JPS58221206A - Manufacture of electrically conductive powder for electrically conductive paint - Google Patents

Manufacture of electrically conductive powder for electrically conductive paint

Info

Publication number
JPS58221206A
JPS58221206A JP10320682A JP10320682A JPS58221206A JP S58221206 A JPS58221206 A JP S58221206A JP 10320682 A JP10320682 A JP 10320682A JP 10320682 A JP10320682 A JP 10320682A JP S58221206 A JPS58221206 A JP S58221206A
Authority
JP
Japan
Prior art keywords
powder
electrically conductive
acid
conductive
conductive paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10320682A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ogawa
泰弘 小川
Sankichi Shinoda
三吉 信太
Akiyoshi Takeshima
竹島 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10320682A priority Critical patent/JPS58221206A/en
Publication of JPS58221206A publication Critical patent/JPS58221206A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling

Landscapes

  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To obtain inexpensive electrically conductive powder for electrically conductive paint with superior electric conductivity and corrosion resistance by dispersing a composition contg. coarse alloy powder and fatty acid in an org. solvent and wet grinding the composition. CONSTITUTION:Coarse alloy powder contg. Zn, Sn, Al, Be, Si or In, Ag, and Cu is manufactured by spraying molten metal or by other method. A composition contg. the powder and 0.05-30wt% fatty acid such as stearic acid or palmitic acid basing on the amount of the powder is prepared. The composition is dispersed in an org. solvent such as acetone or cyclohexanol and wet ground with a rotary ball mill or the like. The ground material is subjected to centrifugal separation, and the resulting solid phase is air-dried to obtain alloy powder for electrically conductive paint. Electrically conductive paint contg. the alloy powder as electrically conductive powder shows high electric conductivity and superior migration resistance.

Description

【発明の詳細な説明】 本発明は、導電粉1合成樹脂および溶剤からなる導電性
ペイントに用いる導電粉の製造方法に関し、安価で導電
性、耐食性にすぐれた導電性ペイントの提供を目的とす
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing conductive powder used in a conductive paint made of conductive powder 1 and a synthetic resin and a solvent, and an object of the present invention is to provide a conductive paint that is inexpensive and has excellent conductivity and corrosion resistance. It is something.

従来、この種の導電性ペイントには、導電粉として、A
u 、ムg 、 Pdなどの貴金属粉が用いられてきた
。一般的には導電粉にAgを用い、フェノール樹脂、エ
ポキシ樹脂、キシレン樹脂などの熱硬化型樹脂と、エチ
ルカルピトールのような溶剤と共に混練しだ人gペイン
トを、フェノール樹脂基板などにスクリーン印刷等の方
法で塗布した後、加熱硬化し、可変抵抗器などの電極、
あるいは電子回路用の印刷配線導体として使用されてき
た。
Conventionally, this type of conductive paint contains A as a conductive powder.
Noble metal powders such as U, Mug, and Pd have been used. Generally, Ag is used as a conductive powder and mixed with a thermosetting resin such as phenol resin, epoxy resin, or xylene resin, and a solvent such as ethyl calpitol, and then the paint is screen printed onto a phenolic resin substrate. After applying the coating using methods such as methods, it is heated and cured to form electrodes for variable resistors, etc.
It has also been used as a printed wiring conductor for electronic circuits.

しかし、近年、電子機器の小型化や薄型化に伴ない、電
子部品の小型化力弓午<要望される傾向にあり、このよ
うな状況化では、Agペイントの使用が、Agペイント
硬化膜中のAgが大気中の湿気と直流電界との相互作用
により、ムgペイント電極相互間を移行する現象、いわ
ゆるマイグレーションを起こし、その結果、回路の短絡
を起こし、しばしばトラブルの大きな要因となっている
However, in recent years, as electronic devices have become smaller and thinner, there has been a trend toward smaller electronic components. The interaction between atmospheric moisture and the DC electric field causes a phenomenon in which Ag moves between mug paint electrodes, so-called migration, which causes short circuits and is often a major cause of trouble. .

このようなAgペイントの欠点を補うだめに、Ag−P
(i粉を用いた導電性ペイントが市販され−ているが、
まだ完全とはいえない。さらにAg−P(1粉を用いた
導電性ペイントは、Pdの価格がAgの価格に較べて極
めて高く、さらに、貴金属類、特にAgの価格高騰が激
しい近年の情勢では、経済性の点で極めて不利である。
In order to compensate for these drawbacks of Ag paint, Ag-P
(Although conductive paint using i-powder is commercially available,
It's still not perfect. Furthermore, conductive paint using Ag-P (1 powder) is not economically viable due to the fact that the price of Pd is extremely high compared to the price of Ag, and in recent years the price of precious metals, especially Ag, has skyrocketed. This is extremely disadvantageous.

以上のよう々理由から、耐マイグレーション性の良い安
価な導電性ペイントの出現が望捷れている3、 このような状況下において、発明者らは、先に卑金属を
主成分とする合金粉を調査検討した結果、Ag−Zn−
Cu合金粉+ Ag  5n−Cu合金粉、Ag−AP
−Cu合金粉、 Ag−Be−Cu合金粉、Ag−3i
−Cu合金粉、およびAg−In−1n合金粉を導電粉
とした導電性ペイントが耐マイグレーション性にすぐれ
、しかも導電性をかなりのレベルで満足することを見い
11目、た。しかしながら、上記の金属合金粉の製造条
件により、導電性において劣る場合があった。
For the reasons mentioned above, it is hoped that an inexpensive conductive paint with good migration resistance will emerge.3 Under these circumstances, the inventors first developed an alloy powder mainly composed of base metals. As a result of investigation, Ag-Zn-
Cu alloy powder + Ag 5n-Cu alloy powder, Ag-AP
-Cu alloy powder, Ag-Be-Cu alloy powder, Ag-3i
It was discovered that a conductive paint using -Cu alloy powder and Ag-In-1n alloy powder as conductive powder has excellent migration resistance and satisfies conductivity at a considerable level. However, depending on the manufacturing conditions of the metal alloy powder described above, there were cases where the conductivity was poor.

本発明はこのような点に鑑みて成されたものであり、発
明者らは、金属合金粗粉とこの金属合金粉に対17て0
.05〜30重量%の脂肪酸を含む組成物を有機溶媒中
に分散させた後、湿式粉砕することにより得られる金属
合金粉を導電粉とする導電性ペイントが良好な導電性を
示すことを見い出した。
The present invention has been made in view of the above points, and the inventors have developed a method for mixing metal alloy coarse powder and this metal alloy powder with a ratio of 17% and 0.
.. It has been discovered that a conductive paint using a metal alloy powder as a conductive powder obtained by dispersing a composition containing 05 to 30% by weight of fatty acids in an organic solvent and then wet-pulverizing the composition exhibits good conductivity. .

従来、この種の導電性ペイントに用いる導電粉は、鱗片
状あるいは偏平状の形状が望捷しいことが知られている
。このような形状の金属粉を得る方法として、回転式ミ
ル、振動式ミルなどの機械6 /、 的に粉砕する方法が古くから知られている。しかしなが
ら、本発明に係る卑金属を主成分とする金属合金粗粉の
粉砕においては、乾式粉砕を行なう場合には、表面が過
度に酸化された金属合金粉が得られ、導電性ペイントと
した場合に良好が導電性が得られ斤かったり、脂肪酸々
どの粉砕助剤を添加して乾式粉砕を行なう場合に、金属
合金粗粉が互いに凝集し合ったりして十分に粉砕が行な
われない。まだ、有機溶媒中で湿式粉砕を行なう場合に
おいても、表面が過度に酸化された金属合金粉が得られ
るなどの問題点があった。
Conventionally, it has been known that conductive powder used in this type of conductive paint preferably has a scaly or flattened shape. As a method for obtaining metal powder in such a shape, a method of pulverizing it using a machine such as a rotary mill or a vibrating mill has been known for a long time. However, in the grinding of the metal alloy coarse powder mainly composed of base metals according to the present invention, when dry grinding is performed, metal alloy powder whose surface is excessively oxidized is obtained, and when used as a conductive paint. Good conductivity may not be obtained, or when dry grinding is performed with the addition of grinding aids such as fatty acids, the coarse metal alloy powders may aggregate with each other, resulting in insufficient grinding. Even when wet pulverization is performed in an organic solvent, there are still problems such as obtaining metal alloy powder whose surface is excessively oxidized.

本発明は、以上のような導電粉の製造方法の問題点を解
決するもので、金属合金粗粉とこの金属合金粗粉に対し
て0.06〜30重量%の脂肪酸を含む組成物を有機溶
媒中に分散させた後、機械的に粉砕することにより、表
面の酸化の程度が少ない金属合金粉が得られ、導電性ペ
イント用の導電粉として適したものが得られる。脂肪酸
は、ステアリン酸、パルミチン酸、ミリスチン酸、ラウ
リン酸、オレイン酸、エルカ酸、リノール酸、リフ6ペ
ーゾ レン酸において、1だ、有機溶媒は、アセトン。
The present invention solves the above-mentioned problems in the method for producing conductive powder by combining a coarse metal alloy powder and a composition containing 0.06 to 30% by weight of fatty acids with respect to the coarse metal alloy powder. By dispersing it in a solvent and then mechanically pulverizing it, a metal alloy powder with a low degree of surface oxidation can be obtained, which is suitable as a conductive powder for conductive paint. The fatty acids are stearic acid, palmitic acid, myristic acid, lauric acid, oleic acid, erucic acid, linoleic acid, and Riff 6 Pesolenic acid, and the organic solvent is acetone.

シクロヘキザノール、メタノール、エタノール。Cyclohexanol, methanol, ethanol.

プロパツール、ブタノール、トルエンにおいて、良好な
結果が得られる。何故に、脂肪酸と有機溶媒の混合溶液
を分散媒として機械的に粉砕することにより、良好な結
果が得られるのか不明であるが、合金金属表面に脂肪酸
の薄い層が形成され、過度の酸化を防ぐとともに、有機
溶媒によって、金属合金粉の分散性を良化しているもの
と考えられる。脂肪酸の添加量の下限は、その効果を発
揮し得る最少量であり、添加量が上限を越えると粉砕後
の粉砕生成物が粘ちょう性を帯び、作業性が悪くなる。
Good results are obtained with propatool, butanol and toluene. It is unclear why good results can be obtained by mechanically grinding a mixed solution of fatty acids and an organic solvent as a dispersion medium, but a thin layer of fatty acids is formed on the surface of the alloy metal, which prevents excessive oxidation. It is thought that the dispersibility of the metal alloy powder is improved by the organic solvent. The lower limit of the amount of fatty acid added is the minimum amount that can exhibit its effect; if the amount added exceeds the upper limit, the pulverized product after pulverization becomes viscous, resulting in poor workability.

前述の方法により得られた粉砕物は、遠心分離により同
相と液相を分離し、固相を自然乾燥させて、導電性ペイ
ント用金属合金粉が得られる。このようにして得られた
金属合金粉の表面には脂肪酸が付着しており、脂肪酸の
付着量が大きくなると、導電性ペイントとして使用され
た場合にペイント硬化膜の導電性に悪影響を及ぼしやす
いので、7 ズ−−゛ 前述の自然乾燥の後に、さらに減圧乾燥などの方法で、
金属合金粉の表面に付着している脂肪酸を除去すること
が望ましい。特に、脂肪酸の添加量が金属合金粗粉に対
して3重量%を越える場合には、減圧乾燥の効果が認め
られる。
The pulverized product obtained by the above method is centrifuged to separate the same phase and liquid phase, and the solid phase is air-dried to obtain a metal alloy powder for conductive paint. Fatty acids are attached to the surface of the metal alloy powder obtained in this way, and if the amount of fatty acids attached becomes large, it tends to have a negative effect on the conductivity of the cured paint film when used as a conductive paint. , 7 Z-- After the above-mentioned natural drying, further drying under reduced pressure, etc.
It is desirable to remove fatty acids adhering to the surface of metal alloy powder. In particular, when the amount of fatty acid added exceeds 3% by weight based on the metal alloy coarse powder, the effect of vacuum drying is recognized.

次に実施例に従って、本発明について詳述する。Next, the present invention will be described in detail according to Examples.

Ag−Zn−Sn合金、Ag−3n−A/合金、Ag−
Al−Cu合金、 Ag−Be−Cu合金、Ag−8i
−Cu合金、Ag−In−Cu合金などの金属合金粗粉
は、次のようにして作製した。所定の合金組成に合わせ
て、hg 、 Zn 、 Sn 、 Al、 Be 、
 Si 、 In 、 Cu ノ各素材を秤清し、全階
をI Myとした(Ap、、Be。
Ag-Zn-Sn alloy, Ag-3n-A/alloy, Ag-
Al-Cu alloy, Ag-Be-Cu alloy, Ag-8i
Metal alloy coarse powder such as -Cu alloy and Ag-In-Cu alloy was produced as follows. Depending on the predetermined alloy composition, hg, Zn, Sn, Al, Be,
Si, In, and Cu materials were weighed and all floors were designated as IMy (Ap, Be.

Slは、そ、?1ぞit Cu−Az 旬合金、Cu−
Be合金。
Sl is...? 1zoit Cu-Az Shun Alloy, Cu-
Be alloy.

Cu −Si母合金により添加した)。これを窒素ガス
中で溶解l〜、さらに、溶湯噴霧法によって粉体化した
。窒素ガスを噴霧媒とし、水中投入冷却した。得らねだ
粉体を乾燥して金属合金粗粉とした。
(Added by Cu-Si master alloy). This was dissolved in nitrogen gas and then pulverized by a molten metal spraying method. Nitrogen gas was used as a spray medium, and the mixture was cooled in water. The obtained powder was dried to obtain coarse metal alloy powder.

金属合金粗粉の粒径は5〜10011程度のものである
The particle size of the metal alloy coarse powder is about 5 to 10,011.

上述の方法により得だ金属合金粗粉50 、@−と、ス
テアリン酸、パルミチン酸、ミリスチン酸、ラウリン酸
、オレイン酸、エルカ酸、リノール酸。
Coarse metal alloy powder obtained by the above-mentioned method contains stearic acid, palmitic acid, myristic acid, lauric acid, oleic acid, erucic acid, and linoleic acid.

およびリルン酸の脂肪酸所定量、2〜3CTL径のメノ
ウ石約8001を内容積21のアルミナポットに移L7
、これに、アセトン、シクロエキサノール、メタノール
、エタノール、プロパツール、ブタノール、およびトル
エタンなどの有機溶媒ヲ、メノウ石が浸漬する程度(約
300cc)加えて、回転式ボールミル法により、回転
時間160時間の粉砕を行なった。粉砕後ポット内容物
を取り出し、メノウ石を取り除き、遠心分離機により内
容物を固相と液相とに分離し、同相を自然乾燥した。
and a predetermined amount of fatty acid lylunic acid, and about 8001 agate stones with a diameter of 2 to 3 CTL were transferred to an alumina pot with an internal volume of 21 L7.
To this, organic solvents such as acetone, cycloexanol, methanol, ethanol, propatool, butanol, and toluethane were added to the extent that the agate was immersed (approximately 300 cc), and the rotation time was 160 hours using a rotary ball mill method. was crushed. After pulverization, the contents of the pot were taken out, the agate was removed, the contents were separated into a solid phase and a liquid phase using a centrifuge, and the same phase was air-dried.

このようにして得られた金属合金粉は、平均粒径1〜3
μ、形状は偏平状であった。必要に応じて得られた金属
合金粉は、約lmmHgの減圧下で250℃1時間の減
圧乾燥を行なった。
The metal alloy powder thus obtained has an average particle size of 1 to 3
μ, the shape was oblate. If necessary, the obtained metal alloy powder was dried under reduced pressure at 250° C. for 1 hour under reduced pressure of about 1 mmHg.

以」−の方法によつ、て得られた金属合金粉2y−を、
キシレン樹脂1!?、エチルカルピトール0.2!?と
共に、フーバ〜マーラを用いて混練した。フーバーマー
ラによる混練は、荷重100ポンド、40回転を4回繰
り返して行なった。
The metal alloy powder 2y- obtained by the method described below is
Xylene resin 1! ? , Ethylcalpitol 0.2! ? At the same time, the mixture was kneaded using a Huba-Mala. Kneading with a Hubermala was carried out by repeating 40 revolutions four times under a load of 100 pounds.

上記作製した導電性ペイントを200メソシユのスクリ
ーンを用いてフェノール樹脂基板−1−に所定の形状に
印刷後、大気中190’C10分間の条件で加熱硬化し
た。
The conductive paint prepared above was printed in a predetermined shape on a phenolic resin substrate-1 using a 200 mesh screen, and then cured by heating at 190° C. for 10 minutes in the air.

上記印刷パターンの両端間の抵抗値を測定した結果を次
表に示す。また次表には、金属合金粗粉を、脂肪酸を添
加せずに有機溶媒のみを分散媒として、同様に粉砕して
得られた金属合金粉を用いてペイントとした場合の結果
を併せて示す。
The results of measuring the resistance values between both ends of the above printed pattern are shown in the following table. The following table also shows the results when the metal alloy powder was made into a paint using the metal alloy powder obtained by crushing the metal alloy coarse powder in the same manner using only an organic solvent as a dispersion medium without adding fatty acids. .

(以 下金 白) 10  :− 11 ′: 以上の説明および表から明らかなように、本発明の方法
に」:す作製した金属合金粉を導電粉とした導電性ペイ
ントは良好な導電性を示すものであり、剛マイグレーシ
ョン性にすぐれて、しかも、経済的に安価な導電性ペイ
ントを提供するうえで、その価値は大きい。
(hereinafter referred to as gold and white) 10:-11': As is clear from the above explanation and table, the conductive paint using the metal alloy powder as conductive powder produced by the method of the present invention has good conductivity. It is of great value in providing an economically inexpensive conductive paint with excellent rigid migration properties.

Claims (5)

【特許請求の範囲】[Claims] (1)金属合金粗粉とこの金属合金粗粉に対1−て0.
06〜30重量%の脂肪酸を含む組成物を有機溶媒中に
分散させた後、これを湿式粉砕することを特徴とする導
電性ペイント用導電粉の製造方法。
(1) Metal alloy coarse powder and this metal alloy coarse powder: 1-0.
A method for producing conductive powder for conductive paint, which comprises dispersing a composition containing 6 to 30% by weight of fatty acids in an organic solvent and then wet-pulverizing the composition.
(2)脂肪酸が、ステアリン酸、バルミチン酸、ミリス
チン酸、ラウリン酸、オレイン酸、エルカ酸、リノール
酸およびリルン酸のいずれかであることを特徴とする特
許請求の範囲第(1)項記載の導電性ペイント用導電粉
の製造方法。
(2) Claim (1), wherein the fatty acid is any one of stearic acid, valmitic acid, myristic acid, lauric acid, oleic acid, erucic acid, linoleic acid, and linolic acid. Method for producing conductive powder for conductive paint.
(3)有機溶媒が、アセトン、シクロヘキサンール。 メタノール、エタノール、プロパツール、ブタノール、
トルエンのいずれかであることを特徴とする特許請求の
範囲第(1)項記載の導電性ペイント用導電粉の製造方
法。
(3) The organic solvent is acetone or cyclohexanol. methanol, ethanol, propatool, butanol,
The method for producing conductive powder for conductive paint according to claim (1), characterized in that the powder is toluene.
(4)導電粉が、溶湯噴霧によって作製された金属2ペ
ーノ 合金粉であることを特徴とする特許請求の範囲第(1)
項記載の導電性ペイント用導電粉の製造方法。
(4) Claim No. 1, characterized in that the conductive powder is a metal 2-peno alloy powder produced by molten metal spraying.
A method for producing conductive powder for conductive paint as described in Section 1.
(5)金属合金が、Zn 、 Sn 、ムz、Be、S
i、およびInのいずれかとAgとCuを含有する金属
合金であることを特徴とする特許請求の範囲第(1)項
記載の導電性ペイント用導電粉の製造方法。
(5) The metal alloy is Zn, Sn, Muz, Be, S
The method for producing a conductive powder for conductive paint according to claim (1), wherein the conductive powder is a metal alloy containing any one of i and In, Ag and Cu.
JP10320682A 1982-06-15 1982-06-15 Manufacture of electrically conductive powder for electrically conductive paint Pending JPS58221206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10320682A JPS58221206A (en) 1982-06-15 1982-06-15 Manufacture of electrically conductive powder for electrically conductive paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10320682A JPS58221206A (en) 1982-06-15 1982-06-15 Manufacture of electrically conductive powder for electrically conductive paint

Publications (1)

Publication Number Publication Date
JPS58221206A true JPS58221206A (en) 1983-12-22

Family

ID=14348036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10320682A Pending JPS58221206A (en) 1982-06-15 1982-06-15 Manufacture of electrically conductive powder for electrically conductive paint

Country Status (1)

Country Link
JP (1) JPS58221206A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715989A (en) * 1986-01-22 1987-12-29 The B.F. Goodrich Company Coating for EMI shielding
US4775511A (en) * 1986-07-08 1988-10-04 William Kono Method of sulfide tarnish inhibiting of silver-copper, silver-gold and silver-copper-gold alloys
JPH0192303A (en) * 1987-09-30 1989-04-11 Kawatetsu Techno Res Corp Production of titanium flake
US4826631A (en) * 1986-01-22 1989-05-02 The B. F. Goodrich Company Coating for EMI shielding and method for making
US5588983A (en) * 1994-02-16 1996-12-31 Murata Manufacturing Co., Ltd. Production of copper powder
CN100391662C (en) * 2005-09-12 2008-06-04 昆明理工恒达科技有限公司 Low loose density sheet-like silver powder preparation method
CN102784927A (en) * 2012-08-28 2012-11-21 苏州东旭弘业新材料科技有限公司 Method for preparing high-performance sheet silver powder
CN105478788A (en) * 2015-12-25 2016-04-13 广东羚光新材料股份有限公司 Method of producing flake silver powder
CN109454227A (en) * 2018-12-25 2019-03-12 苏州新锐合金工具股份有限公司 The preparation method of TiCN based ceramic metal mixture

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4715989A (en) * 1986-01-22 1987-12-29 The B.F. Goodrich Company Coating for EMI shielding
US4826631A (en) * 1986-01-22 1989-05-02 The B. F. Goodrich Company Coating for EMI shielding and method for making
US4775511A (en) * 1986-07-08 1988-10-04 William Kono Method of sulfide tarnish inhibiting of silver-copper, silver-gold and silver-copper-gold alloys
JPH0192303A (en) * 1987-09-30 1989-04-11 Kawatetsu Techno Res Corp Production of titanium flake
US5588983A (en) * 1994-02-16 1996-12-31 Murata Manufacturing Co., Ltd. Production of copper powder
CN100391662C (en) * 2005-09-12 2008-06-04 昆明理工恒达科技有限公司 Low loose density sheet-like silver powder preparation method
CN102784927A (en) * 2012-08-28 2012-11-21 苏州东旭弘业新材料科技有限公司 Method for preparing high-performance sheet silver powder
CN105478788A (en) * 2015-12-25 2016-04-13 广东羚光新材料股份有限公司 Method of producing flake silver powder
CN109454227A (en) * 2018-12-25 2019-03-12 苏州新锐合金工具股份有限公司 The preparation method of TiCN based ceramic metal mixture

Similar Documents

Publication Publication Date Title
KR100832628B1 (en) Conductive paste
KR100678533B1 (en) Conductive powder and method for preparing the same
CA1192039A (en) Base metal conductor cathode coating for tantalum capacitors
WO2017154251A1 (en) Conductive paste
JPS58221206A (en) Manufacture of electrically conductive powder for electrically conductive paint
JP2013053347A (en) Dendritic copper powder
EP0162698A1 (en) Solderable conductive compositions, methods for their preparation, and substrates coated with them
EP0264635B1 (en) Electrically conductible adhesive for a large temperature range
JPH0768562B2 (en) Method for producing solderable copper powder for conductive paint
CN109686473A (en) A kind of multilayer ceramic capacitor is starched and is applied with soft termination electrode copper
KR100729211B1 (en) Composite substance containing metal particles, conductive paste and manufacturing method thereof
JP2003268402A (en) Highly dispersive metal powder, manufacturing method therefor and electroconductive paste containing metal powder
JP4273399B2 (en) Conductive paste and method for producing the same
JPS58165397A (en) Conductive paste
JPH1166956A (en) Conductive paste
JPH0312809A (en) Nanocomposite substrate
JPS5874759A (en) Electrically conductive copper paste composition
JPS58104970A (en) Electrically conductive paint
KR100644010B1 (en) Method of producing composition for conductive paste
JP4857441B2 (en) Conductive paste and manufacturing method thereof
JPH10147801A (en) Surface treatment of dendritic copper powder
JP2003257244A (en) Conductive resin paste and conductive resin membrane
JP2000328232A (en) Electrically conductive powder, its production and coating material using it
JPS63125583A (en) Conductive paint
JPS6253035B2 (en)