JPS5898956A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5898956A
JPS5898956A JP56197827A JP19782781A JPS5898956A JP S5898956 A JPS5898956 A JP S5898956A JP 56197827 A JP56197827 A JP 56197827A JP 19782781 A JP19782781 A JP 19782781A JP S5898956 A JPS5898956 A JP S5898956A
Authority
JP
Japan
Prior art keywords
oxidized film
layer
oxide film
substrate
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56197827A
Other languages
Japanese (ja)
Inventor
Kimimaro Yoshikawa
公麿 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56197827A priority Critical patent/JPS5898956A/en
Publication of JPS5898956A publication Critical patent/JPS5898956A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To obtain an integrated junction logic element of extremely small area in self-aligning manner by oxidizing a polycrystalline semiconductor layer in high pressure and low temperature oxidative atmosphere and forming an oxidized film having a thickness larger than the oxidized film formed on the other part thereon. CONSTITUTION:An oxidized film 6 which has a thickness more than five times the low density single crystal silicon substrate and is chemically good in quality is formed by oxidizing in high pressure and low temperature oxidative atmosphere on arsenic-or phosphorus-added polysilicon layers 5, 5'. An oxidized film 7 is formed on the single crystal substrate. The film 7 on the substrate is all etched, thereby allowing an oxidized film 6' to remain on the layers 5, 5'. A boron-added polysilicon layer 12 is grown on the overall surface. Further, an aluminum layer 12 is deposited thereon.

Description

【発明の詳細な説明】 α話語1に片ゾ古−−2ピ〆。(、積よい、48子、以
下ILという)に関する。
[Detailed Description of the Invention] Alpha speaking language 1 and Katazo old--2 Pi. (, 48 children, hereinafter referred to as IL).

I”Lは電え注入素子としての横方向PNP)ランジス
タと、キャリヤ増幅素子としての縦方向逆動作NPN)
ランジスタが一体となり、しかも、PNP)フンジスタ
のコレクタとNPN)ランジスタのペースが共通に形成
され、リニア回路と同一基板上に形成できる論理素子と
して優れている。
I”L is a horizontal PNP transistor as a charge injection element and a vertical reverse NPN transistor as a carrier amplification element.
The transistors are integrated, and the collector of the PNP) transistor and the space of the NPN) transistor are formed in common, making it excellent as a logic element that can be formed on the same substrate as a linear circuit.

しかしながら、I” Lを高速化するためにヲ諜子寸法
の縮小化が不可欠であり、その縮小化のためにいろいろ
な方法が提案されている。その−例は第1図に示すよう
に、不純物を含んだポリシリコン層によりNPN)ラン
ジスタのコレクタ領域をつくる方法である。すなわち、
第1図(4)のごとくNm層1に選択的に分離用酸化膜
2をつくり、フィルド酸化膜3をマスクにしてインジェ
クタ領域4′およびベース領域4をつくり、コレクタ領
域形成のために不純物を含んだポリシリコン層5を形成
し、酸化膜6および窒化Jl17によりこのボリシリコ
ン層5を所定のパターン形状にしている。
However, in order to increase the speed of I"L, it is essential to reduce the size of the sensor, and various methods have been proposed for this reduction. Examples of these are shown in Fig. 1. This is a method of forming the collector region of an NPN transistor using a polysilicon layer containing impurities.
As shown in FIG. 1 (4), an isolation oxide film 2 is selectively formed on the Nm layer 1, an injector region 4' and a base region 4 are formed using the filled oxide film 3 as a mask, and impurities are added to form a collector region. A polysilicon layer 5 containing the silicon nitride is formed, and the polysilicon layer 5 is formed into a predetermined pattern shape using an oxide film 6 and a nitride Jl 17.

このように、ポリシリコン層5を所定形状にエツチング
するために窒化膜7及び酸化a6を必要とする。さらに
、ポリシリコン層5ft選択酸化した場合にフィールド
に酸化膜を付けないために窒化膜8な必要とする。
In this way, the nitride film 7 and the oxide a6 are required to etch the polysilicon layer 5 into a predetermined shape. Further, a nitride film 8 is required in order to avoid forming an oxide film on the field when selectively oxidizing the polysilicon layer 5ft.

しかし、このようにして酸化すると、第1図5)に示す
ように、ポリシリコンl15と単結晶シリコン層4との
界面付近の酸化膜厚9′が薄くなり、AI電極11を形
成した時、fLのコレクタ領域lOとベース領域4を短
絡させるおそれがあり耐圧が下がるという欠点がある。
However, when oxidized in this way, as shown in FIG. 1 (5), the oxide film thickness 9' near the interface between the polysilicon l15 and the single crystal silicon layer 4 becomes thinner, and when the AI electrode 11 is formed, There is a drawback that the collector region lO of fL and the base region 4 may be short-circuited, and the withstand voltage is lowered.

また窒化膜8を選択的にエツチングするための目合わせ
マージンも必要となって(第1図(i))素子の縮小化
のさまたげとなる。尚、9はポリシリコン層5表面の酸
化膜である。
Furthermore, an alignment margin for selectively etching the nitride film 8 is required (FIG. 1(i)), which impedes miniaturization of the device. Note that 9 is an oxide film on the surface of the polysilicon layer 5.

本発明の目的は、かかる従来方法の欠点を解決するとと
もに、簡単な製造方法で目合わせマージンを必要としな
いI’ Lの製造方法と構造機供するものである。
The object of the present invention is to solve the drawbacks of the conventional method and to provide a method and structure for manufacturing an I'L that is simple and does not require an alignment margin.

本発明は、高圧、低温で醸化処理を施すと、不純物を含
んだ多結晶半導体層上に単結晶半導体層上よりも数倍の
厚さの酸化膜が形成される事を利用したものであり、以
下に図面により本発明の製法を詳細に説明する。
The present invention takes advantage of the fact that an oxide film several times thicker than that on a single crystal semiconductor layer is formed on a polycrystalline semiconductor layer containing impurities when fermentation treatment is performed at high pressure and low temperature. The manufacturing method of the present invention will be explained in detail below with reference to the drawings.

第2図は本発明の製造方法の一実施例を示す。FIG. 2 shows an embodiment of the manufacturing method of the present invention.

まず、W&2図(1)のように、n型基板1に形成され
た選択酸化膜2及び基板1上のフィールド酸化膜3をマ
スクとしてfLのインジェクタ4“及び共通ベース領域
4を接合深さ1μ、層抵抗1にΩ/口で形成する。
First, as shown in Figure W&2 (1), using the selective oxide film 2 formed on the n-type substrate 1 and the field oxide film 3 on the substrate 1 as masks, the fL injector 4'' and the common base region 4 are bonded to a junction depth of 1μ. , formed with a layer resistance of 1 to Ω/gate.

次に、第2回動)のように、N形不純物、例、ttfヒ
素またはリンを添加したポリシリコン層を層抵抗8〜1
6Ω/口で形成し、フォトレジスト等な用いて選択的に
エツチングしてI” Lのコレクタとなる部分5,51
0み残す。しかる後、600C程度の低温で、高圧(9
気圧程度)の酸素雰囲気中で酸化することによりて、ヒ
素またはリン添加ポリシリコン層5,5tには、低濃度
単結晶シリコン基板に比べ″C5倍以上の厚さで、電気
的、化学的に良質の酸化膜6が形成される。また、単結
晶基板上にも酸化膜7が形成される。
Next, as in the second rotation), a polysilicon layer doped with N-type impurities, e.g., TTF arsenic or phosphorous, is added to
6Ω/portion and selectively etched using photoresist or the like to form the collector portions 5 and 51 of I”L.
Leave 0. After that, it is heated at a low temperature of about 600C and under high pressure (9
By oxidizing in an oxygen atmosphere (atmospheric pressure), the arsenic- or phosphorus-doped polysilicon layer 5,5t has a thickness that is more than 5 times that of a low-concentration single-crystal silicon substrate, and is electrically and chemically oxidized. A high quality oxide film 6 is formed.An oxide film 7 is also formed on the single crystal substrate.

この酸化11に6.7の形成時にポリシリコン層5゜5
′からの不純物拡散により非常に浅い接合のコレクタ領
域が形成され得る。必要ならさらに熱処理を施して所望
のコレクタ領域10.10’  をつくってもよい。そ
の後、単結晶シリコン基板上のフィールド頷化膜7なす
べ℃エツチングすることによっ℃、酸化膜6,7の厚さ
の差だけポリシリコン層5,5”上に酸化MII s 
+が残る。この状態で、もし必要ならインジェクタ4 
+、ベース4にボロン拡散して層抵抗took/口程度
の高濃度P影領域な形成しても良い。次に全面に無添加
またはボロン添加のポリシリコン層12を300〜50
0A(O厚さに成長する。必要ならば熱処理してポリシ
リコン層8からボロンを拡散し、ベースコンタクトとな
る部分に高濃度P影領域を形成してもよい(第2図(C
))。
When forming 6.7 on this oxidation 11, a polysilicon layer 5°5
A very shallow junction collector region can be formed by impurity diffusion from '. If necessary, further heat treatment may be performed to create the desired collector region 10,10'. Thereafter, by etching the field oxide film 7 on the single crystal silicon substrate, an oxide MII s is formed on the polysilicon layers 5, 5'' by the difference in thickness between the oxide films 6 and 7.
+ remains. In this state, if necessary, use injector 4.
+, Boron may be diffused into the base 4 to form a high concentration P shadow region having a layer resistance of about 1/2. Next, a polysilicon layer 12 with no additives or with boron added is formed on the entire surface with a thickness of 300 to 50%.
The polysilicon layer 8 may be grown to a thickness of 0A (O). If necessary, heat treatment may be performed to diffuse boron from the polysilicon layer 8 to form a high concentration P shadow region in the portion that will become the base contact (see Figure 2 (C).
)).

次に、その上にアルミニウム1iillを1〜2μ厚さ
蒸着し、その後、フォトレジスト等をマスクに配線パタ
ーンをエツチングで形成する(第2図(d))。
Next, 1iill of aluminum is vapor deposited on it to a thickness of 1 to 2 microns, and then a wiring pattern is formed by etching using a photoresist or the like as a mask (FIG. 2(d)).

以上のようにして形成されたI’Lは次のような特徴を
有する。すなわち、I” Lのコレクタ 10゜10’
を形成するのに窒化膜等の複雑な工程を必要とせず、ま
たコレクタ・ベース間の余裕も、自己整合にすることに
よっ℃極め℃小さくできる。この時、コレクタ・ベース
間耐圧は高圧酸化層にすることで著しく教書される。ま
た、アルミニウム電極11の下にポリシリコン層12を
置くことにより、インジェクタとしての横形PNP)ラ
ンジスタのエミッタ中の不純物量が減小することなく注
入効率を大きくすることができ、また小さいコンタクト
孔に対してアルミニウム電極の陥没が起こることもない
The I'L formed as described above has the following characteristics. That is, the collector of I''L is 10°10'
No complicated process such as nitride film is required to form the nitride film, and the margin between the collector and the base can be made extremely small by using self-alignment. At this time, the collector-base breakdown voltage is significantly improved by using a high-pressure oxide layer. In addition, by placing the polysilicon layer 12 under the aluminum electrode 11, the injection efficiency can be increased without reducing the amount of impurities in the emitter of the horizontal PNP transistor as an injector. On the other hand, the aluminum electrode does not sink.

以上説明したように、本発明によって複雑な製造工程を
必要とせずに極めて小さい面積のfLを自己整合的に製
造でき、その半導体装置の高集積化に及ぼす効果は着し
い。
As explained above, according to the present invention, an extremely small area fL can be manufactured in a self-aligned manner without requiring a complicated manufacturing process, and the effect thereof on the high integration of semiconductor devices is significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (b)は従来方法によるI2Lの製造
方法の一例を示す工程断面図で、第2図(51)乃至(
d)は本発明の一実施例を示す工程断面図である。 1はN形基板、2は分離用酸化膜、3はフィールド酸化
膜、4はP形ベース領域、4′・・・P形インジェクタ
領域、5,51は不純蝋As又はP)添加ポリシリコン
、6はポリシリコン酸化膜、7はポリシリコン上の窒化
膜、8はフィールド窒化膜9.91はポリシリコンの選
択酸化膜、10はコレクタ、11はアルミ電極、12は
不純物添加(ボロン)または無添加ポリシリコンをそれ
ぞれ示す。 箔 l 図
FIGS. 1(al) and 1(b) are process cross-sectional views showing an example of a method for manufacturing I2L by a conventional method, and FIGS. 2(51) to (51) to (
d) is a process sectional view showing one embodiment of the present invention. 1 is an N-type substrate, 2 is an isolation oxide film, 3 is a field oxide film, 4 is a P-type base region, 4'...P-type injector region, 5 and 51 are polysilicon doped with impurity wax (As or P), 6 is a polysilicon oxide film, 7 is a nitride film on polysilicon, 8 is a field nitride film, 91 is a selective oxide film of polysilicon, 10 is a collector, 11 is an aluminum electrode, 12 is an impurity added (boron) or not. The added polysilicon is shown respectively. foil diagram

Claims (1)

【特許請求の範囲】[Claims] 一導電屋の半導体領域上の一部に他の導電製の不純物を
有する多結晶半導体層を形成する工程と高圧・低温の酸
化雰囲気中で酸化することにより上記多結晶半導体層上
に上記半導体領域上の他の部分に形成される酸化膜より
も厚い酸化膜を形成する工程と、上記多結晶半導体層か
らの不純物の拡散により上記半導体領域に他の導tm<
の半導体領域を形成する工程と、少にくとも上記半導体
領域上の他の部分に形成された酸化膜の厚さ分だけ全面
の酸化膜を除去する工程と、露出した上記半導体領域上
に導体層を形成する工程とを含んでなる半導体装置の製
造方法。
The semiconductor region is formed on the polycrystalline semiconductor layer by forming a polycrystalline semiconductor layer containing other conductive impurities on a part of the semiconductor region of one conductor, and oxidizing the polycrystalline semiconductor layer in a high-pressure, low-temperature oxidizing atmosphere. Another conductor tm<
forming a semiconductor region; removing the oxide film from the entire surface by at least the thickness of the oxide film formed on other parts of the semiconductor region; and forming a conductor on the exposed semiconductor region. A method for manufacturing a semiconductor device, comprising a step of forming a layer.
JP56197827A 1981-12-09 1981-12-09 Manufacture of semiconductor device Pending JPS5898956A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56197827A JPS5898956A (en) 1981-12-09 1981-12-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56197827A JPS5898956A (en) 1981-12-09 1981-12-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5898956A true JPS5898956A (en) 1983-06-13

Family

ID=16380995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56197827A Pending JPS5898956A (en) 1981-12-09 1981-12-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5898956A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676562A (en) * 1979-11-29 1981-06-24 Toshiba Corp Manufacture of semiconductor integrated circuit
JPS5678139A (en) * 1979-11-29 1981-06-26 Toshiba Corp Manufacture of semiconductor integrated circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5676562A (en) * 1979-11-29 1981-06-24 Toshiba Corp Manufacture of semiconductor integrated circuit
JPS5678139A (en) * 1979-11-29 1981-06-26 Toshiba Corp Manufacture of semiconductor integrated circuit

Similar Documents

Publication Publication Date Title
US4160991A (en) High performance bipolar device and method for making same
KR0139805B1 (en) Method of making single polysilicon self-aligned transistor
US4236294A (en) High performance bipolar device and method for making same
JPH05347383A (en) Manufacture of integrated circuit
US5019523A (en) Process for making polysilicon contacts to IC mesas
US4408387A (en) Method for producing a bipolar transistor utilizing an oxidized semiconductor masking layer in conjunction with an anti-oxidation mask
US4735912A (en) Process of fabricating a semiconductor IC device
US5198692A (en) Semiconductor device including bipolar transistor with step impurity profile having low and high concentration emitter regions
JPH0241170B2 (en)
JPS5898956A (en) Manufacture of semiconductor device
KR100267898B1 (en) Structure for and method of making a merged single polysilicon bipolar npn transistor
JP2663632B2 (en) Semiconductor device and manufacturing method thereof
JP2917646B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0128508B2 (en)
JP2864863B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS58107645A (en) Manufacture of semiconductor device
JP3168622B2 (en) Semiconductor device and manufacturing method thereof
JP2633374B2 (en) Semiconductor device and manufacturing method thereof
JPH038582B2 (en)
JPH02152240A (en) Manufacture of semiconductor device
JPH04287329A (en) Lateral bipolar transistor and its manufacture
JPH0629304A (en) Semiconductor device and manufacture thereof
JPS6018951A (en) Manufacture of semiconductor device
JPS639150A (en) Manufacture of semiconductor device
JPH0982722A (en) Manufacture of transistor