JPS6235506A - Magnetically soft amorphous material - Google Patents

Magnetically soft amorphous material

Info

Publication number
JPS6235506A
JPS6235506A JP17513985A JP17513985A JPS6235506A JP S6235506 A JPS6235506 A JP S6235506A JP 17513985 A JP17513985 A JP 17513985A JP 17513985 A JP17513985 A JP 17513985A JP S6235506 A JPS6235506 A JP S6235506A
Authority
JP
Japan
Prior art keywords
soft magnetic
amorphous soft
magnetic material
magnetically soft
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17513985A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamada
一彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP17513985A priority Critical patent/JPS6235506A/en
Publication of JPS6235506A publication Critical patent/JPS6235506A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To enable the manufacture of a magnetic head having high mechanical reliability without deterioration of magnetic properties even if a glass fusion- bonding process is employed by setting the number N of outer electrons of elements which form magnetically soft amorphous material and mean outer electrons obtained from atomic density (at.%) to N<=8.3. CONSTITUTION:A magnetically soft amorphous thin film formed by adding at least one type or more of metal elements of Zr, Hf, Nb, Ta, W, Mo, V, Ti, Re and Ru or metalloid element of B, C, Si and P to Co of main content of various composition is formed on a glass substrate by a high frequency magnetron sputtering method. The number N of mean outer electrons obtained from the outer electron number of the elements which form the magnetically soft amorphous material and an atomic density (at.%) is set to N<=8.3. If the number N is less than 8.3, crystallizing temperature T is 520 deg.C or higher, and even if the same heat treatment as glass fusion-bonding process is executed, the magnetic property of the magnetic material is not deteriorated at all but can sufficiently endure against the heat treatment at the glass fusion-bonding time.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非晶質軟磁性材料に関し、更に詳しくは、磁気
ヘッドの磁気コア材料に関するものであるO (従来の技術) 非晶質軟磁性材料は、結晶質軟磁性材料に比較して軟磁
気特性、耐食性、耐磨耗性に優れ、しかも比抵抗が大き
く渦電流損失の低減が可能であること等によシ磁気コア
材料として注目されている〕この様な非晶質軟磁性材料
の公知の代表例としてはCoayZr5Nbs (第1
8回通研シンポジウム論文集111ページ)、co、!
Zr、(ジャーナル−オプ・アプライド・フィジックス
(Journal Appl・Phys、)、53,3
156.1982)が良く知られている口 ところで、フロッピーディスク装置等に用いられる磁気
ヘッドの製造プロセスにおいては、ギャツブ長の形成に
際して記録媒体との摺動時の機械的信頼性を保証する為
、ガラス溶着が行なわれるQ〕が通常である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an amorphous soft magnetic material, and more particularly to a magnetic core material for a magnetic head.O (Prior Art) Amorphous soft magnetic material The material is attracting attention as a magnetic core material because it has superior soft magnetic properties, corrosion resistance, and wear resistance compared to crystalline soft magnetic materials, and has a large resistivity and can reduce eddy current loss. ] A known representative example of such amorphous soft magnetic material is CoayZr5Nbs (first
8th Tsuken Symposium Proceedings, page 111), co,!
Zr, (Journal of Applied Physics), 53,3
156.1982) is well known, in the manufacturing process of magnetic heads used in floppy disk drives, etc., in order to ensure mechanical reliability during sliding with the recording medium when forming the grab length, Q] in which glass welding is performed is usual.

(発明が解決しようとする問題点) このガラス溶着プロセスは、少なくとも450℃以上の
加熱処理を含む為、非晶質軟磁性材料の特性劣化(例え
ば保磁力U]増大、透磁率の低下)が起こる。これは非
晶質軟磁性材料の結晶化が主因と考えられる。従って、
非晶質軟磁性材料としては、mJ述のガラス浴着0〕作
業温度(450℃)よりも高い結晶化温度’rxを有す
ることが必要である。
(Problems to be Solved by the Invention) Since this glass welding process includes heat treatment at at least 450°C or higher, the properties of the amorphous soft magnetic material may deteriorate (for example, an increase in coercive force U and a decrease in magnetic permeability). happen. This is thought to be mainly caused by crystallization of the amorphous soft magnetic material. Therefore,
The amorphous soft magnetic material needs to have a crystallization temperature 'rx higher than the glass bath deposition temperature (450° C.) described in mJ.

本発明Q)検討によれば、前述の非晶質軟磁性材料U)
磁気特性の劣化は、非晶質軟磁性材料Q】結晶化温度I
ll xより約70’C低い温度で生ずることから、非
晶質軟磁性材料に求められる結晶化温度Ill 、は、
具体的には′rx≧520℃であることが必要である。
According to the present invention Q), the above-mentioned amorphous soft magnetic material U)
Deterioration of magnetic properties is caused by amorphous soft magnetic material Q] Crystallization temperature I
Ill occurs at a temperature approximately 70'C lower than x, so the crystallization temperature Ill required for an amorphous soft magnetic material is
Specifically, it is necessary that 'rx≧520°C.

前述した公知例、すなわちCo67Zr5Nbl、 C
oBZr501M晶化Qi、度T xは各々497℃、
357℃であシ、いうれもI″x(520℃となりガラ
ス浴着を行なうことが不可能であった0このことは、信
頼性、特に機械的信頼性の高い磁気ヘッドの製造を困難
にしており工業的に大きな問題となっていた。
The above-mentioned known examples, namely Co67Zr5Nbl, C
oBZr501M crystallization Qi, degree T x are each 497°C,
This made it difficult to manufacture magnetic heads with high reliability, especially mechanical reliability. This has become a major industrial problem.

本発明の目的は、結晶化温度Txが高<(Tx≧520
℃)、ガラス溶着時の加熱処理に耐えうる非晶質軟磁性
材料を提供することにある。
The purpose of the present invention is to achieve a crystallization temperature Tx of high<(Tx≧520
℃), and to provide an amorphous soft magnetic material that can withstand heat treatment during glass welding.

(問題点を解決する為の手段) 本発明によれは%coを主成分とし、少なくとも1種類
以上の金属元素、半金属元素を添加して成る非晶質軟磁
性材料において、前記非晶質軟磁性材料を構成する各元
素の外殻電子数と原子濃度(at、%)から求めた平均
外殻電子数Nが、N≦8.3であることを特徴とする非
晶質軟磁性材料が得られる。
(Means for Solving the Problems) According to the present invention, in an amorphous soft magnetic material containing %co as a main component and adding at least one metal element or metalloid element, the amorphous An amorphous soft magnetic material characterized in that the average number of outer shell electrons N determined from the number of outer shell electrons and atomic concentration (at, %) of each element constituting the soft magnetic material is N≦8.3. is obtained.

(実施例) 以下、実施例を用いて本発明を説明する。(Example) The present invention will be explained below using Examples.

高周波マグネトロンスパッタ法を用いて、ガラス基板上
に種々の組成のCOを主成分とし、少なくとも1種類以
上の金属元素ないしは半金属元素を添加して成る非晶質
軟磁性薄膜を作製した0スパッタ条件は投入電力600
W、Arガス圧力5 X 10 ”Torr、膜厚は約
1.0μmである。又、ターゲットはCO板を母ターゲ
ットとし、この上にZr。
0 sputtering conditions in which amorphous soft magnetic thin films containing CO of various compositions as a main component and at least one metal element or metalloid element added were prepared on glass substrates using high-frequency magnetron sputtering. is input power 600
The W, Ar gas pressure is 5 x 10'' Torr, and the film thickness is about 1.0 μm.The target is a CO plate as a base target, and Zr is placed on top of this.

Ht等の金属元素ないしはSt、B等の半金属元素チッ
プを分散配置し九複合ターゲットを用い、前記チップの
種類、数量、配[を変えることにより組成を変化させた
。尚、スパッタ法を用いたのは。
A nine-composite target was used in which chips of metal elements such as Ht or metalloid elements such as St and B were dispersed, and the composition was changed by changing the type, number, and arrangement of the chips. The sputtering method was used.

近年実用に供されつつある薄膜磁気ヘッドの磁気コア材
料の作製法として一般的に用いられているスパッタ法を
採用したものであり、他の作製法であっても本発明は十
分に有効であることは勿論である。なお、作製した試料
中0)コバルト含有量は65〜70at%以上が所定θ
〕磁気特性を得るためには望ましい0 作製した非晶質軟磁性材料のうち代表的な20サンプル
を選択しその組成、結晶化温度Txおよび平均外殻電子
数Nを表に示す。ここで、平均外殻電子数Nは各非晶質
軟磁性材料を構成する各元素の外殻電子数と原子濃度よ
り求めた。例えば、サンプルl (7) CoBZr3
NblではCoの外殻電子数が9個CdQ道に7個、S
軌道に2個)であり、同様にしてZr、 Nbが各々4
個、5個であるから、各々の原子濃度を乗じて、平均外
殻電子数NはN=9 X O,92+4 X O,03
+5 X O,0−5=&65となるり 又、組成は原子濃度で示され、X線マイクロアナライザ
ーによる分析で決定された庵のである。
The sputtering method, which is commonly used as a method for manufacturing magnetic core materials for thin-film magnetic heads that have been put into practical use in recent years, is adopted, and the present invention is sufficiently effective even with other manufacturing methods. Of course. Note that the cobalt content in the prepared sample is 65 to 70 at% or more at the predetermined θ
] 0, which is desirable for obtaining magnetic properties.Twenty representative samples were selected from the manufactured amorphous soft magnetic materials, and their compositions, crystallization temperatures Tx, and average number of outer shell electrons N are shown in the table. Here, the average outer shell electron number N was determined from the outer shell electron number and atomic concentration of each element constituting each amorphous soft magnetic material. For example, sample l (7) CoBZr3
In Nbl, the number of outer shell electrons in Co is 9, in CdQ there are 7, and in S
Similarly, Zr and Nb each have 4
Since there are 5 pieces, multiplying each atomic concentration, the average number of outer shell electrons N is N=9 X O,92+4 X O,03
+5 X O, 0-5 = &65, and the composition is expressed in atomic concentration and determined by analysis with an X-ray microanalyzer.

又、結晶化温度Txは差動熱量測定法      7(
Di f ferenlml  Scanning C
alorimetry ) f用いて行ない、測定され
た発熱ピークの立上がりの温度を結晶化温度Txとした
0 尚、発熱ピークが複数個観測されたものについては
低温側の発熱ピークの立上がりの温度を結晶化温度Tx
とした。
In addition, the crystallization temperature Tx is determined by differential calorimetry method 7 (
Di f ferenlml Scanning C
alorimetry) f, and the temperature at which the measured exothermic peak rises was taken as the crystallization temperature Tx0. In addition, in cases where multiple exothermic peaks were observed, the temperature at which the exothermic peak at the lower temperature side rose was taken as the crystallization temperature. Tx
And so.

測定条件は、試料嵐盆20 mg +昇己速度り0℃/
分で行ない試料ホルダーは金製のものを用いた。
The measurement conditions were: sample Arashibon 20 mg + ascending rate 0°C/
The sample holder was made of gold.

表に工れば、本発明で規定される非晶質軟磁性材料、す
なわち平均外殻電子数Nが8.3以下のサンプル(番号
9〜20)では結晶化温度Txが520℃以上であり、
ガラス溶着プロセスと同様の加熱処理(昇温20℃/分
、450℃保持時間1時間、冷却速度5℃/分)を施し
ても磁気特性の劣化は全く見られずガラス溶着時の加熱
処理に十分針えうろことが確認された。
In summary, the crystallization temperature Tx of the amorphous soft magnetic materials defined in the present invention, that is, the samples (numbers 9 to 20) with an average outer shell electron number N of 8.3 or less, is 520°C or higher. ,
Even when the same heat treatment as in the glass welding process was performed (temperature increase 20°C/min, holding time at 450°C 1 hour, cooling rate 5°C/min), no deterioration of magnetic properties was observed at all. It was confirmed that there was enough needle weight.

一方、本発明で規定される以外の非晶質軟磁性材料、す
なわち平均外殻電子数Nが8.3よりも犬であるサンプ
ル(番号1〜8)では結晶化温度Txはいづれも520
℃よシも低く、前述したが熱処理を施こした結果、磁気
特性が大きく劣化し、一番劣化の小さなサンプルでも、
透磁率が約1710に低下し、保磁力も0.050eか
ら150eへと大幅に増大し、磁気コア材料として使用
出来ないことが明らかとなりた。
On the other hand, for amorphous soft magnetic materials other than those specified in the present invention, that is, samples (numbers 1 to 8) in which the average number of outer shell electrons N is more than 8.3, the crystallization temperature Tx is 520.
℃ temperature is also low, and as a result of the heat treatment mentioned above, the magnetic properties deteriorate significantly, and even the sample with the least deterioration,
The magnetic permeability decreased to about 1710, and the coercive force also increased significantly from 0.050e to 150e, making it clear that it could not be used as a magnetic core material.

尚、実施例中で述べた試料の磁気特性は、いづれも保磁
力He≦O,l Oe 、飽和磁束密度Bsン8000
(G)であり、透磁率μも4800eの回転磁場中。
Incidentally, the magnetic properties of the samples described in the examples are all coercive force He≦O, l Oe and saturation magnetic flux density Bs 8000.
(G) in a rotating magnetic field with magnetic permeability μ of 4800e.

温度300℃で3時間アニール処理することにより10
 MHzでのμが2000以上となり全く問題が無かっ
た0 (発明の効果) 以上、述べて来た様に本発明による非晶質軟磁性材料は
高い結晶化温度(Tx≧520℃)を有しており、ガラ
ス溶着プロセスを導入しても磁気特性の劣化が無(、そ
の為機械的信頼性の高い磁気ヘッドの製造が可能となり
、本発明の持つ工業的価値は大きいと考えられる〇
10 by annealing at a temperature of 300°C for 3 hours.
μ at MHz was 2000 or more, and there were no problems at all.0 (Effects of the invention) As stated above, the amorphous soft magnetic material according to the present invention has a high crystallization temperature (Tx≧520°C). Therefore, even if a glass welding process is introduced, there is no deterioration of magnetic properties (therefore, it is possible to manufacture a magnetic head with high mechanical reliability, and the industrial value of the present invention is considered to be great.

Claims (4)

【特許請求の範囲】[Claims] (1)Coを主成分とし金属元素又は半金属元素の中か
ら少なくとも一種類以上を添加して成る非晶質軟磁性材
料において、前記非晶質軟磁性材料を構成する各元素の
外殼電子数と原子濃度(at.%)から求めた平均外殻
電子数Nが N≦8.3 であることを特徴とする非晶質軟磁性材料。
(1) In an amorphous soft magnetic material comprising Co as a main component and at least one metal element or metalloid element added thereto, the outer shell electron number of each element constituting the amorphous soft magnetic material An amorphous soft magnetic material characterized in that the average number of outer shell electrons N, determined from the atomic concentration (at.%), is N≦8.3.
(2)金属元素が、Zr、Hf、Nb、Ta、W、Mo
、V、Ti、Re、Ruである特許請求の範囲第1項記
載の非晶質軟磁性材料。
(2) The metal element is Zr, Hf, Nb, Ta, W, Mo
, V, Ti, Re, Ru.
(3)半金属元素がB、C、Si、Pである特許請求の
範囲第1項記載の非晶質軟磁性材料。
(3) The amorphous soft magnetic material according to claim 1, wherein the semimetallic element is B, C, Si, or P.
(4)非晶質軟磁性材料はガラス溶着プロセスにより製
造される磁気ヘッドに用いる材料である特許請求の範囲
第1項又は第2項又は第3項記載の非晶質軟磁性材料。
(4) The amorphous soft magnetic material according to claim 1, 2, or 3, wherein the amorphous soft magnetic material is a material used in a magnetic head manufactured by a glass welding process.
JP17513985A 1985-08-08 1985-08-08 Magnetically soft amorphous material Pending JPS6235506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17513985A JPS6235506A (en) 1985-08-08 1985-08-08 Magnetically soft amorphous material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17513985A JPS6235506A (en) 1985-08-08 1985-08-08 Magnetically soft amorphous material

Publications (1)

Publication Number Publication Date
JPS6235506A true JPS6235506A (en) 1987-02-16

Family

ID=15990968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17513985A Pending JPS6235506A (en) 1985-08-08 1985-08-08 Magnetically soft amorphous material

Country Status (1)

Country Link
JP (1) JPS6235506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120454A (en) * 1985-11-20 1987-06-01 Canon Electronics Inc Amorphous alloy
JPH0665662A (en) * 1992-08-25 1994-03-08 Alps Electric Co Ltd Soft magnetic alloy
KR200446484Y1 (en) 2009-02-06 2009-11-04 조민근 Press formed metal snap button

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62120454A (en) * 1985-11-20 1987-06-01 Canon Electronics Inc Amorphous alloy
JPH0665662A (en) * 1992-08-25 1994-03-08 Alps Electric Co Ltd Soft magnetic alloy
KR200446484Y1 (en) 2009-02-06 2009-11-04 조민근 Press formed metal snap button

Similar Documents

Publication Publication Date Title
JP2635402B2 (en) Soft magnetic alloy film
US5302469A (en) Soft magnetic thin film
WO2008026439A1 (en) Magnetic thin film
JPH0320444A (en) Soft magnetic alloy film
JPS6235506A (en) Magnetically soft amorphous material
JP2710440B2 (en) Soft magnetic alloy film
JP2675178B2 (en) Soft magnetic alloy film
EP0187169B1 (en) Process of manufacturing magnetic recording media and the media
JP2710441B2 (en) Soft magnetic laminated film
JP2771674B2 (en) Soft magnetic alloy film
JP2996553B2 (en) Soft magnetic alloy thin film
JPH05271885A (en) Soft magnetic alloy thin film and its manufacture
JP2635416B2 (en) Soft magnetic alloy film
JP2842683B2 (en) Soft magnetic thin film material
JP3236277B2 (en) Method for manufacturing soft magnetic alloy film
JP3056401B2 (en) Soft magnetic alloy film
JP2635421B2 (en) Soft magnetic alloy film
JP2761267B2 (en) Soft magnetic alloy film
JP2522284B2 (en) Soft magnetic thin film
KR100190681B1 (en) Method for producing mn-al thin films
JP2771664B2 (en) Soft magnetic alloy film
JPH06132125A (en) Fe base soft magnetic thin film
JPH04333203A (en) Soft magnetic alloy film
EP0259840A2 (en) Vertical magnetic medium and method of manufacturing the same
JPH06240417A (en) Magnetic alloy