【発明の詳細な説明】[Detailed description of the invention]
本発明は導電性ペイントに関し、安価で導電
性、耐食性にすぐれ、しかも耐マイグレーシヨン
性にすぐれた導電性ペイントの提供を目的とする
ものである。
従来、この種の導電性ペイントには、導電粉と
して、Au、Ag、Pdなどの貴金属粉が用いられて
きた。
一般的には導電粉にAgを用い、フエノール樹
脂、エポキシ樹脂、キシレン樹脂などの熱硬化型
樹脂と、エチルカルビトールのような溶剤と共に
混練したAgペイントを、フエノール樹脂基板な
どにスクリーン印刷等の方法で塗布した後、加熱
硬化し、可変抵抗器などの電極、あるいは電子回
路用の印刷配線導体として使用されてきた。
しかし、近年、電子機器の小型化、薄型化に伴
ない、電子部品の小型化が強く要望される傾向に
あり、このような状況下では、Agペイントの使
用が、Agペイント硬化膜中のAgが大気中の湿気
と直流電界との相互作用により、Agペイント電
極相互間を移行する現象、いわゆるマイグレーシ
ヨンを起こし、その結果、回路の短絡を起こし、
しばしばトラブルの大きな要因となつている。
このようなAgペイントの欠点を補うために、
Ag−Pd粉を用いた導電性ペイントが市販されて
いるが、まだ完全とはいえない。さらに、Ag−
Pd粉を用いた導電性ペイントは、Pdの価格がAg
の価格に較べて極めて高く、さらに、貴金属類、
特にAgの価格高騰が激しい近年の情勢では、経
済性の点で極めて不利である。
以上のような理由から、耐マイグレーシヨン性
の良い安価な導電性ペイントの出現が望まれてい
る。
このような状況において、発明者らは先に、卑
金属を主成分とする合金粉を調査検討した結果、
Ag−Si−Cu合金粉を導電粉とした導電性ペイン
トが、耐マイグレーシヨン性にすぐれ、しかも、
導電性をかなりのレベルで満足することを見い出
した。しかしながら、過度の腐食環境においた場
合、上記の合金粉を用いた導電性ペイント硬化膜
の耐食性は必ずしも満足できるものではない。
本発明はこのような点に鑑みて成されたもので
あり、発明者らは、上記の合金粉にさらにPbを
合金元素として添加した合金粉、すなわち、Ag
−Si−Pb−Cu合金粉を用いることによつて、耐
食性が大幅に改善されることを見い出した。
以下、本発明の導電性ペイントについて詳述す
る。
本発明にかかる導電性ペイントは、その導電粉
が、少なくともAg10〜70重量%、Si0.1〜4重量
%、Pb1〜10重量%を含み、残部がCuの組成より
なる合金粉であることを特徴とする導電性ペイン
トである。
Ag−Si−Cu合金粉を用いた導電性ペイント
は、耐マイグレーシヨン性にすぐれているもの
の、耐食性の面で難点があつた。これらの合金粉
に対して、さらにPbを添加元素として合金化し
たAg−Si−Pb−Cu合金粉を用いた導電性ペイン
トが何故耐食性を改善するのかは不明であるが、
Pb自身の耐環境性による耐食性の効果を呈して
いるものと考えられる。しかしながら、Pbの添
加量が適量を越えると、合金粉自体の導電性が降
下するため、導電性ペイントとしての望ましい導
電性は得られない。
Ag−Si−Pb−Cu合金粉が、導電性ペイントの
導電粉として良好な特性を発揮する合金組成は、
Ag10〜70重量%、Si0.1〜4重量%、Pb1〜10重
量%、残部Cuという組成である。Ag量の下限
は、それぞれの合金粉の耐熱酸化性から、上限
は、経済性からそれぞれ制約される量である。ま
た、Si量の下限は、その添加効果を見い出し得る
最少量、上限は、合金粉の導電性の面から、ある
いは、合金作製上から制約される量である。Pb
量の下限は、その添加効果を見い出し得る最少
量、上限は、合金粉の導電性の面から制約される
量である。
本発明に従えば、Ag−Si−Pb−Cu合金粉を、
熱硬化型の樹脂と溶剤と共に混練して導電性ペイ
ントとなす。この導電性ペイントは、通常のAg
ペイントと同様に、フエノール樹脂基板等にスク
リーン印刷等の方法で塗布した後、大気中で加熱
硬化して、電極、導電路として利用される。合金
粉の粒径は0.05〜10μの範囲、好ましくは、0.5〜
5μ程度が良い。10μ以上になると、スクリーン印
刷時の印刷性が悪化し、最終加熱硬化後の面抵抗
が大きくなる。
次に、本発明をより具体化するために、実施例
について詳述する。
本発明に従うAg−Si−Pb−Cu合金粉は、次の
ように作製した。本発明に従う合金組成に合わせ
て、Ag、Si、Pb、Cuの各素材を秤量し、全量を
1Kgとした(SiはCu−Si母合金により添加し
た)。これを窒素ガス中で溶解し、さらに、溶湯
噴霧法によつて粉体化した。噴霧媒として窒素ガ
スを利用し、水中投入冷却した。得られた合金粉
の粒径は5〜100μ程度のものであるが、これを
機械式粉砕機にて再度粉体化し、平均粒径約2μ
とした。
以上の方法によつて得られた合金粉2gを、キ
シレン樹脂1g、エチルカルビトール0.2gと共
に、フーバーマーラを用いて混練した。フーバー
マーラによる混練は、荷重100ポンド、40回転を
4回繰り返して行なつた。
上記作製した導電性ペイントをスクリーン印刷
法を用いてフエノール樹脂基板上に所定の形状に
印刷後、大気中190℃10分間の条件で加熱硬化し
た。
上記印刷パターンの両端間の抵抗値を測定した
結果と、さらに40℃95%RHの恒温恒湿槽に120
時間放置した後で測定した結果を次表に示す。表
には参考として、市販のAg粉、Cu粉およびAg−
Si−Cu合金粉を導電粉とした場合の結果を併せ
て示す。
The present invention relates to a conductive paint, and an object of the present invention is to provide a conductive paint that is inexpensive, has excellent conductivity, corrosion resistance, and migration resistance. Conventionally, noble metal powders such as Au, Ag, and Pd have been used as conductive powders in this type of conductive paint. Generally, Ag is used as a conductive powder, and Ag paint is mixed with a thermosetting resin such as phenol resin, epoxy resin, or xylene resin, and a solvent such as ethyl carbitol, and is applied to a phenolic resin substrate by screen printing, etc. After being applied by a method, it is cured by heating and used as electrodes for variable resistors, etc., or printed wiring conductors for electronic circuits. However, in recent years, as electronic devices have become smaller and thinner, there has been a strong demand for smaller electronic components. The interaction between atmospheric moisture and the DC electric field causes a phenomenon in which Ag paint migrates between electrodes, so-called migration, resulting in a short circuit.
It is often a major cause of trouble. In order to compensate for such shortcomings of Ag paint,
Conductive paints using Ag-Pd powder are commercially available, but they are not yet perfect. Furthermore, Ag−
Conductive paint using Pd powder has the price of Pd as low as Ag.
It is extremely expensive compared to the price of precious metals,
Especially in the recent situation where the price of Ag has skyrocketed, this is extremely disadvantageous from an economic point of view. For the reasons mentioned above, there is a desire for an inexpensive conductive paint with good migration resistance. Under these circumstances, the inventors first investigated and considered alloy powders whose main components are base metals, and found that
Conductive paint made of Ag-Si-Cu alloy powder has excellent migration resistance, and
It has been found that the conductivity is satisfied at a considerable level. However, when placed in an excessively corrosive environment, the corrosion resistance of a cured conductive paint film using the above-mentioned alloy powder is not necessarily satisfactory. The present invention has been made in view of these points, and the inventors have developed an alloy powder in which Pb is further added as an alloying element to the above-mentioned alloy powder, that is, Ag
It has been found that corrosion resistance is significantly improved by using -Si-Pb-Cu alloy powder. The conductive paint of the present invention will be explained in detail below. In the conductive paint according to the present invention, the conductive powder is an alloy powder containing at least 10 to 70% by weight of Ag, 0.1 to 4% by weight of Si, 1 to 10% by weight of Pb, and the balance is Cu. This is a conductive paint with special characteristics. Although conductive paint using Ag-Si-Cu alloy powder has excellent migration resistance, it has a drawback in terms of corrosion resistance. It is unclear why conductive paint using Ag-Si-Pb-Cu alloy powder, which is alloyed with Pb as an additional element, improves the corrosion resistance of these alloy powders.
It is thought that the corrosion resistance effect is due to the environmental resistance of Pb itself. However, if the amount of Pb added exceeds an appropriate amount, the conductivity of the alloy powder itself decreases, making it impossible to obtain the desired conductivity as a conductive paint. The alloy composition of Ag-Si-Pb-Cu alloy powder exhibits good properties as a conductive powder for conductive paint is:
The composition is 10 to 70% by weight of Ag, 0.1 to 4% by weight of Si, 1 to 10% by weight of Pb, and the balance is Cu. The lower limit of the amount of Ag is determined by the thermal oxidation resistance of each alloy powder, and the upper limit is determined by economic efficiency. Further, the lower limit of the amount of Si is the minimum amount at which the effect of its addition can be found, and the upper limit is the amount that is restricted from the viewpoint of the conductivity of the alloy powder or from the viewpoint of alloy production. Pb
The lower limit of the amount is the minimum amount at which the effect of its addition can be found, and the upper limit is the amount limited by the electrical conductivity of the alloy powder. According to the present invention, Ag-Si-Pb-Cu alloy powder is
It is kneaded with a thermosetting resin and a solvent to form a conductive paint. This conductive paint is made of ordinary Ag
Like paint, it is applied to a phenolic resin substrate or the like by a method such as screen printing, then heated and cured in the atmosphere, and used as an electrode or conductive path. The particle size of the alloy powder is in the range of 0.05 to 10μ, preferably 0.5 to 10μ.
About 5μ is good. If it exceeds 10μ, the printability during screen printing will deteriorate and the surface resistance after final heat curing will increase. Next, in order to make the present invention more specific, examples will be described in detail. Ag-Si-Pb-Cu alloy powder according to the present invention was produced as follows. In accordance with the alloy composition according to the present invention, each material of Ag, Si, Pb, and Cu was weighed, and the total amount was 1 kg (Si was added by the Cu-Si master alloy). This was dissolved in nitrogen gas and further pulverized by a molten metal spray method. Nitrogen gas was used as a spray medium, and the mixture was cooled in water. The particle size of the obtained alloy powder is about 5 to 100μ, but this is powdered again using a mechanical crusher, and the average particle size is about 2μ.
And so. 2 g of the alloy powder obtained by the above method was kneaded with 1 g of xylene resin and 0.2 g of ethyl carbitol using a Hubermala. Kneading with a Hubermala was carried out with a load of 100 pounds and 40 rotations repeated four times. The conductive paint prepared above was printed in a predetermined shape on a phenolic resin substrate using a screen printing method, and then cured by heating at 190° C. for 10 minutes in the atmosphere. Based on the results of measuring the resistance value between both ends of the above printed pattern,
The following table shows the results of measurements after being left for a certain period of time. For reference, the table shows commercially available Ag powder, Cu powder, and Ag-
The results when using Si-Cu alloy powder as conductive powder are also shown.
【表】【table】
【表】
また、耐マイグレーシヨン性の試験として、上
記作製したペイントを、フエノール樹脂基板上に
間隙0.5mmのパターンをスクリーン印刷し、加熱
硬化させた後、間隙部に純水0.2mlを滴下した状
態で、間隙間に直流3Vの電圧を印加し、間隙間
に流れる電流を測定したところ、電圧印加後2時
間経過後の電流値は、いずれも10μA程度であつ
た。これに対し、Ag粉を導電粉としたペイント
について同様の試験を行なつたところ、電圧印加
後1分間経過時点で間隙部でAgの移行が観察さ
れ短絡を起こした。したがつて、本発明にかかる
導電性ペイントは、従来のAgペイントに較べて、
耐マイグレーシヨン性は極めてすぐれていると言
える。
上記した説明および表から明らかなように、本
発明にかかる導電性ペイントは、従来のAgペイ
ントに比較して、導電性、耐食性の面で多少劣る
面があるものの、十分実用に供し得る特性を示す
ものであり、特に、耐マイグレーシヨン性にすぐ
れており、経済的には、従来のAgペイントに較
べて極めて安価に作製し得ることから、その工業
的価値は大なるものがある。[Table] In addition, as a migration resistance test, a pattern with a gap of 0.5 mm was screen printed on a phenolic resin substrate using the paint prepared above, and after curing by heating, 0.2 ml of pure water was dropped into the gap. In this state, a voltage of 3 V DC was applied to the gap, and the current flowing through the gap was measured, and the current values after 2 hours of voltage application were about 10 μA in each case. On the other hand, when a similar test was conducted on a paint using conductive Ag powder, migration of Ag was observed in the gap 1 minute after voltage application, causing a short circuit. Therefore, compared to conventional Ag paint, the conductive paint according to the present invention has
It can be said that migration resistance is extremely excellent. As is clear from the above explanation and table, although the conductive paint according to the present invention is somewhat inferior in terms of conductivity and corrosion resistance compared to conventional Ag paint, it has sufficient characteristics for practical use. In particular, it has excellent migration resistance, and economically, it can be produced at a much lower cost than conventional Ag paints, so it has great industrial value.