JPS58103566A - Electrically conductive paint - Google Patents

Electrically conductive paint

Info

Publication number
JPS58103566A
JPS58103566A JP20220981A JP20220981A JPS58103566A JP S58103566 A JPS58103566 A JP S58103566A JP 20220981 A JP20220981 A JP 20220981A JP 20220981 A JP20220981 A JP 20220981A JP S58103566 A JPS58103566 A JP S58103566A
Authority
JP
Japan
Prior art keywords
paint
conductive
electrically conductive
powder
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20220981A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ogawa
泰弘 小川
Sankichi Shinoda
三吉 信太
Akiyoshi Takeshima
竹島 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP20220981A priority Critical patent/JPS58103566A/en
Publication of JPS58103566A publication Critical patent/JPS58103566A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide an electrically conductive paint which consists of Ag-In-Cu type conductive powder, resin and solvent and is low cost and excellent in electrical conductivity and migration characteristics. CONSTITUTION:Powdered alloy with a particle diameter of 0.05-10mu, consisting of 10-70wt% Ag, 1-20wt% In and balance Cu, is dipped in an organic solvent solution of 1,2,3-benzotriazole. Upon separation of the solvent and drying, electrically conductive powder surface coated with a thin film of a chelate compd. is obtained. Then the conductive power, a thermosetting resin (e.g. xylene resin) and a solvent (e.g. ethyl carbitol) are kneaded to produce an electrically conductive paint. The paint is applied to phenolic resin substrate, etc. by screen printing, etc. and is cured in the air under heating to form electrode and conducting path.

Description

【発明の詳細な説明】 本発明は導電性ペイントに関し、安価で導電性にすぐれ
、しかも耐マイグレーション性にすぐれた導電性ペイン
トの一提供を目的とするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a conductive paint, and an object of the present invention is to provide a conductive paint that is inexpensive, has excellent conductivity, and has excellent migration resistance.

従来、この種の導電性ペイントには、導電粉として、A
u、 Ag、 Pd  などの貴金属粉が用いられてき
た。一般的には、導電粉に勾を用い、フェノール樹脂、
エポキシ樹脂、キシレン樹脂などの熱硬化型樹脂と、エ
チルカルピトールのような溶剤と共に混練したAqペイ
ントを、フェノール樹脂基板などにスクリーン印刷等の
方法で塗布した後、加熱硬化し、可変抵抗器などの電極
、あるいは電子回路用の印刷配線導体として使用されて
きた。
Conventionally, this type of conductive paint contains A as a conductive powder.
Noble metal powders such as U, Ag, and Pd have been used. Generally, conductive powder is used to make phenolic resin,
Aq paint, which is made by kneading a thermosetting resin such as epoxy resin or xylene resin with a solvent such as ethyl calpitol, is applied to a phenolic resin substrate by a method such as screen printing, and then heated and cured to produce a variable resistor, etc. It has been used as an electrode for electronic circuits or as a printed wiring conductor for electronic circuits.

しかし、近年、電子機器の小型化や薄型化に伴ない、電
子部品の小型化が強く要望される傾向にあり、このよう
な状況下では、Aqペイント硬化膜中のAqが大気中の
湿気と直流電界と・の相互作用により、Aqペイント電
極相互間を移行する現象、いわゆるマイグレーションを
起こし、その結果、回路の短絡を起こし、しばしばトラ
ブルの大きな要因となっている。
However, in recent years, as electronic devices have become smaller and thinner, there has been a strong demand for smaller electronic components. Due to the interaction with the DC electric field, a phenomenon in which Aq paint moves between electrodes, so-called migration, occurs, resulting in a short circuit, which is often a major cause of trouble.

このようなAqペイントの欠点を補うために、Aq−P
d粉を用いた導電性ペイントが市販されているが、1だ
完全とはいえない。また、Ag−Pd粉を用いた導電性
ペイントは、Pdの価格がAqの価格に較べて極め5ズ
高く、さらに、貴金属類、特にAqの価格高騰が激しい
近年の情勢では、経済件の点で極めて不利である。
In order to compensate for these drawbacks of Aq paint, Aq-P
Conductive paints using D powder are commercially available, but 1 is not perfect. In addition, conductive paint using Ag-Pd powder has an economical point of view, as the price of Pd is extremely high by 50% compared to the price of Aq, and in recent years the price of precious metals, especially Aq, has been rapidly increasing. This is extremely disadvantageous.

以上のような理由から、耐マイグレーション性の良い安
価な導電性ペイントの出現が望まれている。
For the above-mentioned reasons, there is a desire for an inexpensive conductive paint with good migration resistance.

本奪明はこのような点に鑑みて成されたものであり、発
明者らは、卑金属を生成分とする合金粉を調査検討した
結果、Ag −In−Cu合金粉を導電粉とした導電性
ペイントが、耐マイグレーション性にすぐれ、しかも導
電性をかなシのレベルで満足することを見い出した。
The present invention was made in view of these points, and as a result of research and study of alloy powders containing base metals, the inventors discovered a conductive powder made of Ag-In-Cu alloy powder. The inventors have discovered that the adhesive paint has excellent migration resistance and satisfies conductivity at a mediocre level.

次に、本発明の構成を詳述する。Next, the configuration of the present invention will be explained in detail.

本発明にかかる導電性ペイントは、その導電粉が少なく
ともAg 10〜70重量%とIn1〜20重量%を含
有し、残部がCuという組成のAg −I n −Cu
合金粉であることを特徴とする導電性ペイントである。
In the conductive paint according to the present invention, the conductive powder contains at least 10 to 70% by weight of Ag, 1 to 20% by weight of In, and the balance is Cu.
This is a conductive paint characterized by being made of alloy powder.

この種の樹脂硬化型の導電性ペイントの導電粉において
望1れる条件は、 a 導電性があること、 b 加熱硬化時における耐熱酸化性があること、合金粉
の一成分であるCuは、導電性にすぐれた金属であるが
、耐熱酸化性、耐食性は良いとは言えない0したがって
、ペイント硬化処理における加熱によって、しばしばC
u粉の表面に多量の酸化スケールが発生し、ペイント硬
化膜の十分な導電性が得られない。このようなCu粉の
欠点は、合金元素としてAqを添加することにより改善
される。しかしながら、耐マイクレージョン性において
、Cuがマイグレーションを起こしにぐいということか
ら、〜−Cu含CuはAg粉に較べると改善される傾向
にあるが、十分な耐マイグレーション性は得られない。
The desirable conditions for the conductive powder of this type of resin-curing conductive paint are: a) it has conductivity; b) it has thermal oxidation resistance during heat curing; Cu, which is a component of the alloy powder, is conductive. Although it is a metal with excellent properties, its thermal oxidation resistance and corrosion resistance are not good.
A large amount of oxide scale is generated on the surface of the U powder, and the cured paint film cannot have sufficient conductivity. Such defects of Cu powder can be improved by adding Aq as an alloying element. However, in terms of microclision resistance, since Cu is difficult to cause migration, ~-Cu-containing Cu tends to be improved compared to Ag powder, but sufficient migration resistance cannot be obtained.

このよりな〜−Cu含Cuの難点は、さらにInを合金
元素として添加することにより大幅に改良される。合金
化が何故にこのような耐マイクレージョン性の改良をも
たらすかは明確÷はないが、In自身がマイグレーショ
ンを起こしにくいということと、 InがAqに較べて
極めて卑な金属であるということが、Aq−In−Cu
合金粉が導電性ペイントどして使用された場合のすぐれ
た耐マイクレージョン性をひき出しているものと推察さ
れる。また、合金元素としてのInの添加は、〜−Cu
含Cuの耐熱酸化性をも改善する傾向にある。これは、
導電性の面からは、 In酸化物の半導体性質に起因し
ているものと推察される。さらに、 In自身の耐環境
性によってもその添加により、耐食性の効果を呈するも
のと考えられる。しかしながら、Inの添加量が適量を
越えると、合金粉自体の導電性が降下するため、望まし
い特性は得られない。
This disadvantage of the more -Cu-containing Cu alloy can be greatly improved by further adding In as an alloying element. It is not clear why alloying brings about such an improvement in microclision resistance, but two reasons are that In itself is difficult to cause migration and that In is an extremely base metal compared to Aq. However, Aq-In-Cu
It is surmised that this alloy powder provides excellent microcrision resistance when used in conductive paints. In addition, the addition of In as an alloying element
It also tends to improve the thermal oxidation resistance of Cu-containing materials. this is,
From the viewpoint of conductivity, it is presumed that this is due to the semiconductor properties of In oxide. Furthermore, due to the environmental resistance of In itself, it is thought that the addition of In provides corrosion resistance effects. However, if the amount of In added exceeds an appropriate amount, the conductivity of the alloy powder itself decreases, making it impossible to obtain desirable characteristics.

Ag−I n −Cu合金粉が、導電性ペイントの導電
粉として、上述の長所を見い出し得る合金組成は、Aq
1o〜70重量%、In1〜20重量%。
The alloy composition in which Ag-I n -Cu alloy powder can find the above-mentioned advantages as a conductive powder for conductive paint is Aq
1o-70% by weight, In 1-20% by weight.

残部Cuである。Aq量の下限は合金粉の耐熱酸化性か
ら、上限は経済性からそれぞれ制約される量である。ま
た、!n1jkの下限はその添加効果を見い出し得る最
少量、上限は合金粉の導電性の面から制約される量であ
る。
The remainder is Cu. The lower limit of the Aq amount is determined by the heat oxidation resistance of the alloy powder, and the upper limit is determined by economic efficiency. Also,! The lower limit of n1jk is the minimum amount at which the effect of its addition can be found, and the upper limit is the amount limited by the electrical conductivity of the alloy powder.

以上のように、A9二In−Cu合金粉を用いた導電性
ペイントは、導電性、耐マイグレーション性の面で実用
上十分な性能を見い出し得るものである。しかしながら
、一般的にCuおよびCu系合金の耐食性は過度の腐食
環境においては必ずしも良好ではないように本発明にお
ける合金粉においても、そのような雰囲気に放置された
場合、耐食性は必ずしも満足できるものではない。しか
して、このような欠点は合金粉に1.2.3−ヘンシト
リアゾールをアセトンなどの有機溶媒に溶かした溶液に
浸漬した後、溶液を分離して乾燥させるという処理(以
下、ベンゾトリアゾール処理と呼ぶ)により解決される
。推察するに上記のベンゾトリアゾール処理によって合
金粉表面に薄いキレート化合物の皮膜を形成することに
より、防食効果を発揮しているものと思われる。
As described above, the conductive paint using A92In-Cu alloy powder can be found to have practically sufficient performance in terms of conductivity and migration resistance. However, in general, the corrosion resistance of Cu and Cu-based alloys is not necessarily good in an excessively corrosive environment, and the alloy powder of the present invention may not necessarily have satisfactory corrosion resistance when left in such an atmosphere. do not have. However, these drawbacks can be overcome by a process in which alloy powder is immersed in a solution of 1,2,3-hensitriazole dissolved in an organic solvent such as acetone, and then the solution is separated and dried (hereinafter referred to as benzotriazole treatment). ). It is presumed that the benzotriazole treatment described above forms a thin chelate compound film on the surface of the alloy powder, thereby exerting an anticorrosive effect.

本発明に従えば、Ag −I n −Cu合金粉、ある
いはベンゾトリアゾール処理を行なったAg−In7C
u合金粉を熱硬化型の樹脂と溶剤と共に混練して導電性
ペイントとなす。この導電性ペイントは通常のAqペイ
ントと同様にフェノール樹脂基板等にスクリーン印刷等
の方法で塗布した後、大気中で加熱硬化して電極や導電
路として利用される。
According to the present invention, Ag-In-Cu alloy powder or Ag-In7C treated with benzotriazole
A conductive paint is made by kneading U alloy powder with a thermosetting resin and a solvent. This conductive paint is applied to a phenol resin substrate or the like by a method such as screen printing in the same manner as ordinary Aq paint, and then heated and cured in the atmosphere to be used as an electrode or a conductive path.

合金粉の粒径は0 、05〜10μの範囲、好1しくは
、0.5〜6μ程度が良い。10μ以上になるとスクリ
ーン印刷時の印刷性が悪化し、最終加熱硬化後の面抵抗
が大きくなる。
The particle size of the alloy powder is in the range of 0.05 to 10 μm, preferably about 0.5 to 6 μm. When the thickness exceeds 10μ, printability during screen printing deteriorates, and sheet resistance after final heat curing increases.

次に、本発明をより具体化するために実施例について詳
述する。
Next, examples will be described in detail in order to make the present invention more concrete.

本発明に従うAg −I n −Cu合金粉は、次のよ
うにして作製した。本発明に従う合金組成に合わせてA
g、 In、 Cuの容素材を秤量し、全量をI K(
1とした。これを窒素ガス中で溶解し、さらに、溶湯噴
霧法によって粉体化した。噴霧媒として窒素ガスを利用
し水中投入冷却した。得られた合金粉の粒径は6〜1o
Oμ程度のものであるが、これを機械式粉砕機にて再度
粉体化し、平均粒径的2μとした。
Ag-I n -Cu alloy powder according to the present invention was produced as follows. A according to the alloy composition according to the invention
Weigh the container materials of g, In, and Cu, and calculate the total amount by IK(
It was set to 1. This was dissolved in nitrogen gas and further pulverized by a molten metal spray method. Nitrogen gas was used as a spray medium and the mixture was cooled by being put into water. The particle size of the obtained alloy powder is 6~1o
Although the particle size was approximately 0μ, it was again pulverized using a mechanical pulverizer to have an average particle size of 2μ.

上記の方法によって得られた合金粉の一部については、
ベンゾトリアゾール処理を行なった。ベンゾトリアゾー
ル処理は次の手順で行なった。1゜2.3−ベンゾトリ
アゾール10町をアセトン100tttl中に溶解させ
、この溶液に合金粉10yを浸漬し十分に分散させた。
For some of the alloy powder obtained by the above method,
Benzotriazole treatment was performed. The benzotriazole treatment was performed according to the following procedure. 1°2.3-benzotriazole (10%) was dissolved in 100tttl of acetone, and the alloy powder (10y) was immersed in this solution and thoroughly dispersed.

この後で合金粉と溶液を分離し合金粉を乾燥した。After this, the alloy powder and the solution were separated and the alloy powder was dried.

以上の方法によって得られた合金粉2y1あるいはベン
ゾ)IJアゾール処理を行なった合金粉2yを、キシレ
ン樹脂’ F 1エチルカルピトール0・2Fと共にフ
ーバーマーラを用いて混練した。
The alloy powder 2y1 obtained by the above method or the alloy powder 2y treated with benzo)IJ azole was kneaded with xylene resin 'F 1 ethylcarpitol 0.2F using a Hubermala.

フーバーマーラによる混線は、荷重100ポンド、40
回転を4回繰り返して行なった。
The crosstalk caused by Hoover Mara has a load of 100 pounds and 40
Rotation was repeated four times.

上記作製した導電性ペイントをスクリーン印刷法を用い
てフェノール樹脂基板上に所定の形状に印刷後、大気中
190℃10分間の条件で加熱硬化した。
The conductive paint prepared above was printed in a predetermined shape on a phenol resin substrate using a screen printing method, and then cured by heating at 190° C. for 10 minutes in the atmosphere.

上記印刷パターンの両端間の抵抗値を測定した結果と、
さらに40℃96%RHの恒温恒湿槽に120時間放置
した後で測定した結果を次表に示す。表には参考として
、市販のAg粉、Cu粉を導電粉とした場合の結果を併
せて示す。
The results of measuring the resistance value between both ends of the above printed pattern,
The following table shows the measurement results after being left in a constant temperature and humidity chamber at 40° C. and 96% RH for 120 hours. For reference, the table also shows the results when commercially available Ag powder and Cu powder were used as conductive powder.

(以下余白2 また、耐マイグレーション性の試験として、上記作製し
たペイントを、フェノール樹脂基板上に間隙0.5m+
のパターンにスクリーン印刷し、加熱硬化させた後、間
隙部に純水0.2 mlを滴下した状態で間隙間に直流
3vの電圧を印加し、間隙間に流れる電流を測定したと
ころ、電圧印加後2時間経過後の電流値はいずれも10
μ八程度であった。
(Margin 2 below) Also, as a migration resistance test, the paint prepared above was placed on a phenolic resin substrate with a gap of 0.5m +
After screen printing the pattern and heating and curing, 0.2 ml of pure water was dropped into the gap and a DC voltage of 3V was applied to the gap, and the current flowing through the gap was measured. The current values after 2 hours are all 10.
It was about μ8.

これに対し、Ag粉を導電粉としたペイントについて同
様の試験を行なったところ、電圧印加後1分間経過時点
で間隙部でAqの移行が観察され短絡を起こした。した
がって本発明にかかる導電性ペイントは、従来のAqペ
イントに較べて耐マイクレージョン性は極めてすぐれて
いると言える。
On the other hand, when a similar test was conducted on a paint using conductive Ag powder, Aq migration was observed in the gap 1 minute after voltage application, resulting in a short circuit. Therefore, it can be said that the conductive paint according to the present invention has extremely superior micretion resistance compared to conventional Aq paint.

上記した説明および表から明らかなように、本発明にか
かる導電性ペイントは一従来の絢ペイントに比較して、
導電性、耐食性の面で多少劣る面があるものの十分実用
に供し得る特性を示すものであり、特に耐マイクレージ
ョン性にすぐれており、経済的には、従来のAqペイン
トに較べて極めて安価に作製し得ることから、その工業
的価値は大なるものがある。
As is clear from the above description and table, the conductive paint according to the present invention has a
Although it is somewhat inferior in terms of conductivity and corrosion resistance, it exhibits sufficient properties for practical use, and is particularly excellent in microclision resistance, and economically, it is extremely inexpensive compared to conventional Aq paint. It has great industrial value because it can be produced in many different ways.

Claims (2)

【特許請求の範囲】[Claims] (1)導電粉、樹脂および溶剤からなり、前記導電粉が
少なくともAg 10〜70重量%、In 1〜20重
量%を含有し、残部がCuの組成よりなる合金粉である
ことを特徴とする導電性ペイント。
(1) The conductive powder is an alloy powder comprising a conductive powder, a resin, and a solvent, and the conductive powder contains at least 10 to 70% by weight of Ag, 1 to 20% by weight of In, and the balance is Cu. conductive paint.
(2)合金粉が、1,2.3−ベンゾトリアゾールを有
機溶媒に溶かした溶液に浸漬後、前記溶液を分離し一1
乾燥させたものであることを特徴とする特許請求の範囲
第(1)項記載の導電性ペイント。
(2) The alloy powder is immersed in a solution of 1,2,3-benzotriazole dissolved in an organic solvent, and then the solution is separated.
The conductive paint according to claim 1, wherein the conductive paint is dried.
JP20220981A 1981-12-14 1981-12-14 Electrically conductive paint Pending JPS58103566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20220981A JPS58103566A (en) 1981-12-14 1981-12-14 Electrically conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20220981A JPS58103566A (en) 1981-12-14 1981-12-14 Electrically conductive paint

Publications (1)

Publication Number Publication Date
JPS58103566A true JPS58103566A (en) 1983-06-20

Family

ID=16453763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20220981A Pending JPS58103566A (en) 1981-12-14 1981-12-14 Electrically conductive paint

Country Status (1)

Country Link
JP (1) JPS58103566A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700678B2 (en) 2002-11-29 2010-04-20 Dow Corning Toray Company, Ltd. Silver-based powder, method of preparation thereof, and curable silicone composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700678B2 (en) 2002-11-29 2010-04-20 Dow Corning Toray Company, Ltd. Silver-based powder, method of preparation thereof, and curable silicone composition

Similar Documents

Publication Publication Date Title
JPS6016041B2 (en) Paste for forming thick film conductors
JPS5866323A (en) Metallized composition
JP3915779B2 (en) Conductive resin composition and electronic component using the same
JP3879749B2 (en) Conductive powder and method for producing the same
US4567111A (en) Conductive pigment-coated surfaces
JPS58103566A (en) Electrically conductive paint
JPS58103565A (en) Electrically conductive paint
JPS58103567A (en) Electrically conductive paint
JPWO2012066957A1 (en) Conductive composition, conductive film, and method for forming conductive film
JPS58104970A (en) Electrically conductive paint
JPS58101167A (en) Electrically conductive paint
JPS61185806A (en) Conductive resin paste
JPS6350384B2 (en)
JPS6253034B2 (en)
JPS63125582A (en) Conductive paint
JPS58104969A (en) Electrically conductive paint
JPS63125583A (en) Conductive paint
JPS6058268B2 (en) Conductive copper paste composition
JPS6356643B2 (en)
JPS6274967A (en) Conductive coating
KR102560073B1 (en) conductive paste
JPH0436903A (en) Copper conductive paste
JPS6035386B2 (en) Conductive paint using Ni powder
JPS6121577B2 (en)
JPH09255900A (en) Thermosetting type carbon-based electroconductive coating material