JPH0964193A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0964193A
JPH0964193A JP7221618A JP22161895A JPH0964193A JP H0964193 A JPH0964193 A JP H0964193A JP 7221618 A JP7221618 A JP 7221618A JP 22161895 A JP22161895 A JP 22161895A JP H0964193 A JPH0964193 A JP H0964193A
Authority
JP
Japan
Prior art keywords
oxide film
mos fet
low
gate oxide
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7221618A
Other languages
Japanese (ja)
Other versions
JP3681794B2 (en
Inventor
Akiyoshi Watanabe
秋好 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP22161895A priority Critical patent/JP3681794B2/en
Publication of JPH0964193A publication Critical patent/JPH0964193A/en
Application granted granted Critical
Publication of JP3681794B2 publication Critical patent/JP3681794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To form sources and drains of both MOSFETs of high and low withstand voltages by ion implantation at one time and to attain high reliability. SOLUTION: On the occasion when FET of high withstand voltage and FET of low withstand voltage are formed on the same substrate, a field oxide film 1 is grown selectively on the substrate and a first gate oxide film 2 is grown. A first resist film wherein a region of low withstand voltage and a region except a region to be used as a gate oxide film of high withstand voltage and a region wherein a low-concentration diffused layer 6 of high withstand voltage is to be formed are opened is formed. The first gate oxide film 2 is removed by etching with the first resist film used as a mask and a second gate oxide film 3 having a smaller thickness than the first gate oxide film is formed on the substrate. Gate electrodes 4 are formed on the second gate oxide film 3 of low withstand voltage and on the first gate oxide film 2 of high withstand voltage and a second resist film having a region of high withstand voltage opened is formed on the substrate. The low-concentration diffused layer 6 is formed by ion implantation and high-concentration diffused layers 8 in regions of sources and drains of low and high withstand voltages are formed by ion implantation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置の製造方
法に係り, 特に, 同一基板上に2種類の耐圧が異なるMO
S FET を形成する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to an MO device having two different withstand voltages on the same substrate.
It relates to a method of forming an S FET.

【0002】この場合,2種類の耐圧が異なるMOS FET
はゲート絶縁膜(以下ゲート酸化膜と記す)厚が異な
り,特に高耐圧のMOS FET はオフセットドレイン構造を
有する場合が多い。
In this case, two types of MOS FETs having different breakdown voltages are used.
The gate insulating film (hereinafter referred to as the gate oxide film) has a different thickness, and high withstand voltage MOS FETs often have an offset drain structure.

【0003】[0003]

【従来の技術】第2のMOS FET (低耐圧MOS FET と記
す)とオフセットドレイン構造の第1のMOS FET (高耐
圧のMOS FET と記す)とを有する半導体装置の製造方法
の従来例を図2,3を用いて説明する。
2. Description of the Related Art A conventional example of a method for manufacturing a semiconductor device having a second MOS FET (described as a low breakdown voltage MOS FET) and a first MOS FET having an offset drain structure (described as a high breakdown voltage MOS FET) is illustrated. A description will be given using 2 and 3.

【0004】図2(A) 〜(E) は従来例1の説明図であ
る。図で左側に低耐圧MOS FET を, 右側に高耐圧MOS FE
T を形成する。図2(A) において,シリコン基板11上に
フィールド酸化膜 1を選択成長し,高耐圧用の厚い第1
のゲート酸化膜 2を成長し,低耐圧側を開口したレジス
トパターンαを形成する。
2 (A) to 2 (E) are explanatory views of the first conventional example. In the figure, the low-voltage MOS FET is on the left and the high-voltage MOS FE is on the right.
Form T. In FIG. 2 (A), a field oxide film 1 is selectively grown on a silicon substrate 11, and a thick first film for high breakdown voltage is formed.
The gate oxide film 2 is grown to form a resist pattern α with an opening on the low breakdown voltage side.

【0005】図2(B) において,レジストパターンαを
マスクにして, 低耐圧側の第1のゲート酸化膜 2をフッ
酸系溶液でエッチング除去し,マスクを除去, 第1のゲ
ート酸化膜 2より薄い第2のゲート酸化膜 3を形成す
る。
In FIG. 2B, using the resist pattern α as a mask, the first gate oxide film 2 on the low breakdown voltage side is removed by etching with a hydrofluoric acid-based solution, the mask is removed, and the first gate oxide film 2 is removed. A thinner second gate oxide film 3 is formed.

【0006】次いで, 低耐圧側及び高耐圧側にゲート電
極 4を形成する。ここで,ソースドレイン形成用のイオ
ン注入を低耐圧側及び高耐圧側で同時に行うと, 厚い方
の酸化膜に合わせると薄い方には深く入り過ぎ, 浅い方
に合わせると, 厚い方はシリコン基板に届かなくなる。
そこで,レジストパターンβ, γを用いて低耐圧側及び
高耐圧側で別々にイオン注入を行う。
Next, the gate electrode 4 is formed on the low breakdown voltage side and the high breakdown voltage side. Here, if ion implantation for source / drain formation is performed simultaneously on the low breakdown voltage side and the high breakdown voltage side, if the thick oxide film is used, the thin film will go too deep, and if the shallow oxide film is used, the thick film will be used for the silicon substrate. Will not reach.
Therefore, using the resist patterns β and γ, ion implantation is separately performed on the low breakdown voltage side and the high breakdown voltage side.

【0007】図2(C) において,高耐圧側を開口したレ
ジストパターンβを形成し,ドーズ量が12〜13乗オーダ
のイオン注入 5により低濃度拡散層 6を形成する。図2
(D) において,低耐圧側を開口したレジストパターンγ
を形成し,ドーズ量が15乗オーダのイオン注入 7により
高濃度拡散層 8を形成する。
In FIG. 2C, a resist pattern β having an opening on the high breakdown voltage side is formed, and a low concentration diffusion layer 6 is formed by ion implantation 5 with a dose amount of the order of 12 to 13th power. FIG.
In (D), the resist pattern γ with the low breakdown voltage side opened
And a high-concentration diffusion layer 8 is formed by ion implantation 7 with a dose on the order of the 15th power.

【0008】図2(E) において,低耐圧側を覆い且つ高
耐圧側のオフセット部を除いた領域を開口したレジスト
パターンδを形成し,ドーズ量が15乗オーダのイオン注
入7'により高濃度拡散層8'を形成する。
In FIG. 2 (E), a resist pattern δ is formed which covers the low breakdown voltage side and opens the region excluding the offset portion on the high breakdown voltage side, and a high concentration is obtained by ion implantation 7 ′ with a dose amount of the 15th power order. A diffusion layer 8'is formed.

【0009】図3(A) 〜(E) は従来例2の説明図であ
る。図で左側に低耐圧MOS FET を, 右側に高耐圧MOS FE
T を形成する。この例は,低耐圧部と高耐圧部のソース
ドレインを一度のイオン注入で形成可能にするため,ゲ
ート電極形成後にフッ酸系溶液を用いて全素子領域の酸
化膜を除去してしまう方法である。
FIGS. 3A to 3E are explanatory views of the second conventional example. In the figure, the low-voltage MOS FET is on the left and the high-voltage MOS FE is on the right.
Form T. In this example, since the source / drain of the low breakdown voltage portion and the high breakdown voltage portion can be formed by one-time ion implantation, the oxide film in the entire element region is removed using a hydrofluoric acid-based solution after the gate electrode is formed. is there.

【0010】図3(A) において,シリコン基板11上にフ
ィールド酸化膜 1を選択成長し,高耐圧用の厚い第1の
ゲート酸化膜 2を成長し,低耐圧側を開口したレジスト
パターンαを形成する。
In FIG. 3A, a field oxide film 1 is selectively grown on a silicon substrate 11, a thick first gate oxide film 2 for high breakdown voltage is grown, and a resist pattern α having an opening on the low breakdown voltage side is formed. Form.

【0011】図3(B) において,レジストパターンαを
マスクにして, 低耐圧側の第1のゲート酸化膜 2をフッ
酸系溶液でエッチング除去し,マスクを除去, 第1のゲ
ート酸化膜 2より薄い第2のゲート酸化膜 3を形成す
る。
In FIG. 3B, using the resist pattern α as a mask, the first gate oxide film 2 on the low breakdown voltage side is removed by etching with a hydrofluoric acid-based solution, the mask is removed, and the first gate oxide film 2 is removed. A thinner second gate oxide film 3 is formed.

【0012】次いで, 低耐圧側及び高耐圧側にゲート電
極 4を形成する。図3(C) において,フッ酸系溶液を用
いて,素子領域の酸化膜を除去する。図3(D) におい
て,イオン注入時のダメージ緩和用の酸化膜を形成し,
高耐圧側を開口したレジストパターンβを形成し,ドー
ズ量が12〜13乗オーダのイオン注入 5により低濃度拡散
層 6を形成する。低耐圧側を開口したレジストパターン
γを形成し,ドーズ量が15乗オーダのイオン注入 7によ
り高濃度拡散層 8を形成する。
Next, the gate electrode 4 is formed on the low breakdown voltage side and the high breakdown voltage side. In Fig. 3 (C), the oxide film in the device region is removed using a hydrofluoric acid-based solution. In Fig. 3 (D), an oxide film is formed to alleviate damage during ion implantation.
A resist pattern β with an opening on the high breakdown voltage side is formed, and a low-concentration diffusion layer 6 is formed by ion implantation 5 with a dose on the order of 12 to 13th power. A resist pattern γ with an opening on the low breakdown voltage side is formed, and a high-concentration diffusion layer 8 is formed by ion implantation 7 with a dose on the order of the 15th power.

【0013】図3(E) において,低耐圧側を開口し且つ
高耐圧側のオフセット部を除いた領域を開口したレジス
トパターンεを形成し,ドーズ量が15乗オーダのイオン
注入7により低耐圧及び高耐圧側のソースドレイン領域
の拡散層 8を形成する。
In FIG. 3 (E), a resist pattern ε having an opening on the low breakdown voltage side and an area excluding the offset portion on the high breakdown voltage side is formed, and ion implantation 7 with a dose amount of the 15th order reduces the low breakdown voltage. And a diffusion layer 8 in the source / drain region on the high breakdown voltage side.

【0014】[0014]

【発明が解決しようとする課題】従来例1では工程数が
多く,特にCMOSプロセスの場合は両方のチャネルのMOSF
ET についてこの方法を行うことになり, 冗長なプロセ
スとなる。
In the conventional example 1, the number of steps is large, and particularly in the case of the CMOS process, MOSF of both channels is used.
This will be done for ET, which is a redundant process.

【0015】一方, 従来例2では,この問題を回避でき
るが,ゲート電極をマスクにしてソースドレイン上の酸
化膜をフッ酸系溶液で除去するため,ゲート電極端から
ゲート酸化膜の浸食が発生する。これは後の熱酸化工程
等で埋まりはするが,ホットキャリアによる劣化を加速
したり,ゲート酸化膜の絶縁破壊耐性を弱める結果とな
る。
On the other hand, in the second conventional example, this problem can be avoided, but since the oxide film on the source / drain is removed with a hydrofluoric acid-based solution using the gate electrode as a mask, erosion of the gate oxide film from the end of the gate electrode To do. Although this is filled in by a later thermal oxidation process, it results in accelerating the deterioration due to hot carriers and weakening the dielectric breakdown resistance of the gate oxide film.

【0016】本発明は高低両耐圧MOS FET のソースドレ
イン形成を1回のイオン注入で行い,且つ高信頼度化を
図ることを目的とする。
It is an object of the present invention to form a source / drain of a high / low dual breakdown voltage MOS FET by one-time ion implantation and to achieve high reliability.

【0017】[0017]

【課題を解決するための手段】上記課題の解決は, 1)同一シリコン基板上に高耐圧MOS FET と低耐圧MOS
FET を形成する際に, シリコン基板上にフィールド酸化
膜を選択成長し,第1のゲート酸化膜を成長し,低耐圧
MOS FET 領域を開口し且つ高耐圧MOS FET のゲート酸化
膜として使用する領域と高耐圧MOS FET の低濃度拡散層
を形成する領域とを除いた領域を開口した第1のレジス
トパターンを形成する第1工程と,該第1のレジストパ
ターンをマスクにして, 第1のゲート酸化膜をエッチン
グ除去し,該第1のレジストパターンを除去する第2工
程と,該シリコン基板上に該第1のゲート酸化膜より薄
い第2のゲート酸化膜を形成し, 次いで, 低耐圧MOS FE
T の第2のゲート酸化膜上及び高耐圧MOS FET の第1の
ゲート酸化膜上にゲート電極を形成する第3工程と,該
シリコン基板上に高耐圧MOS FET 領域を開口した第2の
レジストパターンを形成し,イオン注入により低濃度拡
散層を形成し,該第2のレジストパターンを除去する第
4工程と, イオン注入により低耐圧MOS FET 及び高耐圧
MOS FET のソースドレイン領域の高濃度拡散層を形成す
る第5工程とを有する半導体装置の製造方法,あるいは 2)前記第3工程において,高耐圧MOS FET 側にゲート
電極を第1のゲート酸化膜上及びソース側の第2のゲー
ト酸化膜上にまたがって形成することを特徴とする前記
1記載の半導体装置の製造方法により達成される。
[Means for Solving the Problems] To solve the above problems, 1) a high breakdown voltage MOS FET and a low breakdown voltage MOS are formed on the same silicon substrate.
When forming a FET, a field oxide film is selectively grown on a silicon substrate, a first gate oxide film is grown, and a low breakdown voltage is obtained.
A first resist pattern is formed in which the MOS FET region is opened and the region except the region used as the gate oxide film of the high breakdown voltage MOS FET and the region forming the low concentration diffusion layer of the high breakdown voltage MOS FET is opened. One step, a second step of etching away the first gate oxide film by using the first resist pattern as a mask to remove the first resist pattern, and the first gate on the silicon substrate. A second gate oxide film, which is thinner than the oxide film, is formed, and then a low breakdown voltage MOS FE is formed.
A third step of forming a gate electrode on the second gate oxide film of T and on the first gate oxide film of the high breakdown voltage MOS FET, and a second resist having a high breakdown voltage MOS FET region opened on the silicon substrate. A fourth step of forming a pattern, forming a low concentration diffusion layer by ion implantation, and removing the second resist pattern, and a low withstand voltage MOS FET and a high withstand voltage by ion implantation.
A method for manufacturing a semiconductor device, comprising: a fifth step of forming a high-concentration diffusion layer in a source / drain region of a MOS FET; or 2) In the third step, a gate electrode is formed on the side of the high breakdown voltage MOS FET to form a first gate oxide film. It is achieved by the method for manufacturing a semiconductor device as described in the above item 1, characterized in that it is formed over the second gate oxide film on the upper side and the source side.

【0018】本発明によると,高低両耐圧MOS FET のソ
ースドレイン形成を1回のイオン注入で行い,且つゲー
ト電極形成後にフッ酸系溶液による酸化膜除去工程がな
いため,ゲート酸化膜の浸食現象を防ぐことができるた
め,デバイスの信頼性が向上する。また,低濃度拡散領
域上に残した厚い第1のゲート酸化膜はゲート電極とド
レイン上の薄い酸化膜の領域との位置合わせ余裕を提供
している。
According to the present invention, the source / drain formation of the high and low withstand voltage MOS FET is performed by one-time ion implantation, and there is no step of removing the oxide film with the hydrofluoric acid solution after the gate electrode is formed. The reliability of the device is improved because this can be prevented. Further, the thick first gate oxide film left on the low-concentration diffusion region provides an alignment margin between the gate electrode and the thin oxide region on the drain.

【0019】更に,ゲート電極の形成位置により,高耐
圧MOS FET のソース側のゲート酸化膜厚をドレイン側の
それとを同じにもできるし〔図1(C) 参照〕,また薄く
する〔図1(D) 参照〕ことができる。後者の場合は耐圧
と特性の両面において有利である。従って,デバイス構
造の選択の自由度が増す。
Further, depending on the position where the gate electrode is formed, the gate oxide film thickness on the source side of the high breakdown voltage MOS FET can be made the same as that on the drain side [see FIG. 1 (C)], and it can be made thinner [FIG. 1]. (See (D)]. The latter case is advantageous in terms of withstand voltage and characteristics. Therefore, the degree of freedom in selecting the device structure increases.

【0020】[0020]

【発明の実施の形態】図1(A) 〜(F) は実施例の説明図
である。図で左側に低耐圧MOS FET を, 右側に高耐圧MO
S FET を形成する。
1 (A) to 1 (F) are explanatory views of an embodiment. In the figure, the low withstand voltage MOSFET is on the left and the high withstand voltage MO is on the right.
Form S FET.

【0021】図1(A) において,p型シリコン(p-Si)
基板11上に厚さ 500〜800 nmのフィールド酸化膜 1を選
択成長し,厚さ50〜80 nm の高耐圧用の厚い第1のゲー
ト酸化膜 2を成長し,低耐圧側を開口し且つ高耐圧側の
ゲート酸化膜として使用する領域と低濃度拡散層を形成
する領域を除いた領域を開口したレジストパターンα
(第1のレジストパターン)を形成する。このレジスト
パターンαのソース側開口部はゲート電極を形成する領
域まで達してもよいし〔図1(C) 〕,また達しなくても
よい〔図1(D) 〕。
In FIG. 1A, p-type silicon (p-Si)
A field oxide film 1 having a thickness of 500 to 800 nm is selectively grown on a substrate 11, a thick first gate oxide film 2 having a high breakdown voltage of 50 to 80 nm is grown, and a low breakdown voltage side is opened. A resist pattern α having an opening in a region other than a region used as a gate oxide film on the high breakdown voltage side and a region for forming a low concentration diffusion layer
(First resist pattern) is formed. The source side opening of the resist pattern α may reach the region where the gate electrode is formed [FIG. 1 (C)] or may not reach it [FIG. 1 (D)].

【0022】図1(B) において,レジストパターンαを
マスクにして, 第1のゲート酸化膜2をフッ酸系溶液で
エッチング除去し,マスクを除去する。図1(C) におい
て,第1のゲート酸化膜 2より薄い厚さ10〜25 nm の第
2のゲート酸化膜 3を形成する。
In FIG. 1B, using the resist pattern α as a mask, the first gate oxide film 2 is removed by etching with a hydrofluoric acid solution to remove the mask. In FIG. 1 (C), a second gate oxide film 3 having a thickness of 10 to 25 nm, which is thinner than the first gate oxide film 2, is formed.

【0023】次いで, 低耐圧側及び高耐圧側にゲート電
極 4を形成する。図1(D) は図1(C) と同じ工程で,ゲ
ート電極 4がソース側にずれて形成されたデバイス構造
を示す。
Next, the gate electrode 4 is formed on the low breakdown voltage side and the high breakdown voltage side. FIG. 1 (D) shows a device structure in which the gate electrode 4 is formed on the source side in the same process as in FIG. 1 (C).

【0024】図1(E) において,高耐圧側を開口したレ
ジストパターンβ(第2のレジストパターン)を形成
し,イオン種;りんイオン(P+ ),エネルギー;50〜100
KeV,ドーズ量;1012〜1013cm-2のイオン注入 5により低
濃度拡散層 6を形成する。
In FIG. 1 (E), a resist pattern β (second resist pattern) having an opening on the high breakdown voltage side is formed, and ion species: phosphorus ions (P + ), energy: 50-100
KeV, dose amount; a low concentration diffusion layer 6 is formed by ion implantation 5 of 10 12 to 10 13 cm -2 .

【0025】図1(F) において,レジストパターンβを
除去し,イオン種;砒素イオン(As+ ) , エネルギー;3
0〜70 KeV, ドーズ量;〜1015cm-2のイオン注入 7によ
り低耐圧及び高耐圧側のソースドレイン領域の拡散層 8
を形成する。
In FIG. 1 (F), the resist pattern β is removed, and ion species: arsenic ion (As + ), energy: 3
0 to 70 KeV, dose; up to 10 15 cm -2 ion implantation 7 Diffusion layer in source / drain region on low and high breakdown voltage side 8
To form

【0026】ここで,低濃度拡散層 6上の厚い第1のゲ
ート酸化膜は注入マスクの役目をしている。このとき,
実施例のようにpチャネルMOS FET かnチャネルMOS FE
T のみのデバイスでは, オフセット構造を設ける必要が
ないので, マスクレス化が可能となる。CMOSプロセスの
場合は反対チャネル側を開口しないレジストパターンを
通常の場合と同様に形成すればよい。
Here, the thick first gate oxide film on the low-concentration diffusion layer 6 serves as an implantation mask. At this time,
P-channel MOS FET or n-channel MOS FE as in the embodiment
A device with only T does not need to have an offset structure, and thus can be made maskless. In the case of the CMOS process, a resist pattern in which the opposite channel side is not opened may be formed as in the usual case.

【0027】実施例では, nチャネルMOS FET について
説明したが,pチャネルMOS FET でも同様に本発明は適
用可能である。CMOSデバイスではnチャネルMOS FET の
一括ソースドレイン形成マスクと, pチャネルMOS FET
の一括ソースドレインマスクを用意すればよい。
Although the n-channel MOS FET has been described in the embodiment, the present invention can be similarly applied to the p-channel MOS FET. For CMOS devices, a collective source / drain formation mask for n-channel MOS FET and p-channel MOS FET
It is sufficient to prepare a batch source drain mask.

【0028】[0028]

【発明の効果】本発明によれば, 高耐圧及び低耐圧MOS
FET のソースドレインを1回のイオン注入で行って製造
工程数を低減し,且つエッチングによるゲート酸化膜の
浸食を防いで高信頼度化を図ることができる。
According to the present invention, high breakdown voltage and low breakdown voltage MOS
The source / drain of the FET can be implanted by one-time ion implantation to reduce the number of manufacturing steps, and the erosion of the gate oxide film due to etching can be prevented to achieve high reliability.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の説明図FIG. 1 is an explanatory diagram of an embodiment.

【図2】 従来例1の説明図FIG. 2 is an explanatory diagram of Conventional Example 1.

【図3】 従来例2の説明図FIG. 3 is an explanatory diagram of Conventional Example 2.

【符号の説明】[Explanation of symbols]

1 フィールド酸化膜 2 第1のゲート酸化膜 3 第2のゲート酸化膜 4 ゲート電極 5 低濃度イオン注入 6 低濃度拡散層 7 高濃度イオン注入 8 高濃度拡散層 11 シリコン基板 α〜ε レジストパターン 1 field oxide film 2 first gate oxide film 3 second gate oxide film 4 gate electrode 5 low concentration ion implantation 6 low concentration diffusion layer 7 high concentration ion implantation 8 high concentration diffusion layer 11 silicon substrate α to ε resist pattern

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 同一シリコン基板上に第1のMOS FET と
第2のMOS FET を形成する際に,シリコン基板上に第1
のゲート絶縁膜を成長し,第2のMOS FET 領域を開口し
且つ第1のMOS FET のゲート絶縁膜として使用する領域
と第1のMOS FET の低濃度拡散層を形成する領域とを除
いた領域を開口した第1のレジストパターンを形成する
第1工程と,該第1のレジストパターンをマスクにし
て, 第1のゲート絶縁膜をエッチング除去し,該第1の
レジストパターンを除去する第2工程と,該シリコン基
板上に該第1のゲート絶縁膜より薄い第2のゲート絶縁
膜を形成し, 次いで, 第2のMOS FET の第2のゲート絶
縁膜上及び第1のMOS FET の第1のゲート絶縁膜上にゲ
ート電極を形成する第3工程と,該シリコン基板上に第
1のMOS FET 領域を開口した第2のレジストパターンを
形成し,イオン注入により低濃度拡散層を形成し,該第
2のレジストパターンを除去する第4工程と,イオン注
入により第2のMOS FET 及び第1のMOS FET のソースド
レイン領域の高濃度拡散層を形成する第5工程とを有す
ることを特徴とする半導体装置の製造方法。
1. When forming a first MOS FET and a second MOS FET on the same silicon substrate, the first MOS FET and the second MOS FET are formed on the silicon substrate.
The gate insulating film of the first MOS FET was grown, the second MOS FET region was opened, and the region used as the gate insulating film of the first MOS FET and the region forming the low concentration diffusion layer of the first MOS FET were removed. A first step of forming a first resist pattern having an opening in a region; a second step of removing the first gate insulating film by etching using the first resist pattern as a mask; and a second step of removing the first resist pattern A step of forming a second gate insulating film thinner than the first gate insulating film on the silicon substrate, and then forming a second gate insulating film of the second MOS FET and a second gate insulating film of the first MOS FET. The third step of forming a gate electrode on the first gate insulating film, the second resist pattern having the first MOS FET region opened on the silicon substrate, and the low concentration diffusion layer is formed by ion implantation. , A fourth step of removing the second resist pattern When, a method of manufacturing a semiconductor device characterized by having a fifth step of forming a high concentration diffusion layer of the source drain region of the second MOS FET and a first MOS FET by the ion implantation.
【請求項2】 前記第3工程において,第1のMOS FET
側にゲート電極を第1のゲート絶縁膜上及びソース側の
第2のゲート絶縁膜上にまたがって形成することを特徴
とする請求項1記載の半導体装置の製造方法。
2. The first MOS FET in the third step
2. The method of manufacturing a semiconductor device according to claim 1, wherein a gate electrode is formed on the first gate insulating film and on the second gate insulating film on the source side.
JP22161895A 1995-08-30 1995-08-30 Manufacturing method of semiconductor device Expired - Lifetime JP3681794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22161895A JP3681794B2 (en) 1995-08-30 1995-08-30 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22161895A JP3681794B2 (en) 1995-08-30 1995-08-30 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPH0964193A true JPH0964193A (en) 1997-03-07
JP3681794B2 JP3681794B2 (en) 2005-08-10

Family

ID=16769585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22161895A Expired - Lifetime JP3681794B2 (en) 1995-08-30 1995-08-30 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3681794B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424603B1 (en) * 2000-07-21 2004-03-24 산요덴키가부시키가이샤 Method of manufacturing semiconductor device
US6861341B2 (en) * 2002-02-22 2005-03-01 Xerox Corporation Systems and methods for integration of heterogeneous circuit devices
US6897117B2 (en) 2001-08-10 2005-05-24 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
KR100530287B1 (en) * 2001-08-10 2005-11-22 산요덴키가부시키가이샤 Semiconductor device and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424603B1 (en) * 2000-07-21 2004-03-24 산요덴키가부시키가이샤 Method of manufacturing semiconductor device
US6897117B2 (en) 2001-08-10 2005-05-24 Sanyo Electric Co., Ltd. Method of manufacturing semiconductor device
KR100508359B1 (en) * 2001-08-10 2005-08-17 산요덴키가부시키가이샤 Semiconductor device and manufacturing method thereof
KR100530287B1 (en) * 2001-08-10 2005-11-22 산요덴키가부시키가이샤 Semiconductor device and manufacturing method thereof
US7045860B2 (en) 2001-08-10 2006-05-16 Sanyo Electric Co., Ltd. Semiconductor device and manufacturing method thereof
US6861341B2 (en) * 2002-02-22 2005-03-01 Xerox Corporation Systems and methods for integration of heterogeneous circuit devices
US7341930B2 (en) 2002-02-22 2008-03-11 Xerox Corporation Systems and methods for integration of heterogeneous circuit devices

Also Published As

Publication number Publication date
JP3681794B2 (en) 2005-08-10

Similar Documents

Publication Publication Date Title
JPH10150195A (en) Mosfet and its manufacture
US5879995A (en) High-voltage transistor and manufacturing method therefor
JPH0730107A (en) High voltage withstand transistor and its manufacture
JPH0964193A (en) Manufacture of semiconductor device
JPH02264464A (en) Manufacture of semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
JPS63244683A (en) Field effect type semiconductor device and its manufacture
JP2605757B2 (en) Method for manufacturing semiconductor device
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JPH07321212A (en) Forming method for channel stop diffusion layer
JPH0738095A (en) Semiconductor device and its manufacturing method
JP3431353B2 (en) Semiconductor device and manufacturing method thereof
JPH1117024A (en) Manufacture of semiconductor device
JPH10107266A (en) Manufacture of mosfet
JPH1126766A (en) Mos field effect transistor and manufacture thereof
JPS59195869A (en) Manufacture of semiconductor device
JPH02219237A (en) Mis type semiconductor device
JPS6211277A (en) Manufacture of semiconductor integrated circuit
JPS60142557A (en) Manufacture of semiconductor device with high withstand voltage
JPS61166154A (en) Manufacture of mis type semiconductor device
JP2001332721A (en) Semiconductor device and its manufacturing method
JPH04363019A (en) Manufacture of semiconductor device
JPH02126645A (en) Manufacture of mis type field-effect transistor
JPS6057969A (en) Semiconductor device and manufacture thereof
JPH0964361A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050519

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080527

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090527

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100527

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110527

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120527

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130527

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 9

EXPY Cancellation because of completion of term