JPS6356643B2 - - Google Patents

Info

Publication number
JPS6356643B2
JPS6356643B2 JP18461881A JP18461881A JPS6356643B2 JP S6356643 B2 JPS6356643 B2 JP S6356643B2 JP 18461881 A JP18461881 A JP 18461881A JP 18461881 A JP18461881 A JP 18461881A JP S6356643 B2 JPS6356643 B2 JP S6356643B2
Authority
JP
Japan
Prior art keywords
powder
conductive
paint
migration
alloy powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18461881A
Other languages
Japanese (ja)
Other versions
JPS5887704A (en
Inventor
Yasuhiro Ogawa
Sankichi Shinoda
Akyoshi Takeshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18461881A priority Critical patent/JPS5887704A/en
Publication of JPS5887704A publication Critical patent/JPS5887704A/en
Publication of JPS6356643B2 publication Critical patent/JPS6356643B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Adjustable Resistors (AREA)
  • Conductive Materials (AREA)
  • Paints Or Removers (AREA)
  • Details Of Resistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は導電性ペイントに関し、安価で導電性
にすぐれ、しかもマイグレーシヨンを起こさない
導電性ペイントの提供を目的とするものである。 従来、この種の導電性ペイントには、導電粉と
してAu、Ag、Pdなどの貴金属粉が用いられてき
た。一般的には導電粉にAgを用い、これをフエ
ノール樹脂、エポキシ樹脂などの熱硬化型樹脂と
共に、エチルカルビトールなどのような溶剤に混
練したAgペイントが用いられ、この導電性ペイ
ントをフエノール樹脂などの基板にスクリーン印
刷等の方法で塗布した後に加熱硬化し、可変抵抗
器などの電極、あるいは電子回路用の印刷配線導
電体として使用されている。 しかし、近年、電子機器の小型化、薄型化に伴
ない、電子部品の小型化が強く要望される傾向に
あり、このような状況下において、Agペイント
の使用は、Agペイント硬化膜中のAgが大気中の
湿気と直流電界との相互作用によつてAgペイン
ト電極相互間を移行する現象、いわゆるマイグレ
ーシヨンを起こし、その結果、回路の短絡を起こ
し、しばしばトラブルの大きな要因となつてい
る。 このようなAgペイントの欠点を補うために、
Ag−Pd粉を用いた導電性ペイントが市販されて
いるがまだ完全とはいえない。さらに、Ag−Pd
粉を用いた導電性ペイントは、Pdの価格がAgの
価格に較べて極めて高く、さらに貴金属類、特に
Agの価格高騰が激しい近年の状勢では、経済性
の点で極めて不利である。 以上のような理由から、マイグレーシヨンを起
こさない安価な導電性ペイントの出現が望まれて
いる。 本発明者らは、卑金属を主成分とする合金粉を
調査検討した結果、Cu−Ni合金粉を導電粉とし
た導電性ペイントがマイグレーシヨンを起こさ
ず、しかも、導電性、耐食性をかなりのレベルで
満足することを見い出した。 以下、本発明の導電性ペイントについて詳述す
る。 本発明に係る導電性ペイントは、その導電粉が
Ni5〜50重量%、残部Cuという組成のCu−Ni合
金粉であることを特徴とするものである。推察す
るに、この種の樹脂硬化型の導電性ペイントの導
電粉において望まれる条件は、 a 導電性があること、 b 加熱硬化時における耐熱酸化性があること、 c はんだ付けが可能であること、 があげられる。 合金粉の一成分であるCuは、導電性の優れた
金属であるが、耐食性、耐熱酸化性は良いとは言
えない。したがつて、粉体の表面に多量の酸化ス
ケールが発生し、十分な導電性が得られない。一
方合金粉の他の一成分であるNiは、表面に薄い
不働態酸化皮膜が生成し、これが酸化スケールの
生成を防止するために耐熱酸化性にすぐれている
が、導電性において難点がある。このようなCu、
Niの弱点は、合金化することによつて大幅に改
良される。合金化が何故にこのような改良をもた
らすかは明確ではないが、Niによる不働態酸化
皮膜が合金粉の酸化進行を防ぐとともに、Cuの
酸化物の半導体としての性質が合金粉の導電性を
保つているものと推測される。また、一般的に、
Cu、Niはマイグレーシヨンを起こさないと言わ
れている。 上述の合金化による効果を見い出し得る合金組
成は、Ni5〜50重量%、残部Cuである。Ni量の
下限は合金粉の耐熱酸化性から、また上限は合金
粉の導電性からそれぞれ制約される量である。 本発明に従えば、Cu−Ni合金を熱硬化剤の樹
脂および溶剤と共に混練して導体性ペイントとな
す。この導電性ペイントは、通常のAgペイント
と同様にフエノール樹脂等の基板にスクリーン印
刷等の方法で塗布した後、加熱硬化して、電極、
導電路として利用される。合金粉体の粒径は0.05
〜10μの範囲、好ましくは0.5〜5μ程度が良い。
10μ以上になると、スクリーン印刷時の印刷性が
悪化し、最終加熱硬化後の面抵抗が大きくなる。 次に、本発明をより具体化するために実施例に
ついて詳述する。 本発明において使用するCu−Ni合金粉体は次
のようにして作製した。本発明に従う組成に合わ
せてCu、Niの各素材を秤量し、全量を1Kgとし
た。これを窒素ガス中で溶解し、さらに、溶湯噴
霧法によつて粉体化した。噴霧媒としては窒素ガ
スを利用し、水中投入冷却した。得られた粉体の
粒径は5〜100μ程度のものであるが、これを機
械式粉砕機にて再度粉体化し、平均粒径約2μと
した。 上記の方法によつて得られた合金粉体2gを、
エポキシ系樹脂1g、エチルカルビトール0.2g
と共にフーバーマーラを用いて混練した。フーバ
ーマーラによる混練は、荷重100ポンド、40回転
を4回繰り返して行なつた。 上記作製したペイントをスクリーン印刷法を用
いてフエノール樹脂基板上に所定の形状に印刷し
た後、大気中190℃10分間の条件で加熱硬化した。 上記印刷パターンの両端間の抵抗値を測定した
結果を次表に示す。なお、表には、市販のCu粉、
Ni粉、Ag粉を導電粉とした場合の結果を併せて
示す。
The present invention relates to conductive paint, and an object of the present invention is to provide a conductive paint that is inexpensive, has excellent conductivity, and does not cause migration. Conventionally, this type of conductive paint has used noble metal powders such as Au, Ag, and Pd as conductive powder. Generally, Ag paint is used by using Ag as a conductive powder and mixing it with a thermosetting resin such as phenol resin or epoxy resin in a solvent such as ethyl carbitol. It is applied to substrates such as by screen printing and then cured by heating, and is used as electrodes for variable resistors and printed wiring conductors for electronic circuits. However, in recent years, as electronic devices have become smaller and thinner, there has been a strong demand for smaller electronic components. The interaction between atmospheric moisture and the DC electric field causes a phenomenon in which Ag paint migrates between electrodes, so-called migration, which causes short circuits and is often a major cause of trouble. In order to compensate for such shortcomings of Ag paint,
Conductive paints using Ag-Pd powder are commercially available, but they are not yet perfect. Furthermore, Ag−Pd
The price of Pd is extremely high compared to the price of Ag, and the price of conductive paint using powder is extremely high compared to the price of Ag.
In recent years, where the price of Ag has skyrocketed, this is extremely disadvantageous from an economic point of view. For the reasons mentioned above, there is a desire for an inexpensive conductive paint that does not cause migration. As a result of research and study on alloy powders whose main components are base metals, the present inventors found that conductive paints using Cu-Ni alloy powder as conductive powder do not cause migration and have a considerable level of conductivity and corrosion resistance. I found it satisfying. The conductive paint of the present invention will be explained in detail below. In the conductive paint according to the present invention, the conductive powder is
It is characterized by being a Cu-Ni alloy powder with a composition of 5 to 50% by weight Ni and the balance Cu. Presumably, the desired conditions for the conductive powder of this type of resin-curing conductive paint are: a) conductivity, b) thermal oxidation resistance during heat curing, and c) solderability. , can be mentioned. Cu, which is a component of alloy powder, is a metal with excellent electrical conductivity, but it cannot be said to have good corrosion resistance or thermal oxidation resistance. Therefore, a large amount of oxide scale is generated on the surface of the powder, and sufficient conductivity cannot be obtained. On the other hand, Ni, which is another component of the alloy powder, has a thin passive oxide film formed on its surface, which prevents the formation of oxide scale and has excellent thermal oxidation resistance, but has a drawback in terms of electrical conductivity. Such Cu,
The weaknesses of Ni can be greatly improved by alloying it. It is not clear why alloying brings about such an improvement, but the passive oxide film formed by Ni prevents the progress of oxidation of the alloy powder, and the semiconductor properties of the Cu oxide improve the conductivity of the alloy powder. It is assumed that it is maintained. Also, in general,
It is said that Cu and Ni do not cause migration. The alloy composition in which the effect of the above-mentioned alloying can be found is 5 to 50% by weight of Ni, and the balance is Cu. The lower limit of the amount of Ni is limited by the thermal oxidation resistance of the alloy powder, and the upper limit is limited by the electrical conductivity of the alloy powder. According to the present invention, a Cu--Ni alloy is kneaded with a thermosetting resin and a solvent to form a conductive paint. This conductive paint is applied to a substrate such as phenolic resin by a method such as screen printing in the same way as ordinary Ag paint, and then heated and cured to form electrodes and
Used as a conductive path. The particle size of alloy powder is 0.05
~10μ, preferably about 0.5~5μ.
If it exceeds 10μ, the printability during screen printing will deteriorate and the surface resistance after final heat curing will increase. Next, examples will be described in detail in order to make the present invention more concrete. The Cu-Ni alloy powder used in the present invention was produced as follows. Each material of Cu and Ni was weighed according to the composition according to the present invention, and the total amount was 1 kg. This was dissolved in nitrogen gas and further pulverized by a molten metal spray method. Nitrogen gas was used as the spray medium and cooled by cooling it in water. The particle size of the obtained powder was approximately 5 to 100 μm, but this was again pulverized using a mechanical pulverizer to give an average particle size of approximately 2 μm. 2 g of alloy powder obtained by the above method,
Epoxy resin 1g, ethyl carbitol 0.2g
The mixture was kneaded using a Hubermala. Kneading with a Hubermala was carried out with a load of 100 pounds and 40 rotations repeated four times. The paint prepared above was printed in a predetermined shape on a phenolic resin substrate using a screen printing method, and then cured by heating at 190° C. for 10 minutes in the air. The results of measuring the resistance values between both ends of the above printed pattern are shown in the following table. In addition, the table shows commercially available Cu powder,
The results are also shown when Ni powder and Ag powder are used as conductive powders.

【表】 次に、マイグレーシヨンの試験として、上記作
製したペイントを用い、同様の方法で間隙0.5mm
のパターンを印刷し、加熱硬化させた後、間隙部
に純水を0.2ml滴下した状態で、間隙間に直流3V
の電圧を印加し、間隙間に流れる電流を測定した
ところ、電圧印加後2時間経過後の電流値は、い
ずれも20μA程度であつた。前述と同様の方法で
作製したAgペイントについて同様のマイグレー
シヨンの試験を行なつたところ、電圧印加後1分
経過時点において間隙部でAgの移行が観察され
短絡を起こした。したがつて、従来のAgペイン
トに比べると、本発明の導電性ペイントは事実上
マイグレーシヨンを起こさないと言える。 上記した説明から明らかなように、本発明に係
る導電性ペイントは、Ag粉を利用した従来のペ
イントに比較して劣る面があるものの、導電性の
面からは十分実用に供し得る特性を示すものであ
り、特に、マイグレーシヨンが起こらないこと
と、経済的には、従来のAgペイントに比較して
極めて安価に作製し得ることから、その工業的価
値は大なるものがある。
[Table] Next, as a migration test, using the paint prepared above, the gap was 0.5 mm using the same method.
After printing the pattern and curing it by heating, apply 3V DC to the gap while dropping 0.2ml of pure water into the gap.
When voltage was applied and the current flowing through the gap was measured, the current value 2 hours after voltage application was approximately 20 μA in each case. When similar migration tests were conducted on Ag paint prepared in the same manner as described above, migration of Ag was observed in the gap portions one minute after voltage application, causing a short circuit. Therefore, compared to conventional Ag paints, it can be said that the conductive paints of the present invention virtually do not undergo migration. As is clear from the above description, although the conductive paint according to the present invention is inferior to conventional paints using Ag powder, it exhibits sufficient characteristics in terms of conductivity to be of practical use. It has great industrial value, especially because migration does not occur and economically it can be produced at a much lower cost than conventional Ag paints.

Claims (1)

【特許請求の範囲】[Claims] 1 導電粉、樹脂および溶剤を含み、前記導電粉
がNi5〜50重量%、残部Cuの組成の合金粉である
ことを特徴とする導電性ペイント。
1. A conductive paint comprising a conductive powder, a resin, and a solvent, the conductive powder being an alloy powder having a composition of 5 to 50% by weight Ni and the balance being Cu.
JP18461881A 1981-11-17 1981-11-17 Conductive paint Granted JPS5887704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18461881A JPS5887704A (en) 1981-11-17 1981-11-17 Conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18461881A JPS5887704A (en) 1981-11-17 1981-11-17 Conductive paint

Publications (2)

Publication Number Publication Date
JPS5887704A JPS5887704A (en) 1983-05-25
JPS6356643B2 true JPS6356643B2 (en) 1988-11-09

Family

ID=16156375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18461881A Granted JPS5887704A (en) 1981-11-17 1981-11-17 Conductive paint

Country Status (1)

Country Link
JP (1) JPS5887704A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253869A (en) * 1988-08-18 1990-02-22 Asahi Chem Ind Co Ltd Electron beam curing type electrically conductive coating

Also Published As

Publication number Publication date
JPS5887704A (en) 1983-05-25

Similar Documents

Publication Publication Date Title
CN105873248B (en) A kind of heating film low-temperature sintering slurry and preparation method thereof
JP4855077B2 (en) Conductive paste composition for low-temperature firing and method of forming wiring pattern using the paste composition
JPS6016041B2 (en) Paste for forming thick film conductors
KR20050006056A (en) Conductive powder and method for preparing the same
US4388347A (en) Conductive pigment-coated surfaces
US4485153A (en) Conductive pigment-coated surfaces
JP2013199648A (en) Polymer thick film solder alloy/metal conductor compositions
JP3879749B2 (en) Conductive powder and method for producing the same
JP2742190B2 (en) Curable conductive composition
US4567111A (en) Conductive pigment-coated surfaces
US6838021B2 (en) Irregular shaped copper particles and methods of use
JPS6356643B2 (en)
JPH0137429B2 (en)
JP2000319622A (en) Electrically conductive adhesive and circuit board using this as material for connecting components
JPS61185806A (en) Conductive resin paste
JPH0137430B2 (en)
JPS58165397A (en) Conductive paste
JPS6326791B2 (en)
JPS6253035B2 (en)
JPS58104970A (en) Electrically conductive paint
JPS58103565A (en) Electrically conductive paint
US5518521A (en) Process of producing a low TCR surge resistor using a nickel chromium alloy
JPS6058268B2 (en) Conductive copper paste composition
JPS6253033B2 (en)
JPS6253034B2 (en)