor compositions
JP2013149618A (en) Polymer thick film solder alloy conductor composition
JP3955805B2 (en) Conductive paste composition
US5618470A (en) Electrically conductive paste
JP3299083B2 (en) Method for producing carbon-based conductive paste
JPH09255900A (en) Thermosetting type carbon-based electroconductive coating material
JPS6131454A (en) Electrically-conductive copper paste composition
US8562808B2 (en) Polymer thick film silver electrode composition for use as a plating link
KR100750331B1 (en) Thermosetting carbon resistance paste composition
JP6197504B2 (en) Conductive paste and substrate with conductive film
JPH1166956A (en) Conductive paste
JP3547083B2 (en) Thermosetting conductive paste
JP2628734B2 (en) Conductive paste
JP4189792B2 (en) Conductive composition
JPH0619075B2 (en) Conductive paint that can be soldered
TWI698474B (en) Conductive composition
JPH0415270A (en) Electrically conductive paste
JPH0240269B2 (en)
JPH02185575A (en) Conductive resin composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees