JPS6239819B2 - - Google Patents

Info

Publication number
JPS6239819B2
JPS6239819B2 JP55173590A JP17359080A JPS6239819B2 JP S6239819 B2 JPS6239819 B2 JP S6239819B2 JP 55173590 A JP55173590 A JP 55173590A JP 17359080 A JP17359080 A JP 17359080A JP S6239819 B2 JPS6239819 B2 JP S6239819B2
Authority
JP
Japan
Prior art keywords
layer
sio
poly
photoresist
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55173590A
Other languages
Japanese (ja)
Other versions
JPS5796537A (en
Inventor
Akira Takei
Hajime Kamioka
Takashi Mitsuida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55173590A priority Critical patent/JPS5796537A/en
Publication of JPS5796537A publication Critical patent/JPS5796537A/en
Publication of JPS6239819B2 publication Critical patent/JPS6239819B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate

Description

【発明の詳細な説明】 本発明は半導体層の側面に選択的に絶縁体層を
被着形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for selectively depositing an insulating layer on the side surfaces of a semiconductor layer.

はじめに本発明が半導体装置の製造に於て効果
を有する所以を実際のデバイスに即して説明す
る。
First, the reason why the present invention is effective in manufacturing semiconductor devices will be explained based on an actual device.

第1図は集積型の1トランジスタMOSメモリ
であるが、蓄積電極101とゲート電極102が
共に多結晶シリコン(以下ポリSiと略記)で形成
されるところから、通常「2層ポリSi型」と呼ば
れているものである。
Figure 1 shows an integrated one-transistor MOS memory, but since both the storage electrode 101 and the gate electrode 102 are made of polycrystalline silicon (hereinafter abbreviated as poly-Si), it is usually called a "two-layer poly-Si type". It is what is called.

此のMOSメモリの製造に於ては、まずポリSi
層101が形成された後、ゲート絶縁膜が熱酸化
によつて形成され、次いでポリSi層102が形成
されるのであるが、熱酸化の際ポリSi層101の
表面も酸化されてSiO2層103が形成される。
このSiO2層103がポリSi層101とポリSi層1
02の間の絶縁膜となるのであるが、上述のよう
にゲート絶縁膜104(通常400nm程度の厚さ)
と同時に形成されるので、ポリSi層の酸化速度は
単結晶Siのそれより大ではあるが、その厚さは
600nm程度に限られる。なお、図に於て105は
キヤパシタの誘電層であるSiO2,106はフイ
ールド酸化膜、107はp型シリコン(Si)基板
である。
In manufacturing this MOS memory, we first use poly-Si.
After the layer 101 is formed, a gate insulating film is formed by thermal oxidation, and then a poly-Si layer 102 is formed. During the thermal oxidation, the surface of the poly-Si layer 101 is also oxidized and an SiO 2 layer is formed. 103 is formed.
This SiO 2 layer 103 is a poly-Si layer 101 and a poly-Si layer 1
02, and as mentioned above, the gate insulating film 104 (usually about 400 nm thick)
Although the oxidation rate of the poly-Si layer is higher than that of single-crystal Si because it is formed at the same time, its thickness is
Limited to around 600nm. In the figure, 105 is a SiO 2 dielectric layer of the capacitor, 106 is a field oxide film, and 107 is a p-type silicon (Si) substrate.

絶縁膜がこの程度の厚さであると、図のAの部
分のように形状が急に変化している部分では絶縁
不良が生じやすい。ポリSi層101の上面のSiO2
層103を厚くすることは、予めSiO2層を形成
しておく等の方法によつて容易に実現し得るが、
側面部は、ポリSi層101のパターニングによつ
て始めて露出されるので、ゲート酸化膜形成前に
(或は形成後に)その部分にのみ絶縁膜を形成す
ることは困難であつた。
When the insulating film has such a thickness, insulation failure is likely to occur in a portion where the shape changes suddenly, such as the portion A in the figure. SiO 2 on the top surface of poly-Si layer 101
Increasing the thickness of the layer 103 can be easily achieved by forming a SiO 2 layer in advance, etc.
Since the side surface portion is exposed only by patterning the poly-Si layer 101, it is difficult to form an insulating film only on that portion before (or after) forming the gate oxide film.

本発明はこのような場合にも半導体層の側面の
みに選択的に且容易に絶縁皮膜を形成する方法を
提供するものであつて、側面の露出した半導体領
域を表面に有する半導体基板に、その平面部分に
は比較的厚く、側面部分には比較的薄く高分子材
料を塗布した後、該高分子層の一部を灰化処理し
て前記半導体領域側面を再び露出し、プラズマ気
相成長法によつて該半導体領域側面に絶縁体層を
被着することを特徴としている。
The present invention provides a method for selectively and easily forming an insulating film only on the side surfaces of a semiconductor layer in such a case, and the present invention provides a method for forming an insulating film selectively and easily only on the side surfaces of a semiconductor layer. After applying a polymer material relatively thickly to the plane portion and relatively thinly to the side portions, a portion of the polymer layer is ashed to expose the side surfaces of the semiconductor region again, and then plasma vapor phase epitaxy is performed. The method is characterized in that an insulating layer is deposited on the side surface of the semiconductor region.

第2図は本発明の一実施例を順次説明するもの
である。同図aに於て、Si基板1上にSiO2層2を
介してポリSi層3が存在し、その側面3′には
SiO2層は被着していない。これはポリSi層3をパ
ターニングした結果生ずる状態に対応するもので
ある。なお、SiO2層2或は2′の存在の有無は本
発明の実施に直接関係するものではなく、単に第
1図に対応させる為に、それが存在する場合を示
しているだけである。
FIG. 2 sequentially explains one embodiment of the present invention. In figure a, a poly-Si layer 3 exists on a Si substrate 1 with a SiO 2 layer 2 interposed therebetween, and its side surface 3' is
No SiO2 layer is deposited. This corresponds to the state that occurs as a result of patterning the poly-Si layer 3. The presence or absence of the SiO 2 layer 2 or 2' is not directly related to the implementation of the present invention, and is merely shown to correspond to FIG. 1.

この状態の基板上に粘性を通常より高く調整し
たフオトレジストをスピンコートで約500nmの厚
さに塗布する。ポリSi層3による段差は650nm程
度なのでフオトレジスト層4は、段差部では薄い
層でつながるようになる。フオトレジストの粘性
が低いと、この部分も厚くつながるので本発明の
実施に不都合である。フオトレジストは粘性が高
いほど薄く塗布するのが困難になるが、本発明を
実施する為には段差よりも薄く塗布できる範囲内
で、できるだけ高粘性に調整すべきである。
On the substrate in this state, a photoresist whose viscosity has been adjusted to be higher than usual is applied by spin coating to a thickness of approximately 500 nm. Since the step difference due to the poly-Si layer 3 is about 650 nm, the photoresist layer 4 becomes connected with a thin layer at the step portion. If the viscosity of the photoresist is low, this portion will also be thick and connected, which is inconvenient for implementing the present invention. The higher the viscosity of a photoresist, the more difficult it is to apply it thinly, but in order to carry out the present invention, the viscosity should be adjusted to be as high as possible within a range that allows the photoresist to be applied thinner than the difference in level.

次にこのレジスト層4の表面をプラズマアツシ
ヤーで灰化すると、この灰化処理はほぼ等方的に
進行するので第2図bに示す如く、ポリSi層3の
側面部分のフオトレジストは除去されて空隙5が
生ずる一方、平坦部に塗布されたフオトレジスト
はその厚みを減ずるのみで、なお基板表面を覆つ
ている。
Next, the surface of this resist layer 4 is ashed using a plasma assher. Since this ashing process proceeds almost isotropically, the photoresist on the side surfaces of the poly-Si layer 3 is removed, as shown in FIG. On the other hand, the photoresist applied to the flat area only reduces its thickness and still covers the substrate surface.

このフオトレジストを残した状態のまま次にプ
ラズマ気相成長法(以下プラズマCVD法と記
す)によつてSiO2層を被着すると第2図cのよ
うにポリSi層端面にSiO2層が被着形成される。フ
オトレジスト上にもSiO2層は堆積するがこれは
後にフオトレジストと共に除去されるものであ
り、図面には描かれていない。
Next, with this photoresist left in place, a SiO 2 layer is deposited by plasma vapor deposition (hereinafter referred to as plasma CVD), and as shown in Figure 2c, a SiO 2 layer is formed on the end face of the poly-Si layer. Adhesion is formed. A SiO 2 layer is also deposited on the photoresist, but this is later removed together with the photoresist and is not depicted in the drawing.

プラズマCVD法によるSiO2の堆積は、原料ガ
スとして通常SiH4+N2Oが用いられ、減圧状態で
プラズマ化されて100℃程度の低温で反応が進行
するのでフオトレジストの分解は起らない。また
SiO2層の厚みを任意に制御することができる。
In the deposition of SiO 2 by the plasma CVD method, SiH 4 +N 2 O is usually used as a raw material gas, which is turned into plasma under reduced pressure and the reaction proceeds at a low temperature of about 100° C., so that the photoresist does not decompose. Also
The thickness of the SiO2 layer can be controlled arbitrarily.

最後にフオトレジストを、その上に堆積した
SiO2と共に除去し、600〜800℃、30〜40min程度
の熱処理によつて堆積したSiO2層を緻密なもの
に変えればポリSi層3の側面に絶縁性の良好な
SiO2層が形成されたことになる。
Finally, photoresist was deposited on top of it.
If the deposited SiO 2 layer is removed together with SiO 2 and heat treated at 600 to 800°C for 30 to 40 minutes, the deposited SiO 2 layer can be made dense, creating a layer with good insulation on the sides of the poly-Si layer 3.
This means that two SiO layers have been formed.

以上はポリSi層の側面にSiO2層を形成する場合
であるが、単結晶Siに対しても同様にその側面に
絶縁皮膜を形成することができる。次にそのよう
な処理の必要な場合の一例をあげる。
The above is a case where an SiO 2 layer is formed on the side surface of a poly-Si layer, but an insulating film can be similarly formed on the side surface of single-crystal Si. Next, we will give an example of a case where such processing is necessary.

第3図aは先に本発明者の一人によつて発明さ
れ、本出願人によつて出願された1トランジスタ
型MOSメモリの構造を示すものである。該先願
発明(特願昭54−109640)の特徴や動作は本発明
に直接関係するものではないが、図中の各部位の
名称或いは機能を簡単に述べると、300はp-型Si
基板、301,301′はフイールド酸化膜であ
り、また302及び303はn+型ポリSiで夫々
MOSトランジスタのソース及びドレイン領域を
構成する。304はp型エピタキシヤル成長領域
でMOSトランジスタのバツクゲート領域、30
5はMOSトランジスタのゲート絶縁膜である。
また306はMOSトランジスタのゲート電極で
ワード線を兼ねる導体層、307はMOSトラン
ジスタのドレインに接続されるビツト線、308
はp+領域で、薄い酸化膜309をはさんでポリ
Si層302′と共に電荷を蓄積する領域を構成す
る。311はp+チヤネルストツパであり、31
2はPSG層である。
FIG. 3a shows the structure of a one-transistor type MOS memory previously invented by one of the inventors of the present invention and filed by the applicant of the present invention. Although the features and operations of the prior invention (Japanese Patent Application No. 109640/1984) are not directly related to the present invention, to briefly describe the names or functions of each part in the figure, 300 is a p - type Si
The substrates 301 and 301' are field oxide films, and 302 and 303 are n + type poly-Si, respectively.
Configures the source and drain regions of the MOS transistor. 304 is a p-type epitaxial growth region, which is a back gate region of a MOS transistor;
5 is a gate insulating film of a MOS transistor.
Further, 306 is a conductor layer which is the gate electrode of the MOS transistor and also serves as a word line, 307 is a bit line connected to the drain of the MOS transistor, and 308 is a conductor layer which also serves as a word line.
is the p + region, with a thin oxide film 309 in between.
Together with the Si layer 302', it constitutes a region for accumulating charges. 311 is p + channel stopper and 31
2 is the PSG layer.

図中の厚いSiO2層301′は、n+型のソース領
域302と、p+領域308とが直接突合されて
低耐圧のP/N接合を形成するのを避ける為分離
領域として設けられているものであつて、高集積
化の為にはこれを無くす事が望まれる。
The thick SiO 2 layer 301' in the figure is provided as a separation region to prevent the n + type source region 302 and the p + region 308 from directly butting together and forming a low breakdown voltage P/N junction. However, it is desirable to eliminate this in order to achieve higher integration.

そこで第3図bのような構成にすることが考え
られるが、従来は図のBの部分の構造を、即ち
p+領域308の側面をSiO2層310で覆つてn+
ポリSi層302と直接接することのないようにし
た構造を、十分な耐圧を持たせて実現することが
難かしかつた。此の図面の装置はBの部分以外は
a図のものと構成、機能は全く同じなので煩雑さ
を避ける為各部の説明は省略するが、Bの部分は
薄い酸化膜309に連続してSi基板300の表面
に形成されたステツプ部の側面にやや厚い酸化膜
310が、薄い酸化膜309に連続して形成され
ているものである。
Therefore, it is conceivable to create a structure as shown in Figure 3b, but conventionally the structure of part B in the figure is changed to
The sides of the p + region 308 are covered with a SiO 2 layer 310 to form an n +
It has been difficult to realize a structure that does not come into direct contact with the poly-Si layer 302 and has sufficient breakdown voltage. The device in this drawing has exactly the same structure and function as the one in FIG. A slightly thick oxide film 310 is formed on the side surface of the step portion formed on the surface of the oxide film 300, which is continuous with a thin oxide film 309.

本発明によればこのような位置、即ち単結晶半
導体表面に存在するステツプ部の側面に選択的に
十分な絶縁耐圧を有する絶縁皮膜を形成すること
ができ、従つて第3図bのような構造のメモリ素
子を形成することが可能となる。
According to the present invention, it is possible to selectively form an insulating film having a sufficient dielectric strength voltage on such a position, that is, on the side surface of the step portion existing on the surface of the single crystal semiconductor, and therefore, as shown in FIG. It becomes possible to form a memory element with a structure.

第4図a〜dにこのような場合の本発明の実施
例が示されているが、本質的には第2図における
工程と同じなので簡単に説明する。
An embodiment of the present invention in such a case is shown in FIGS. 4a to 4d, and since the steps are essentially the same as those shown in FIG. 2, a brief explanation will be provided.

まず、第4図aに示されているように、ステツ
プ部のある半導体基板1の表面に、フオトレジス
ト層4を塗布形成する。この場合、第2図に於け
ると同様、高粘性のフオトレジストが使用され
る。第3図bに対応させて見た場合、このステツ
プは基板をエツチングして形成したものでBの部
分のステツプに対応し、SiO2層2は電荷蓄積用
キヤパシタの誘電体膜307に相当することにな
る。
First, as shown in FIG. 4a, a photoresist layer 4 is coated on the surface of the semiconductor substrate 1 where the step portion is located. In this case, as in FIG. 2, a highly viscous photoresist is used. When viewed in conjunction with FIG. 3b, this step is formed by etching the substrate and corresponds to the step in part B, and the SiO 2 layer 2 corresponds to the dielectric film 307 of the charge storage capacitor. It turns out.

次いでフオトレジスト層を軽く灰化処理して不
連続部5を生ぜしめ(第4図b)、プラズマCVD
法によつてSiO26を形成する(第4図c)。フオ
トレジスト層と共にその上に堆積したSiO2(図
示せず)を除去し、熱処理によつてSiO26を緻
密化すれば第4図dに示すようにステツプ側面に
厚いSiO2膜6′を持つ構造が実現する。
Next, the photoresist layer is lightly ashed to produce discontinuous portions 5 (Fig. 4b), and then subjected to plasma CVD.
SiO 2 6 is formed by a method (FIG. 4c). If the SiO 2 (not shown) deposited on the photoresist layer is removed and the SiO 2 6 is densified by heat treatment, a thick SiO 2 film 6' can be formed on the side surface of the step as shown in FIG. 4d. The structure you have is realized.

以上の説明はシリコン層の側面にSiO2膜を形
成する場合を例にあげて行なつたが、被覆される
ものがシリコンに限るものでないこと及び被覆す
る絶縁材料がSiO2に限るものでないことはもち
ろんである。
The above explanation has been given using the case where a SiO 2 film is formed on the side surface of a silicon layer as an example, but it should be noted that the material to be coated is not limited to silicon, and the insulating material to be coated is not limited to SiO 2 . Of course.

以上述べたように、本発明は本質的には半導体
層の側面と絶縁皮膜を形成する方法であるが、半
導体装置の製造、特に1トランジスタ型MOSメ
モリの製造に有用なものである。
As described above, the present invention is essentially a method for forming an insulating film on the side surface of a semiconductor layer, but it is useful for manufacturing semiconductor devices, particularly for manufacturing one-transistor type MOS memories.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第3図は本発明が利用されるデバイ
スの構造を示す図、第2図及び第4図は本発明の
実施例を説明する図であつて1はSi基板、2,
2′はSiO2、3はポリSi層、3′はポリSi層の端
面、4はフオトレジスト、5はフオトレジストの
不連続部、6,6′はプラズマCVD法で形成した
SiO2、101,102はポリSi層、103,10
4,105はSiO2皮膜、106はフイールド
SiO2層、300はSi基板、301,301′は厚
いSiO2層、302,302′,303はn+ポリSi
層、304はp型エピタキシヤル層、305はゲ
ート酸化膜、306はゲート電極兼ワード線、3
07はビツト線、308はp+領域、309,3
10はSiO2層、311はチヤネルストツパ、3
12はPSG層である。
1 and 3 are diagrams showing the structure of a device to which the present invention is applied, and FIGS. 2 and 4 are diagrams illustrating an embodiment of the present invention, in which 1 is a Si substrate, 2 is a
2' is SiO 2 , 3 is a poly-Si layer, 3' is the end face of the poly-Si layer, 4 is a photoresist, 5 is a discontinuous part of the photoresist, 6 and 6' are formed by plasma CVD method
SiO 2 , 101, 102 are poly-Si layers, 103, 10
4,105 is SiO 2 film, 106 is field
SiO 2 layer, 300 is Si substrate, 301, 301' is thick SiO 2 layer, 302, 302', 303 is n + poly-Si
304 is a p-type epitaxial layer, 305 is a gate oxide film, 306 is a gate electrode/word line, 3
07 is the bit line, 308 is the p + region, 309,3
10 is a SiO 2 layer, 311 is a channel stopper, 3
12 is a PSG layer.

Claims (1)

【特許請求の範囲】[Claims] 1 側面の露出した半導体領域を表面に有する半
導体基板に、その平面部分には比較的厚く、側面
部分には比較的薄く高分子材料を塗布した後、該
高分子層の一部を灰化処理して前記半導体領域側
面を再び露出し、プラズマ気相成長法によつて該
半導体領域側面に絶縁体層を被着することを特長
とする絶縁皮膜の形成法。
1. After applying a polymeric material relatively thickly on the flat surface and relatively thinly on the side surface of a semiconductor substrate having a semiconductor region with exposed side surfaces on the surface, a part of the polymer layer is subjected to ashing treatment. A method for forming an insulating film, comprising: exposing the side surface of the semiconductor region again, and depositing an insulating layer on the side surface of the semiconductor region by plasma vapor deposition.
JP55173590A 1980-12-09 1980-12-09 Forming method for insulating film Granted JPS5796537A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55173590A JPS5796537A (en) 1980-12-09 1980-12-09 Forming method for insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55173590A JPS5796537A (en) 1980-12-09 1980-12-09 Forming method for insulating film

Publications (2)

Publication Number Publication Date
JPS5796537A JPS5796537A (en) 1982-06-15
JPS6239819B2 true JPS6239819B2 (en) 1987-08-25

Family

ID=15963401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55173590A Granted JPS5796537A (en) 1980-12-09 1980-12-09 Forming method for insulating film

Country Status (1)

Country Link
JP (1) JPS5796537A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR870000750A (en) * 1985-06-14 1987-02-20 이마드 마하윌리 How to chemically vapor coat a silicon dioxide film

Also Published As

Publication number Publication date
JPS5796537A (en) 1982-06-15

Similar Documents

Publication Publication Date Title
JP3415496B2 (en) Semiconductor device and manufacturing method thereof
JP3565993B2 (en) Method for manufacturing semiconductor device
JP2623659B2 (en) Method for manufacturing MIS transistor
JPS6239819B2 (en)
JPH11186525A (en) Semiconductor device including capacitor and its manufacture
US5723371A (en) Method for fabricating a thin film transistor having a taper-etched semiconductor film
JP2503621B2 (en) Method for manufacturing semiconductor device
JPS5816341B2 (en) Manufacturing method of semiconductor device
JPH07109858B2 (en) Method for manufacturing semiconductor device
JPH07122737A (en) Semiconductor device and its manufacture
JPS62172732A (en) Manufacture of semiconductor device
KR0154765B1 (en) Thin film transistor
JPS5984570A (en) Manufacture of capacitor for semiconductor device
KR950007958B1 (en) Fabricating method of semiconductor device
JPH09213942A (en) Semiconductor device and manufacture thereof
KR100486610B1 (en) Method for manufacturing capacitor of semiconductor device
JP3264402B2 (en) Semiconductor device
JPH0419707B2 (en)
JPH11145425A (en) Manufacture of semiconductor element and semiconductor device
JP2945023B2 (en) Method for manufacturing thin film transistor
JPH03233938A (en) Manufacture of thin-film transistor
JPH04318938A (en) Manufacture of semiconductor device
JPH05198744A (en) Manufacture of semiconductor device
JPS5994437A (en) Semiconductor device
JPH0578193B2 (en)