JPS6018951A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6018951A
JPS6018951A JP58126048A JP12604883A JPS6018951A JP S6018951 A JPS6018951 A JP S6018951A JP 58126048 A JP58126048 A JP 58126048A JP 12604883 A JP12604883 A JP 12604883A JP S6018951 A JPS6018951 A JP S6018951A
Authority
JP
Japan
Prior art keywords
layer
type
region
conductivity type
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58126048A
Other languages
Japanese (ja)
Inventor
Akira Muramatsu
彰 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58126048A priority Critical patent/JPS6018951A/en
Publication of JPS6018951A publication Critical patent/JPS6018951A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8222Bipolar technology
    • H01L21/8226Bipolar technology comprising merged transistor logic or integrated injection logic

Abstract

PURPOSE:To remove reactive currents in an external base region by forming the base region in an I<2>L element by implanting p type impurity ions, forming an emitter region and a collector region by implanting n<+> type ions while using a polycrystalline Si layer as a mask and shaping both in a self-alignment manner. CONSTITUTION:An n<+> type buried layer 2 is diffused and formed to the surface layer section of a p<-> type Si substrate 1, an n<-> type layer 3 is grown on the whole surface containing the buried layer 2 in an epitaxial manner, and a p<-> type region 10a as an injector and a p<-> type region 10b as an intrinsic base are formed by implanting B ions while using an SiO2 film 9 in a predetermined pattern as a mask. A polycrystalline Si layer 11 is deposited on the whole surface, B<+> ions are implanted to the layer 11 and the layer 11 is given conductivity, and windows corresponding to collector and emitter forming regions are bored to the layer 11 while being positioned on the region 10b. Sections corresponding to the windows in an SiO2 film 12 generated at that time are removed, and coated newly with thin SiO2 films 14, and As<+> ions are implanted through the films 14 to form n<+> type emitter and collector regions 15.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は半導体装置の製造法に関し、特にI”L(注入
集積論理)素子のグラフトベースを自己整合的に形成す
る技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a technique for forming a graft base of an I''L (implanted integrated logic) element in a self-aligned manner.

〔背景技術〕[Background technology]

相補形のトランジスタ1対でゲート回路を構成するI”
Lは第1図に示すように例えばシリコン基体1上にn十
型埋込層2を有するn型エピタキシャルシリコ7層3を
形成し、このn型りt層3の表面Kpnp)ランジスタ
のインジェクタ(注入部)となるp型領域4と、これに
対向し複数ゲートのインバータ(逆向きnpn )ラン
ジスタ)のベースとなるp型領域5とを形成し、このベ
ース5の表面にコレクタとなる複数のれ十型領域6を形
成したもので、pnp )ランジスタt′i電流源及び
負荷として働き、npn )ランジスタの複数のコレク
タが出力となる。
A gate circuit is composed of a pair of complementary transistors.
As shown in FIG. 1, for example, an n-type epitaxial silicon 7 layer 3 having an n-type buried layer 2 is formed on a silicon substrate 1, and the surface of this n-type epitaxial silicon layer 3 is formed by injector (Kpnp) of a transistor ( A p-type region 4 is formed to serve as an implantation part (injection part), and a p-type region 5 is formed opposite to this to serve as a base of a multi-gate inverter (reverse NPN transistor). The pnp transistor t'i functions as a current source and load, and the plurality of collectors of the npn transistor serve as outputs.

I”Lのnpnインバータにおいては逆方向1[、流増
幅率(βi )を向上させるためにベースとなるp型領
琥5の不純物濃度Npを低くすることが望ましい。この
ため、同図を参照しコレクタ6の形成された近傍のベー
ス部分(5a)を低濃度の真性ペースとしその周囲を高
濃度の外部ベース(5b)とするグラフトベース構造が
本出願人によって以前に開発されている。
In the I''L npn inverter, it is desirable to lower the impurity concentration Np of the p-type inverter 5, which is the base, in order to improve the reverse direction 1[, current amplification factor (βi).For this reason, refer to the same figure. The applicant has previously developed a graft base structure in which the base portion (5a) near where the collector 6 is formed is a low-concentration intrinsic base and the surrounding area is a high-concentration extrinsic base (5b).

本願出願人はこのようなグラフトベース構造を得るため
、第2図に示すように全面に低濃度不純物B(ボロン)
を拡散し7て真性ペースのためのp−型層5aを形成し
、次いでとのp−型i5aの上に第3図に示すように表
面に形成した酸化膜マスクを通]7て高濃度不純物B拡
散を行い外部ベースとなるp十型領域5bを形成し、そ
の後、第4図に示すように新たに形成した酸化膜マスク
8を通して高濃度不純物As(ヒ素)を拡散し真性ベー
スp−型層5aの表面の一部にコレクタとなるる。
In order to obtain such a graft base structure, the applicant of the present application injected low concentration impurity B (boron) into the entire surface as shown in Figure 2.
7 to form a p-type layer 5a for the intrinsic paste, and then pass through an oxide film mask formed on the surface as shown in FIG. Impurity B is diffused to form a p-type region 5b which will become an extrinsic base, and then, as shown in FIG. 4, a high concentration impurity As (arsenic) is diffused through a newly formed oxide film mask 8 to form an intrinsic base p- A part of the surface of the mold layer 5a becomes a collector.

しかし上記したプロセスでは外部ベース拡散とコレクタ
拡散のためのマスク7.8の位置合せ余裕を考慮すると
真性ベース面積が大きくな妙、第14図に示すようにエ
ミッタからの注入電子eの注入増加、すなわち同図に矢
印で示すようにベース無効電流I′の増加となってβi
の向上を期待できないことという問題点が生ずるという
ことが本出願人によってあきらかとされた。
However, in the process described above, the intrinsic base area is large considering the alignment margin of the masks 7 and 8 for external base diffusion and collector diffusion, and as shown in FIG. In other words, as shown by the arrow in the figure, the base reactive current I' increases and βi
It has been made clear by the applicant that a problem arises in that no improvement in performance can be expected.

〔発明の目的〕[Purpose of the invention]

本発明の一つの目的はI”LVCおいてグラフトベース
をセルファライン(自己整合)で形成できる半導体装置
の製造法を提供することにある。
One object of the present invention is to provide a method for manufacturing a semiconductor device in which a graft base can be formed by self-alignment in I''LVC.

本発明の他の一つの目的はベースにおける無効電流をな
くし高速動作を可能とする半導体装置の提供にある。
Another object of the present invention is to provide a semiconductor device that eliminates reactive current in the base and enables high-speed operation.

〔発明の概要〕[Summary of the invention]

本願において開示される発明のうち代表的がものの概要
を簡単に説明すれば、下記のとおりである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、第1導電型半導体、たとえばn型シリコンの
基体の表面に低濃度第2導電型たとえばp−型層を真性
ベースとして形成し、このp−型層に隣接する基体表面
に高濃度第2導電型たとえばp十型領域を外部ベースと
して形成し、上記p−型層の表面に高濃度第1導電型た
とえばn十型領域を形成してエミッタ(又はコレクタ)
とする半導体装置の製造法であって、上記外部ベース領
域は基体表面に部分的に形成した多結晶半導体たとえば
ポリシリコン層内の高濃度H< 2導電型、たとえばp
十型不純物の基体表面への拡散により形成するとともに
、上記エミッタ(又はコレクタ)は真性ペースとなるp
−型層に対し上記ホリシリコン層をマスクとしてn十型
不純物を拡散することによりグラフトベースを自己整合
的に形成するものである。
That is, a low-concentration second conductivity type, e.g., p-type layer is formed as an intrinsic base on the surface of a substrate of a first conductivity type semiconductor, such as n-type silicon, and a high-concentration second conductivity layer is formed on the surface of the substrate adjacent to this p-type layer. A conductivity type, for example, a p-type region is formed as an external base, and a highly concentrated first conductivity type, for example, an n-type region, is formed on the surface of the p-type layer to form an emitter (or collector).
A method for manufacturing a semiconductor device, wherein the external base region is formed of a polycrystalline semiconductor, for example, a polysilicon layer with a high concentration of H<2 conductivity type, for example, p
The emitter (or collector) is formed by diffusion of the 10-type impurity onto the substrate surface, and the p-type impurity becomes an intrinsic paste.
The graft base is formed in a self-aligned manner by diffusing n0 type impurities into the − type layer using the polysilicon layer as a mask.

〔実施例1〕 第5図乃至第13図は不発明の一実施例であって、グラ
フトベースを有するI2Lの製造プロセスを工程断面図
により示すものである。
[Example 1] FIGS. 5 to 13 show an example of the present invention, which is a process sectional view showing the manufacturing process of I2L having a graft base.

(1)第5図に示すように、p−型シリコン基板(サブ
ストレース)1上にn十型埋込層2を有するn−型シリ
コン層3をエピタキシャル成長させた半導体基体を用意
する。
(1) As shown in FIG. 5, a semiconductor substrate is prepared in which an n-type silicon layer 3 having an n-type buried layer 2 is epitaxially grown on a p-type silicon substrate (substrace) 1.

(21m’6図に示すようにn−型シリコンJ@3表面
に形成した酸化膜(Si02膜)9をマスクにして基体
内に低濃度にB(ボロン)をイオン打込みし、アニール
してBを拡散することによりp−型J@10a、1.O
bを形成する。このp−型層のうち、一部(10’−a
 ) itインジェクタとなり、他部(10b)は真性
ペースとなる。
(As shown in Figure 21m'6, B (boron) is ion-implanted into the substrate at a low concentration using the oxide film (Si02 film) 9 formed on the surface of n-type silicon J@3 as a mask, and annealed. p-type J@10a, 1.O by diffusing
form b. Part of this p-type layer (10'-a
) It becomes the injector, and the other part (10b) becomes the true pace.

(31J7図に示すようにシリコンをデポジットしてポ
リシリコン層11を適当々厚さたとえば1μm程度に全
面に形成する。このあと上記ポリシリコン層に対して高
濃度KB+をイオン打込みする。
(As shown in FIG. 31J7, silicon is deposited to form a polysilicon layer 11 to a suitable thickness, for example, about 1 μm, over the entire surface. Thereafter, high concentration KB+ is ion-implanted into the polysilicon layer.

(4)第8図に示すようにホトレジスト(図示されない
)処理によりポリシリコン層11の一部をエッチ除去し
コレクタ(又はエミッタ)となるべき部分の基体表面を
窓開する。
(4) As shown in FIG. 8, a portion of the polysilicon layer 11 is etched away by a photoresist process (not shown) to open a window on the base surface at a portion to become a collector (or emitter).

(5)酸化性雰囲気で700〜900℃に加熱すること
により、第9図に示すようにポリシリコン層表面が酸化
されて厚い(2000久)酸化膜(Si02膜)12が
形成されるとともに、ポリシリコン層中のB(ボロン)
がその直下のシリコン基体表面に拡散されてp−1−型
領域13を形成する。このp+型領領域一部(13a)
はインジェクタと々す、他部(13b)は外部ベースと
なる。このときポリシリコン層の形成されない基体表面
も酸化されて薄い(200〜300λ)酸化膜14を生
じる。
(5) By heating to 700 to 900° C. in an oxidizing atmosphere, the surface of the polysilicon layer is oxidized to form a thick (2000 years) oxide film (Si02 film) 12 as shown in FIG. B (boron) in the polysilicon layer
is diffused into the surface of the silicon substrate immediately below to form a p-1-type region 13. Part of this p+ type region (13a)
is the injector, and the other part (13b) is the external base. At this time, the surface of the substrate on which the polysilicon layer is not formed is also oxidized to form a thin (200-300λ) oxide film 14.

(6) フッ酸系エッチ液によりエンチすることにより
ポリシリコン層の形成され々い基体表面の薄い酸化膜1
4は除去されるが、ポリシリコン層表面の厚い酸化膜1
2として残る。次いでAs(ヒ素)イオン打込みを行い
、ポリシリコン層の形成されない基体表面に自己整合的
にAsを導入1−る8この後第10図に示すように熱処
理することによりAsを基体内に拡散してコレクタ(又
はエミッタ)となるn十型領域15を形成する。
(6) A thin oxide film 1 on the substrate surface where a polysilicon layer is formed by etching with a hydrofluoric acid etchant.
4 is removed, but the thick oxide film 1 on the surface of the polysilicon layer is removed.
It remains as 2. Next, As (arsenic) ions are implanted to introduce As in a self-aligned manner onto the surface of the substrate where no polysilicon layer is formed.1-8 After this, As is diffused into the substrate by heat treatment as shown in FIG. Then, an n+ type region 15 which becomes a collector (or emitter) is formed.

(7) 表面にPSG(リン・シリケートガラス)膜1
6をデポジットし、次いでコンタクトホトエッチを行な
って電極取り出し部分を窓開し、アルミニラムラ蒸着し
、このアルミニウムのパターニングエッチを行うことに
より、第11図に示すように各領域にオーミック接続ゴ
ーるアルミニウム電極(Inj、B、輸、C2)を形成
する。なおベース電極Bはポリシリコン811から引出
すようにする。
(7) PSG (phosphorus silicate glass) film 1 on the surface
6 is deposited, then contact photoetching is performed to open a window at the electrode extraction portion, aluminum is laminated by vapor deposition, and this aluminum is patterned and etched to form an ohmic connection in each region as shown in FIG. 11. Form electrodes (Inj, B, Ink, C2). Note that the base electrode B is drawn out from the polysilicon 811.

前記工程(5)において、高濃度に不純物がドープされ
たポリシリコン層と高濃度にドープされない単結晶シリ
コンとでは酸化速度が前者が高く後者φく低いために、
酸化膜厚に差ができ、したがってこのあとのコレクタ(
エミッタ)拡散を自己整合的に形成することができ前記
発明の目的が連成できる。
In step (5), the oxidation rate of the polysilicon layer doped with impurities at a high concentration and the single crystal silicon that is not doped at a high concentration is high in the former and extremely low in the latter.
There is a difference in the oxide film thickness, and therefore the subsequent collector (
Since the emitter diffusion can be formed in a self-aligned manner, the object of the invention described above can be achieved.

〔効果〕〔effect〕

以上実施例で述べた本発明によれば下記の効果が得らね
る。
According to the present invention described in the above embodiments, the following effects cannot be obtained.

(It グラフトベースを自己整合的に形成するため、
ベース面積を縮小することができ、エミッタよりの無効
電流を少なく1〜、逆方向電流増幅率βi S−向上す
ることができる。
(It To form the graft base in a self-aligned manner,
The base area can be reduced, the reactive current from the emitter can be reduced by 1, and the reverse current amplification factor βi S- can be improved.

(2) ベース電極は外部ベースから直接とり出すこと
なくポリシリコン層から引き出すことができるから、ペ
ース面和を縮小することができる。
(2) Since the base electrode can be drawn out from the polysilicon layer without being taken out directly from the external base, the total surface area can be reduced.

(31I2Lにおいてインバータのβi内向上より、プ
ロセスマージンの拡大がはからi7る。
(In 31I2L, the process margin is expanded due to the improvement in βi of the inverter.

〔実施例2〕 第12図に示すような通常のnpn )ランジスタにお
いて、高速化のためにベース抵抗rbb’を小さく(,
7ようとするベースとなるp型領域17の不純物濃度を
大きくするか、ベース07)、エミ、ンタ(■8)間の
距離を小さくするかのいずれかの手段が必要でジうる。
[Example 2] In a normal npn (npn) transistor as shown in FIG. 12, the base resistance rbb' is made small (,
It may be necessary to either increase the impurity concentration of the p-type region 17, which serves as the base 07), or to reduce the distance between the base 07), the emitter, and the terminal 8).

しかしベース不純物濃度を大きくすることは耐圧を小さ
くすることで問題がある。ベースエミッタ間の距離を小
さくする方法として本発明を応用することができる。
However, there is a problem in that increasing the base impurity concentration reduces the withstand voltage. The present invention can be applied as a method of reducing the distance between base and emitter.

第13図は本発明によるグラフトベースを有する半導体
装置のプロセスを利用した他の実施例を示す。
FIG. 13 shows another embodiment using the process of a semiconductor device having a graft base according to the present invention.

同図において、19は真性ベースとなるp−型領域、2
0は外部ベースとなるp十型領域で基体表面に形成し7
たポリシリコン層22にドープされたB(ボロン)を拡
散することにより形成される。
In the figure, 19 is a p-type region which becomes an intrinsic base, and 2
0 is a p-type region which becomes an external base and is formed on the substrate surface.
It is formed by diffusing doped B (boron) into the polysilicon layer 22.

21はエミッタとなるn十型領域で、前記ポリシリコン
層22を酸化後これをマスクとしてAs(ヒ素)を・f
オン打込み、拡散して自己整合的に形成される。
21 is an n-type region which becomes an emitter, and after oxidizing the polysilicon layer 22, using this as a mask, As (arsenic) is applied.
On-implant, diffused and formed in a self-aligned manner.

ポリシリコン層22にアルミニウムを接続することによ
りベース電極(B)を引出すことができ、ベースエミッ
タ間隔を小さくし、トランジスタ全体を微細化して高速
化を図ることができる。
By connecting aluminum to the polysilicon layer 22, the base electrode (B) can be drawn out, the base-emitter interval can be reduced, and the entire transistor can be made smaller and faster.

〔利用分野〕[Application field]

本発明はI2Lを有するICプロセスに適用して有効で
あり、又、通常のnpn )ランジスタの高速化プロセ
ス応用することかできる。
The present invention is effective when applied to an IC process having I2L, and can also be applied to a high-speed process for ordinary npn) transistors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はI2Lの例を示す断面図である。 第2図乃至第4図はグラフトベースを有するI2Lのこ
れまでの製造プロセスを示す工程断面図である。 第5図乃至第11図は本発明の一実施例であってグラフ
トベースを有するI2Lの製造プロセスを示す工程断面
図である。 第12図は一般のトランジスタの例を示す断面図である
。 第13図は本発明の他の一実施例であってグラフトベー
ス構造をもつトランジスタの断面図である。 1:、シリコン基体、2:n十型埋込層、3:n型エピ
タキシャルシリコン層、4:インジェクタp型領域、5
:インバータのペースp型領域、5a:真性ベース、5
b:外部ベース、6:インバータのコレクタn十型領域
、7,8,9:酸化膜マスク、10a:p−型層(イン
ジェクタ)、10R:p−型層(真性ベース)、11:
ポリシリコン層(ボロンがドープされる)、12−厚さ
酸化膜、13a:p+型領領域インジェクタ)、13b
:p十型領域(外部ベース)、14:薄い酸化膜、15
:n十型領域(コレクタ)、16 : PSG膜、ミッ
タ)、19:p−型領域(真性ベース)、20:p十型
領域(外部ベース)、21:n十型領域(エミッタ)、
22:ポリシリコン層。 第 1 図 第 3 図 第 4 図
FIG. 1 is a sectional view showing an example of I2L. FIGS. 2 to 4 are process cross-sectional views showing the conventional manufacturing process of I2L having a graft base. FIG. 5 to FIG. 11 are process cross-sectional views showing a manufacturing process of I2L having a graft base, which is an embodiment of the present invention. FIG. 12 is a cross-sectional view showing an example of a general transistor. FIG. 13 is a sectional view of a transistor having a graft base structure, which is another embodiment of the present invention. 1: silicon substrate, 2: n-type buried layer, 3: n-type epitaxial silicon layer, 4: injector p-type region, 5
: Pace p-type region of inverter, 5a: Intrinsic base, 5
b: external base, 6: collector n-type region of inverter, 7, 8, 9: oxide film mask, 10a: p-type layer (injector), 10R: p-type layer (intrinsic base), 11:
polysilicon layer (doped with boron), 12-thickness oxide film, 13a: p+ type region injector), 13b
: p-type region (external base), 14: thin oxide film, 15
: n-type region (collector), 16: PSG film, emitter), 19: p-type region (intrinsic base), 20: p-type region (external base), 21: n-type region (emitter),
22: Polysilicon layer. Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、第1導電型半導体基体の一生表面に低濃度第2導電
型層を真性ベースとして形成し、この第2導電型層に隣
接する基体表面に高濃度第2導電型領域を外部ベース領
域として形成し、低濃度第2導電型層を表面に高濃度第
1導電型領域を形成してエミッタ(又はコレクタ)とす
る半導体装置の製造法であって、上記外部ベース領域は
基体表面に部分的に形成した多結晶半導体層内の高濃度
第2導電型不純物の基体表面への拡散により形成すると
ともに、上記エミッタ(又はコレクタ)は真性ベースと
なる低濃度第2導電型層に対し上記多結晶半導体層をマ
スクとして第1導電型不純物を拡散することにより自己
整合的に形成することを特徴とする半導体装置の製造法
。 2、上記真性ベース及び外部ベースはI2L (集積注
入論理)におけるインバース・トランジスタのベースと
して形成するものである特許請求の範囲第1項に記載の
半導体装置の製造法。 3、上記半導体基体はシリコンからなり、第1導電型を
n型、第2導電型を特徴とする特許請求の範囲第1項又
は第2項記載の半導体装置の製造法。
[Claims] 1. A low concentration second conductivity type layer is formed as an intrinsic base on the entire surface of a first conductivity type semiconductor substrate, and a high concentration second conductivity type layer is formed on the substrate surface adjacent to this second conductivity type layer. A method for manufacturing a semiconductor device in which a region of the external base region is formed, and a highly concentrated first conductivity type region is formed on the surface of the low concentration second conductivity type layer to serve as an emitter (or collector), is formed by diffusion of high concentration second conductivity type impurities in a polycrystalline semiconductor layer partially formed on the substrate surface, and the emitter (or collector) is formed by a low concentration second conductivity type impurity serving as an intrinsic base. A method for manufacturing a semiconductor device, characterized in that the polycrystalline semiconductor layer is used as a mask to diffuse a first conductivity type impurity into the layer in a self-aligned manner. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the intrinsic base and the extrinsic base are formed as bases of inverse transistors in I2L (integrated injection logic). 3. The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the semiconductor substrate is made of silicon, and has a first conductivity type of n type and a second conductivity type.
JP58126048A 1983-07-13 1983-07-13 Manufacture of semiconductor device Pending JPS6018951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58126048A JPS6018951A (en) 1983-07-13 1983-07-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58126048A JPS6018951A (en) 1983-07-13 1983-07-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6018951A true JPS6018951A (en) 1985-01-31

Family

ID=14925355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58126048A Pending JPS6018951A (en) 1983-07-13 1983-07-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6018951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394943A2 (en) 1989-04-25 1990-10-31 Fuji Photo Film Co., Ltd. Silver halide color photographic material
EP0772088A1 (en) 1991-03-05 1997-05-07 Fuji Photo Film Co., Ltd. Heat-developable diffusion transfer color photographic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0394943A2 (en) 1989-04-25 1990-10-31 Fuji Photo Film Co., Ltd. Silver halide color photographic material
EP0772088A1 (en) 1991-03-05 1997-05-07 Fuji Photo Film Co., Ltd. Heat-developable diffusion transfer color photographic material

Similar Documents

Publication Publication Date Title
JPH0252422B2 (en)
US4333774A (en) Method for producing walled emitter type bipolar transistors
JPH0241170B2 (en)
JPS6018951A (en) Manufacture of semiconductor device
JPS5878457A (en) Manufacture of semiconductor device
JPS60175452A (en) Manufacture of transistor
JPS60258964A (en) Manufacture of semiconductor device
JPH0128508B2 (en)
JP2654536B2 (en) Semiconductor device and manufacturing method thereof
JP2633411B2 (en) Method for manufacturing semiconductor device
JPH0778833A (en) Bipolar transistor and its manufacture
KR0165255B1 (en) Process of fabricating junction isolation vertical bipolar transistor
JPS61218169A (en) Semiconductor device and manufacture thereof
JPS63164458A (en) Manufacture of bi-cmos element
JPH05235009A (en) Manufacture of semiconductor integrated circuit device
JPH04152531A (en) Manufacture of semiconductor device
JPS5984464A (en) Manufacture of semiconductor integrated circuit device
JPH06188259A (en) Manufacture of semiconductor device
JPH0451981B2 (en)
JPH01111372A (en) Manufacture of semiconductor device
JPH01251658A (en) Manufacture of semiconductor device
JPS61129869A (en) Manufacture of semiconductor device
JPS616853A (en) Manufacture of semiconductor device
JPH0239861B2 (en)
JPS639150A (en) Manufacture of semiconductor device