JPS6229912B2 - - Google Patents

Info

Publication number
JPS6229912B2
JPS6229912B2 JP56196489A JP19648981A JPS6229912B2 JP S6229912 B2 JPS6229912 B2 JP S6229912B2 JP 56196489 A JP56196489 A JP 56196489A JP 19648981 A JP19648981 A JP 19648981A JP S6229912 B2 JPS6229912 B2 JP S6229912B2
Authority
JP
Japan
Prior art keywords
insulating layer
type
forming
semiconductor
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56196489A
Other languages
Japanese (ja)
Other versions
JPS5897858A (en
Inventor
Hiroaki Okizaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56196489A priority Critical patent/JPS5897858A/en
Publication of JPS5897858A publication Critical patent/JPS5897858A/en
Publication of JPS6229912B2 publication Critical patent/JPS6229912B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明はセルフアラインを用いた半導体装置の
製造方法に関し、特に集積注入論理回路素子(以
下、I2Lとする)の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device using self-alignment, and more particularly to a method of manufacturing an integrated injection logic circuit element (hereinafter referred to as I 2 L).

第1図に従来のセルフアラインによるI2Lの製
造プロセスを示す。従来の方法では、半導体基板
1を選択的に2〜3μ程度酸化を行つて酸化膜
2,2′を形成し、さらに全面酸化を行い、それ
によつて形成された酸化膜3をフオトレジスト等
を用いて選択的にエツチングし、ボロン等のP型
不純物を拡散することによりインジエクタ領域
4′を形成する(同図a)。
FIG. 1 shows a conventional self-aligned I 2 L manufacturing process. In the conventional method, the semiconductor substrate 1 is selectively oxidized by about 2 to 3 μm to form oxide films 2 and 2', and then the entire surface is oxidized, and the oxide film 3 thus formed is coated with a photoresist or the like. The injector region 4' is formed by selectively etching the wafer and diffusing a P-type impurity such as boron (FIG. 4A).

次にn+形にドープされた多結晶シリコンを形
成し、さらに酸化膜および窒化膜を形成し、フオ
トエツチングにより選択的に窒化膜7を残し、こ
の窒化膜7をマスクにして窒化膜6、多結晶シリ
コン5をエツチング法を用いて形成する(同図
b)。
Next, an n + type doped polycrystalline silicon is formed, and then an oxide film and a nitride film are formed, and the nitride film 7 is selectively left by photo-etching. Using this nitride film 7 as a mask, the nitride film 6, Polycrystalline silicon 5 is formed using an etching method (FIG. 2b).

次に全面酸化を行い、窒化膜7をマスクにして
酸化膜8,8′が残るように選択的にエツチング
を行う。この時、n+形多結晶シリコン5からベ
ース領域4′に不純物が拡散してn+形のコレクタ
領域9が形成される(同図c)。
Next, the entire surface is oxidized, and using the nitride film 7 as a mask, selective etching is performed so that the oxide films 8 and 8' remain. At this time, impurities are diffused from the n + -type polycrystalline silicon 5 into the base region 4', forming an n + -type collector region 9 (FIG. 3(c)).

この工程において、ベース抵抗を下げ、さらに
インジエクタ4の注入効率を上げるために領域
4,4′にボロン等を拡散する方法もある。
In this step, there is also a method of diffusing boron or the like into the regions 4 and 4' in order to lower the base resistance and further increase the injection efficiency of the injector 4.

次に、窒化膜7を除去した後、Al層10,1
0′を形成する(同図d)。
Next, after removing the nitride film 7, the Al layers 10, 1
0' (d in the same figure).

以上の従来の方法では、Al層10,10′とn+
形コレクタ領域9の間隔A,A′は、多結晶シリ
コン5の側面の酸化膜8,8′とn+形コレクタ領
域9の横拡がりで決定されるため、酸化膜8,
8′の厚さのバラツキおよびn+形コレクタ領域9
の横拡がりのバラツキにより、コレクターベース
間耐圧が非常にバラツキ、わるくすると、n+
コレクタ領域9とAl層10,10′がシヨートす
ることもある。
In the above conventional method, Al layers 10, 10' and n +
The spacing A, A' between the oxide films 8, 8' on the side surfaces of the polycrystalline silicon 5 and the lateral spread of the n + type collector region 9 determines the distances A, A' between the oxide films 8,
8′ thickness variation and n + type collector region 9
Due to variations in the lateral spread of the collector base, the withstand voltage between the collector bases becomes extremely variable and deteriorates, which may cause the n + -type collector region 9 and the Al layers 10 and 10' to be shot.

本発明は以上のような従来の欠点をなくし、そ
の目的はコレクターベース間耐圧をコントロール
よく形成する製造方法を提供するものである。
The present invention eliminates the above-mentioned conventional drawbacks, and its purpose is to provide a manufacturing method that can control the breakdown voltage between collector bases.

本発明による製造方法を第2図により詳細に説
明する。第2図aは従来による方法(第1図a)
とまつたく同じ方法で形成する。次に全面に厚さ
1000〜2000Åの窒化膜11および厚さ5000Å程度
の酸化膜12を順次形成する(同図b)。この
後、コレクタを形成する領域をつくるために、フ
オトレジスト等を用いて酸化膜12を選択的にエ
ツチングして孔13を形成する。さらに、酸化膜
12をマスクして窒化膜11をエツチングする。
この時、孔13より2〜3μ程度大きめにエツチ
ングを行い、空隙14,14′を形成する。この
空隙は、コレクターベース間耐圧等の条件により
適当な条件を設定する(同図c)。
The manufacturing method according to the present invention will be explained in detail with reference to FIG. Figure 2 a is the conventional method (Figure 1 a)
Form in exactly the same way. Next, the thickness on the entire surface
A nitride film 11 with a thickness of 1000 to 2000 Å and an oxide film 12 with a thickness of about 5000 Å are successively formed (FIG. 2B). Thereafter, in order to create a region where a collector will be formed, the oxide film 12 is selectively etched using a photoresist or the like to form a hole 13. Furthermore, the nitride film 11 is etched while masking the oxide film 12.
At this time, etching is performed approximately 2 to 3 microns larger than the hole 13 to form voids 14 and 14'. Appropriate conditions for this gap are set depending on conditions such as the pressure resistance between the collector bases (FIG. 3(c)).

次にn+形多結晶シリコンを5000Å〜10000Å程
度の厚さに形成し、選択的にエツチングを行い、
コレクタ領域形成のためのn+形多結晶シリコン
15を形成する。このn+形多結晶シリコン15
はコレクタ電極ともなる(同図d)。次に、酸化
膜12を除去する(同図e)。
Next, N + type polycrystalline silicon is formed to a thickness of about 5000 Å to 10000 Å, selectively etched,
N + type polycrystalline silicon 15 for forming a collector region is formed. This n + type polycrystalline silicon 15
also serves as a collector electrode (d in the same figure). Next, the oxide film 12 is removed (e in the same figure).

さらに、全面酸化を行つて5000Å程度の酸化膜
16を形成する。この時、酸化膜16は、多結晶
シリコン15の上面と側面、およびベース領域
4′上の空隙14,14′の所のみ酸化されるた
め、この部分にのみ形成される。この時、n+
多結晶シリコン15からベース領域4′に不純物
が拡散され、n+形コレクタ領域9が形成される
(同図f)。
Further, the entire surface is oxidized to form an oxide film 16 of about 5000 Å. At this time, the oxide film 16 is oxidized only at the upper surface and side surfaces of the polycrystalline silicon 15 and at the voids 14, 14' above the base region 4', and is therefore formed only at these portions. At this time, impurities are diffused from the n + -type polycrystalline silicon 15 into the base region 4', forming the n + -type collector region 9 (FIG. 4(f)).

次に、窒化膜11を除去する。この時、ベース
層抵抗を下げること及びインジエクタの注入効率
を上げることを目的とし、領域4,4′にボロン
等を拡散してもよい(同図g)。そして、最後に
Al層10,10′を形成する(同図h)。
Next, nitride film 11 is removed. At this time, boron or the like may be diffused into the regions 4 and 4' for the purpose of lowering the base layer resistance and increasing the injection efficiency of the injector (see g in the figure). And finally
Al layers 10 and 10' are formed (h in the figure).

以上の本発明による方法を用いることにより、
Al層10,10′とn+形コレクタ領域9の間隔
B,B′は、従来の方法とは異なり自由にコントロ
ールが可能なため、コレクターベース間耐圧とし
て希望通りの値が得られる。また、製造方法は
I2Lについてのみ述べたが、通常のバイポーラト
ランジスタのエミツタ・ベース形成においても、
同様にできることはいうまでもない。
By using the above method according to the present invention,
Unlike conventional methods, the distances B and B' between the Al layers 10 and 10' and the n + type collector region 9 can be freely controlled, so that a desired value can be obtained as the collector-base breakdown voltage. Also, the manufacturing method is
Although I have only mentioned I 2 L, in the emitter-base formation of a normal bipolar transistor,
It goes without saying that you can do the same.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dは従来の方法による製造方法の工
程断面図、第2図a〜hは本発明の一実施例によ
る製造方法の工程断面図である。 1……半導体基板、2,2′,3,6,8,
8′,12,16……酸化膜、4,4′……P形拡
散領域、5,15……n+形多結晶シリコン、
7,11……窒化膜、9……n+形拡散層、1
0,10′……Al配線。
1A to 1D are process cross-sectional views of a conventional manufacturing method, and FIGS. 2A to 2H are process cross-sectional views of a manufacturing method according to an embodiment of the present invention. 1...Semiconductor substrate, 2, 2', 3, 6, 8,
8', 12, 16...Oxide film, 4,4'...P type diffusion region, 5,15...n + type polycrystalline silicon,
7, 11...Nitride film, 9...n + type diffusion layer, 1
0,10'...Al wiring.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基体上に耐酸化性の第1の絶縁層を形
成し、該第1の絶縁層上に第2の絶縁層を形成
し、該第2の絶縁層の所定部に第1の開孔を施
し、第2の絶縁層をマスクとして上記第1の開孔
よりも大きな第2の開孔を上記第1の絶縁層に形
成し、上記第1の開孔によつて露出した上記半導
体基体の部分上に不純物を有する半導体層を形成
し、上記第2の絶縁層を除去して酸化処理を行な
つて該半導体層の表面を酸化し、該第1の絶縁層
を除去し、金属を被着して前記基体上に前記半導
体層をまたいでベース電極を形成することを特徴
とする半導体装置の製造方法。
1. Forming an oxidation-resistant first insulating layer on a semiconductor substrate, forming a second insulating layer on the first insulating layer, and forming a first opening in a predetermined portion of the second insulating layer. a second opening larger than the first opening is formed in the first insulating layer using the second insulating layer as a mask, and the semiconductor substrate exposed by the first opening is A semiconductor layer containing impurities is formed on the portion, the second insulating layer is removed and an oxidation treatment is performed to oxidize the surface of the semiconductor layer, the first insulating layer is removed, and the metal is A method of manufacturing a semiconductor device, comprising the step of forming a base electrode on the substrate by depositing the semiconductor layer across the semiconductor layer.
JP56196489A 1981-12-07 1981-12-07 Manufacture of semiconductor device Granted JPS5897858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56196489A JPS5897858A (en) 1981-12-07 1981-12-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56196489A JPS5897858A (en) 1981-12-07 1981-12-07 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5897858A JPS5897858A (en) 1983-06-10
JPS6229912B2 true JPS6229912B2 (en) 1987-06-29

Family

ID=16358624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56196489A Granted JPS5897858A (en) 1981-12-07 1981-12-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5897858A (en)

Also Published As

Publication number Publication date
JPS5897858A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
JPH05347383A (en) Manufacture of integrated circuit
JPS6153867B2 (en)
US4812417A (en) Method of making self aligned external and active base regions in I.C. processing
JPS6229912B2 (en)
US6054358A (en) Semiconductor device and manufacturing method of the same
JPS5940571A (en) Semiconductor device
JPH0136710B2 (en)
JPS647509B2 (en)
JP2836393B2 (en) Semiconductor device and manufacturing method thereof
JPH0128508B2 (en)
JPH0778833A (en) Bipolar transistor and its manufacture
JP2849287B2 (en) Method for manufacturing semiconductor device
JPH05226353A (en) Manufacture of semiconductor device
JPS6145392B2 (en)
JPH038582B2 (en)
JPS63114261A (en) Self-aligning base shunt for transistor
JPH0230575B2 (en)
JPS61147575A (en) Manufacture of semiconductor device
JPS6018951A (en) Manufacture of semiconductor device
JPS5943832B2 (en) Manufacturing method of semiconductor device
JPS60235464A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPS5898956A (en) Manufacture of semiconductor device
JPH0325944B2 (en)
JPS60235463A (en) Manufacture of semiconductor device