JPS6247162A - Manufacture of insulated gate field effect transistor - Google Patents

Manufacture of insulated gate field effect transistor

Info

Publication number
JPS6247162A
JPS6247162A JP60187920A JP18792085A JPS6247162A JP S6247162 A JPS6247162 A JP S6247162A JP 60187920 A JP60187920 A JP 60187920A JP 18792085 A JP18792085 A JP 18792085A JP S6247162 A JPS6247162 A JP S6247162A
Authority
JP
Japan
Prior art keywords
region
conductivity type
type
impurity ions
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60187920A
Other languages
Japanese (ja)
Inventor
Koichi Yamada
耕一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP60187920A priority Critical patent/JPS6247162A/en
Publication of JPS6247162A publication Critical patent/JPS6247162A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

PURPOSE:To particularly form a double diffused MOSFET in a short time by forming while controlling an accelerating voltage and an impurity density when forming a reverse conductivity type base region, and the first conductivity type emitter region by implanting second conductivity type impurity ion on the first conductivity type semiconductor substrate, thereby performing thermal oxidizing process only once. CONSTITUTION:A thick field oxide film 2 is formed on the peripheral edge of the surface of an N<-> type Si substrate 1 to become a drain, a resist 3 made of a laminated layer film of Au, Cr is coated on the entire surface which includes the film, a window is opened corresponding to the center of a base region, and a P<+> type implanted region 4 is formed by ion implanting at high speed in high density to the deep portion in the substrate 1. Then, the resist 3 is removed, ions are implanted at a high speed in the density for obtaining the prescribed threshold value in a region surrounded by the film 2 on the region 4 to form a shallow P-type region 5, a resist 6 is formed by revising corresponding to the region 4, and an N<+> type source region 7 is formed by ion implanting at high speed in high density in the region 5 of both sides. Thereafter, the regions are diffused by heat treating, and electrodes are provided on the prescribed region.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は絶縁ゲート型電界効果トランジスタの作製方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing an insulated gate field effect transistor.

〔背景技術〕[Background technology]

絶縁ゲート型電界効果トランジスタ、特に2重拡散MO
3FET (DMO3FET)では、nチャネルの場合
を例にすると、高いソース・ドレイン間耐圧を獲るため
に、P型ヘース層に高濃度で比較的深く拡散されたP1
型つき出しベース領域が必要である。従来、このP+型
つき出しベース領域を形成するためには、高温で長時間
の熱拡散工を必要とし、しかもP型ベース領域とは別の
熱拡散工程にならざるを得す、熱拡散工程が多数回にな
り、作製時間を短縮する上で大きな問題点があった・ 〔発明の目的〕 本発明は上記事由に鑑みてなしたものであって、その目
的とするところは、絶縁ゲート型電界効果トランジスタ
のヘース拡散T程、ソース拡散工程、ゲート酸化]−程
を一回の熱酸化工程により同時に行い、従来の作製方法
に比較して作製時間を大幅に短縮する絶縁ゲート型電界
効果トランジスタの作製方法を提供することにある。
Insulated gate field effect transistors, especially double diffused MO
In a 3FET (DMO3FET), taking the case of an n-channel as an example, in order to obtain a high breakdown voltage between the source and drain, P1 is diffused relatively deeply at a high concentration in the P-type heat layer.
A molded base area is required. Conventionally, in order to form this P+ type exposed base region, a thermal diffusion process was required at high temperature for a long time, and it had to be a separate thermal diffusion process from that for the P type base area. [Objective of the Invention] The present invention has been made in view of the above reasons, and its purpose is to An insulated gate field effect transistor that performs the heat diffusion process, source diffusion process, and gate oxidation process of a field effect transistor simultaneously in a single thermal oxidation process, significantly shortening the manufacturing time compared to conventional manufacturing methods. The object of the present invention is to provide a method for producing a.

〔発明の開示〕[Disclosure of the invention]

本発明は、絶縁ゲート型電界効果トランジスタ、特にl
) M OS F E Tのベース領域のうち、高濃度
で他のベース領域より深く拡散されるつき出しベース領
域を形成する工程として、イオンの飛程が1μm(ミク
ロン)以−Lになる高加速電圧のイオン注入法を用いる
ことにより、ヘース拡散工程をソース拡散工程とゲート
酸化工程とともに一回の熱酸化工程によって行い、作製
時間を短縮するMOSFETの作製方法に係り、その要
旨とするところは一つは第1伝導型半導体基板の一部分
に高加速電圧、高濃度で第2伝導型不純物イオンを注入
する工程、前記第1伝導型半導体基板の表面に至る一部
分の領域であってかつ前記第2伝導型不純物イオンを注
入した部分上の領域に、所望の絶縁ゲート型電界効果ト
ランジスタのしきい値電圧を得るべく制御した加速電圧
、ドーズ量(単位面積あたりの不純物イオンの数)の第
2伝導型不純物イオンを注入する工程、前記第1伝導型
半導体基板の一部分に隣接した領域に低加速電圧、高濃
度で第1伝導型不純物イオンを注入する工程を有するこ
とを特徴とする絶縁ゲート型電界効果l・ランジスタの
作製方法である。
The present invention relates to insulated gate field effect transistors, particularly l
) Among the base regions of MOS FET, as a process of forming an exposed base region that is highly concentrated and diffused deeper than other base regions, high acceleration is applied so that the range of ions is 1 μm (micron) or more. This is a MOSFET manufacturing method that uses a voltage ion implantation method to shorten the manufacturing time by performing the Hass diffusion process in a single thermal oxidation process together with the source diffusion process and gate oxidation process. One is a step of implanting impurity ions of a second conductivity type at a high concentration at a high acceleration voltage into a part of the first conductivity type semiconductor substrate, and a part of the region reaching the surface of the first conductivity type semiconductor substrate and the second conductivity type impurity ion. In the region above the part where the conduction type impurity ions are implanted, the second conduction is applied at the acceleration voltage and dose (number of impurity ions per unit area) controlled to obtain the desired threshold voltage of the insulated gate field effect transistor. an insulated gate type electric field characterized by comprising the steps of: implanting type impurity ions, and implanting first conductivity type impurity ions at a low acceleration voltage and high concentration into a region adjacent to a part of the first conductivity type semiconductor substrate. This is a method for manufacturing an effect transistor.

以下、本発明の一実施例を第1図乃至第6図に基づいて
説明する。
Hereinafter, one embodiment of the present invention will be described based on FIGS. 1 to 6.

第1図は本発明により得られる絶縁ゲート型電界効果ト
ランジスタの構成例であり、縦型nチャネルDMO3F
 ETである。I)MOSFETのP“型つき出しベー
ス領域■ は高加速電圧のイオン注入により形成されて
おり、N゛型ソース領域■ 、P型チャネル領域■、ソ
ース領域の下のP型ベース領域■ 、ゲート酸化膜■ 
は−回の熱酸化工程により同時に形成される。その作製
方法の主要な工程を第2図乃至第6図により説明する。
FIG. 1 shows a configuration example of an insulated gate field effect transistor obtained according to the present invention, and is a vertical n-channel DMO3F
It is ET. I) The P" shaped base region ■ of the MOSFET is formed by ion implantation at a high acceleration voltage, and includes the N" type source region ■, the P type channel region ■, the P type base region under the source region ■, and the gate. Oxide film ■
and are simultaneously formed by two thermal oxidation steps. The main steps of the manufacturing method will be explained with reference to FIGS. 2 to 6.

まず第2図に示すように、N−型半導体基板1上にフィ
ールド酸化膜2を形成した後、フォトリソグラフィー技
術を用いて不要の部分をエツチングし、さらに高加速電
圧イオン注入用のレジスト3をフォトリソグラフィー技
術を用いて形成する。レジスト3には1000人(オン
グストローム)程度のクロム(Cr)を蒸着した上に1
μm(ミクロン)程度の金(Au)を蒸着した薄膜を用
いる。さらに、つき出しベース領域となる領域4にボロ
ンイオン(B゛)の飛程が1μm(ミクロン)以上にな
る高加速電圧(600KV以上)でボロンイオンを注入
する。このとき、加速電圧を600KV以上で2種類量
にとし、ボロンイオンを少なくとも2回以十注入して数
ミクロン程度の深さまでボロンイオンを均一に分布させ
る。
First, as shown in FIG. 2, after forming a field oxide film 2 on an N-type semiconductor substrate 1, unnecessary portions are etched using photolithography technology, and then a resist 3 for high acceleration voltage ion implantation is formed. Formed using photolithography technology. For resist 3, about 1000 angstroms of chromium (Cr) is deposited, and then 1
A thin film of gold (Au) deposited on the order of μm (microns) is used. Further, boron ions are implanted into the region 4 which will become the exposed base region at a high accelerating voltage (600 KV or more) so that the range of the boron ions (B') is 1 μm (micron) or more. At this time, the accelerating voltage is set to 600 KV or more in two different amounts, and boron ions are implanted at least twice or more to uniformly distribute the boron ions to a depth of about several microns.

次に第3図に示すように高加速電圧イオン注入用レジス
ト3を除去した後、所望のD M □ S F F。
Next, as shown in FIG. 3, after removing the high acceleration voltage ion implantation resist 3, a desired D M □ S F F is formed.

Tのしきい値電圧を得るように制御した加速電圧、「−
ズ量のボロンイオンをベース領域となる領域5に注入す
る。
The acceleration voltage controlled to obtain the threshold voltage of T, "-
Boron ions in an amount of about 100 mL are implanted into the region 5 that will become the base region.

次に第4図に示すように、ベース領域となる領域5の中
央部に、レジスト6を形成した後、ヒ素イオンをソース
領域となる領域7に高濃度に注入する。
Next, as shown in FIG. 4, after a resist 6 is formed in the center of the region 5 which will become the base region, arsenic ions are implanted at a high concentration into the region 7 which will become the source region.

次に、レジスト6及びフィールド酸化膜2の開口周縁を
除去した後、第5図示すように熱酸化によりゲート酸化
膜9を形成する。この熱酸化工程によってベース拡散、
ソース拡散、ゲート酸化を一度に行い、つき出しベース
領域■ 、ソース領域■ 、ソース領域の下のベース領
域■ 、チャネル領域8、ゲート酸化膜9を一度に形成
する。
Next, after removing the resist 6 and the periphery of the opening of the field oxide film 2, a gate oxide film 9 is formed by thermal oxidation as shown in FIG. This thermal oxidation process causes base diffusion,
Source diffusion and gate oxidation are performed at once to form exposed base region (1), source region (2), base region (2) below the source region, channel region 8, and gate oxide film 9 at one time.

最後に多結晶シリコンゲート10を形成し、バソシヘー
ション膜を形成した後、ソース電極12を形成する。パ
ソシヘーション膜11としてはリン・シリケートガラス
膜(PSG膜)またはリン・シケートガラス膜とノンド
ープ−シリケートガラス膜(NSC膜)を組合せたもの
等が使用される。
Finally, after forming a polycrystalline silicon gate 10 and forming a bathoccupation film, a source electrode 12 is formed. As the passivation film 11, a phosphorus silicate glass film (PSG film) or a combination of a phosphorus silicate glass film and a non-doped silicate glass film (NSC film) is used.

〔発明の効果〕〔Effect of the invention〕

以上の如く、本発明は、0MO3FETのつき出しベー
ス領域を形成するのに、イオンの飛程が1μm(ミクロ
ン)以」二になる高加速電圧のイオン注入法を用いるこ
ととしたから、ベース拡散、ソース拡散、ゲート酸化を
一回の熱酸化工程で同時に行うことが可能になり、DM
O3FRTの作製時間を短縮する効果を奏する。
As described above, the present invention uses a high acceleration voltage ion implantation method with an ion range of 1 μm (micron) or more to form the protruding base region of an OMO3FET. , source diffusion, and gate oxidation can be performed simultaneously in one thermal oxidation process, and DM
This has the effect of shortening the manufacturing time of O3FRT.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるnチャネル縦型の0MO3FET
の一実施例を示す断面図、第2図乃至第6図は上記DM
O3FETの作製工程順を示す断面図である。 1はN−型半導体基板、2はフィールド酸化膜、3は高
加速電圧イオン注入用レジスト、4はP゛型つき出しベ
ース形成の為のイオン注入領域、■ はP゛型つき出し
ベース、5はチャネルヘース形成の為のイオン注入領域
、■ はソース領域下のP型チャネルベース領域、6は
ソース形成用イオン注入のためのレジス]・、7はソー
ス領域形成の為のイオン注入領域、■ はN゛型ソース
領域、8はチャネル領域、9および■ はゲート酸化膜
、10は多結晶シリコンゲート、IIはパソシヘーショ
ン膜(PSG膜またはPSG+NSG膜)、12ソース
電極、13はN゛型半導体基板(ドレイン領域)、14
はドレイン電極である。
Figure 1 shows an n-channel vertical 0MO3FET according to the present invention.
2 to 6 are cross-sectional views showing one embodiment of the above-mentioned DM.
FIG. 3 is a cross-sectional view showing the order of manufacturing steps of an O3FET. 1 is an N-type semiconductor substrate, 2 is a field oxide film, 3 is a resist for high acceleration voltage ion implantation, 4 is an ion implantation region for forming a P'' type exposed base, ■ is a P'' type exposed base, 5 7 is the ion implantation region for forming the source region, ■ is the P-type channel base region under the source region, 6 is the resist for ion implantation for forming the source region], N'-type source region, 8 is a channel region, 9 and ■ are gate oxide films, 10 is a polycrystalline silicon gate, II is a passivation film (PSG film or PSG+NSG film), 12 is a source electrode, 13 is an N'-type semiconductor substrate ( drain region), 14
is the drain electrode.

Claims (3)

【特許請求の範囲】[Claims] (1)第1伝導型半導体基板の一部分に高加速電圧、高
濃度で第2伝導型不純物イオンを注入する工程、前記第
1伝導型半導体基板の表面に至る一部分の領域であって
かつ前記第2伝導型不純物イオンを注入した部分上の領
域に、所望の絶縁ゲート型電界効果トランジスタのしき
い値電圧を得るべく制御した加速電圧、ドーズ量(単位
面積あたりの不純物イオンの数)の第2伝導型不純物イ
オンを注入する工程、前記第1伝導型半導体基板の一部
分に隣接した領域に低加速電圧、高濃度で第1伝導型不
純物イオンを注入する工程を有することを特徴とする絶
縁ゲート型電界効果トランジスタの作製方法。
(1) A step of implanting impurity ions of a second conductivity type at a high concentration and at a high acceleration voltage into a portion of the first conductivity type semiconductor substrate; The acceleration voltage and dose amount (number of impurity ions per unit area) controlled to obtain the desired threshold voltage of the insulated gate field effect transistor are applied to the region on the part where the 2 conductivity type impurity ions are implanted. an insulated gate type, comprising the steps of implanting conduction type impurity ions, and implanting the first conduction type impurity ions at a low acceleration voltage and at a high concentration into a region adjacent to a portion of the first conduction type semiconductor substrate. How to make a field effect transistor.
(2)第1伝導型半導体基板の一部分に高加速電圧、高
濃度で第2伝導型不純物イオンを注入する工程は、イオ
ンの飛程(半導体中に注入されたイオンの半導体表面か
らの平均距離)が1μm(ミクロン)以上になる高加速
電圧を用いて、少なくとも2種類以上の高加速電圧で第
2伝導型不純物イオンを2回以上注入することを特徴と
する第1項記載の絶縁ゲート型電界効果トランジスタの
作製方法。
(2) The step of implanting impurity ions of the second conductivity type at a high acceleration voltage and high concentration into a portion of the semiconductor substrate of the first conductivity type is based on the ion range (the average distance from the semiconductor surface of the ions implanted into the semiconductor). 2. The insulated gate type according to item 1, wherein the second conductivity type impurity ions are implanted two or more times at at least two types of high acceleration voltages using a high acceleration voltage such that ) is 1 μm (micron) or more. How to make a field effect transistor.
(3)ベース拡散工程、ソース拡散工程、ゲート酸化工
程を一回の熱酸化工程により同時に行う、ことを特徴と
する第1項又は第2項記載の絶縁ゲート型電界効果トラ
ンジスタの作製方法。
(3) The method for manufacturing an insulated gate field effect transistor according to item 1 or 2, characterized in that the base diffusion step, the source diffusion step, and the gate oxidation step are performed simultaneously in a single thermal oxidation step.
JP60187920A 1985-08-27 1985-08-27 Manufacture of insulated gate field effect transistor Pending JPS6247162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60187920A JPS6247162A (en) 1985-08-27 1985-08-27 Manufacture of insulated gate field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60187920A JPS6247162A (en) 1985-08-27 1985-08-27 Manufacture of insulated gate field effect transistor

Publications (1)

Publication Number Publication Date
JPS6247162A true JPS6247162A (en) 1987-02-28

Family

ID=16214515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60187920A Pending JPS6247162A (en) 1985-08-27 1985-08-27 Manufacture of insulated gate field effect transistor

Country Status (1)

Country Link
JP (1) JPS6247162A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287512A (en) * 1988-05-13 1989-11-20 Minolta Camera Co Ltd Automatic focus detecting device
EP0667035A1 (en) * 1992-02-11 1995-08-16 Ixys Corporation Single diffusion process for fabricating semiconductor devices
EP0772242A1 (en) * 1995-10-30 1997-05-07 STMicroelectronics S.r.l. Single feature size MOS technology power device
US5631177A (en) * 1992-12-07 1997-05-20 Sgs-Thomson Microelectronics, S.R.L. Process for manufacturing integrated circuit with power field effect transistors
US5798554A (en) * 1995-02-24 1998-08-25 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
US5841167A (en) * 1995-12-28 1998-11-24 Sgs-Thomson Microelectronics S.R.L. MOS-technology power device integrated structure
US5900662A (en) * 1995-11-06 1999-05-04 Sgs Thomson Microelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US6030870A (en) * 1995-10-30 2000-02-29 Sgs-Thomson Microelectronics, S.R.L. High density MOS technology power device
US6090669A (en) * 1995-10-09 2000-07-18 Consorzio Per La Ricerca Sulla Microelectronics Nel Mezzogiorno Fabrication method for high voltage devices with at least one deep edge ring
US6228719B1 (en) 1995-11-06 2001-05-08 Stmicroelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01287512A (en) * 1988-05-13 1989-11-20 Minolta Camera Co Ltd Automatic focus detecting device
EP0667035A1 (en) * 1992-02-11 1995-08-16 Ixys Corporation Single diffusion process for fabricating semiconductor devices
EP0667035A4 (en) * 1992-02-11 1996-07-31 Ixys Corp Single diffusion process for fabricating semiconductor devices.
US5631177A (en) * 1992-12-07 1997-05-20 Sgs-Thomson Microelectronics, S.R.L. Process for manufacturing integrated circuit with power field effect transistors
US6111297A (en) * 1995-02-24 2000-08-29 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
US5798554A (en) * 1995-02-24 1998-08-25 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno MOS-technology power device integrated structure and manufacturing process thereof
US6090669A (en) * 1995-10-09 2000-07-18 Consorzio Per La Ricerca Sulla Microelectronics Nel Mezzogiorno Fabrication method for high voltage devices with at least one deep edge ring
US5981343A (en) * 1995-10-30 1999-11-09 Sgs-Thomas Microelectronics, S.R.L. Single feature size mos technology power device
US5981998A (en) * 1995-10-30 1999-11-09 Sgs-Thomson Microelectronics S.R.L. Single feature size MOS technology power device
US5985721A (en) * 1995-10-30 1999-11-16 Sgs-Thomson Microelectronics, S.R.L. Single feature size MOS technology power device
US6030870A (en) * 1995-10-30 2000-02-29 Sgs-Thomson Microelectronics, S.R.L. High density MOS technology power device
US6064087A (en) * 1995-10-30 2000-05-16 Sgs-Thomson Microelectronics, S.R.L. Single feature size MOS technology power device
EP0772242A1 (en) * 1995-10-30 1997-05-07 STMicroelectronics S.r.l. Single feature size MOS technology power device
US5900662A (en) * 1995-11-06 1999-05-04 Sgs Thomson Microelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US6228719B1 (en) 1995-11-06 2001-05-08 Stmicroelectronics S.R.L. MOS technology power device with low output resistance and low capacitance, and related manufacturing process
US6051862A (en) * 1995-12-28 2000-04-18 Sgs-Thomson Microelectronics S.R.L. MOS-technology power device integrated structure
US5841167A (en) * 1995-12-28 1998-11-24 Sgs-Thomson Microelectronics S.R.L. MOS-technology power device integrated structure

Similar Documents

Publication Publication Date Title
US4795716A (en) Method of making a power IC structure with enhancement and/or CMOS logic
JPS6247162A (en) Manufacture of insulated gate field effect transistor
KR920008120B1 (en) Mos type field effect transistor
JPS63305546A (en) Manufacture of semiconductor integrated circuit device
JPH0548957B2 (en)
JP2727552B2 (en) Method for manufacturing semiconductor device
JPS6358375B2 (en)
JPH0427696B2 (en)
JP2605757B2 (en) Method for manufacturing semiconductor device
JPS5879766A (en) Manufacture of metal oxide semiconductor type semiconductor device
JP2807718B2 (en) Semiconductor device and manufacturing method thereof
JPH0234937A (en) Manufacture of semiconductor device
JPH0964193A (en) Manufacture of semiconductor device
JP2876626B2 (en) Method of manufacturing vertical MOS field effect transistor
JP3142614B2 (en) Method for manufacturing N-channel MOSFET
JPH0441503B2 (en)
JPH0555589A (en) Insulated-gate field-effect transistor and its manufacture
JP2500688B2 (en) Method for manufacturing vertical field effect transistor
JP3297102B2 (en) Method of manufacturing MOSFET
JPS6216559A (en) Manufacture of semiconductor device
JPS6136974A (en) Manufacture of mos semiconductor device
JPH01238066A (en) High withstand voltage transistor
JPH0964361A (en) Manufacture of semiconductor device
JPS61242079A (en) Manufacture of mos type semiconductor element
JPH0715971B2 (en) Manufacturing method of complementary MOS integrated circuit