JPS62294483A - Reduction of anion load in ultrapure water system - Google Patents

Reduction of anion load in ultrapure water system

Info

Publication number
JPS62294483A
JPS62294483A JP13848786A JP13848786A JPS62294483A JP S62294483 A JPS62294483 A JP S62294483A JP 13848786 A JP13848786 A JP 13848786A JP 13848786 A JP13848786 A JP 13848786A JP S62294483 A JPS62294483 A JP S62294483A
Authority
JP
Japan
Prior art keywords
water
carbon dioxide
raw water
air
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13848786A
Other languages
Japanese (ja)
Other versions
JPH0694028B2 (en
Inventor
Kenichi Ushigoe
健一 牛越
Kazunari Hiyama
和成 檜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pfaudler Co Ltd
Original Assignee
Shinko Pfaudler Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Pfaudler Co Ltd filed Critical Shinko Pfaudler Co Ltd
Priority to JP13848786A priority Critical patent/JPH0694028B2/en
Publication of JPS62294483A publication Critical patent/JPS62294483A/en
Publication of JPH0694028B2 publication Critical patent/JPH0694028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the load of an ion exchange apparatus, by preparing air from which carbon dioxide is preliminarily removed in the packed bed of a wet adsorbing tower using an alkali agent and removing carbon dioxide in water in a decarbonator using said air. CONSTITUTION:Raw water 1 to be treated is sent into the upper part of a raw water decarbonator 4 from a raw water tank 2 by a raw water pump 3. Hydrochloric acid or sulfuric acid is injected in a water feed line 5 from an acid storage tank 6 to lower the pH of raw water to 4-5 and an almost entire quantity of alkalinity is preliminarily converted to carbon dioxide. Air is sucked in a wet adsorbing tower 9 by a blower 8 and allowed to pass through a packed bed 14 to which alkali water 11 is sprayed to absorb and remove carbon dioxide from air through gas-liquid contact. Therefore, when carbon dioxide in raw water is expelled and removed in the decarbonator 4 using said air, decarbonation is performed efficiently and raw water low in carbon dioxide concn. is obtained.

Description

【発明の詳細な説明】 6 発明の詳a′/に、説明 (産業上の利用分野) 本発明は、電子工業分野、医薬品製造分野等において用
いられる高度に精製された純水、すなわち超純水の製造
方法に関する。
Detailed Description of the Invention 6 Detailed Description of the Invention A'/, Explanation (Industrial Application Field) The present invention is directed to highly purified pure water, that is, ultrapure water, used in the electronic industry field, pharmaceutical manufacturing field, etc. Concerning a method for producing water.

(従来の技術) 上記分野の超純水製造システムとしては、原水を逆浸透
装置により処理して微粒子を除去するとともに塩類濃度
をある程度低減させ、のちイオン交換装置において最終
の脱塩を行うプロセスが基本となる。逆浸透装置に供給
される原水は、逆浸透膜上の炭酸カルシウム等のスケー
ルの析出の防止のため、また膜の材質による膜劣化の防
止のため、塩類、硫酸等の酸を注入して弱酸性にするこ
とが行われている。これに伴い原水中の重炭酸イオン等
は炭化ガスとなるので、原水中には炭酸ガスが遊離の状
態でかなりの量で存在することになる。
(Prior art) As an ultrapure water production system in the above field, there is a process in which raw water is treated with a reverse osmosis device to remove fine particles and reduce the salt concentration to some extent, and then final desalination is performed in an ion exchange device. Becomes the basics. The raw water supplied to the reverse osmosis equipment is weakened by injecting salts and acids such as sulfuric acid to prevent the precipitation of scales such as calcium carbonate on the reverse osmosis membrane and to prevent membrane deterioration due to the membrane material. It is made acidic. As a result, bicarbonate ions and the like in the raw water turn into carbonized gas, so a considerable amount of carbon dioxide gas is present in the free state in the raw water.

この遊離炭酸ガスは逆浸透膜では除去甥れずに自由に通
過するので、後続のイオン交換装置の負荷を大きくする
ことになる。そこで逆浸透装置の前または後に空気吹込
式の充填塔型式の脱炭酸塔を設けて炭酸ガスをストリッ
ピングし、イオン交換装置の負荷低減を図ることが一般
に行われている。
This free carbon dioxide gas is not removed by the reverse osmosis membrane and passes through it freely, which increases the load on the subsequent ion exchange device. Therefore, it is common practice to provide an air-blown packed column type decarboxylation tower before or after the reverse osmosis device to strip carbon dioxide gas and reduce the load on the ion exchange device.

(発明が解決しようとする問題点) 前記従来技術の方法は炭酸ガスストリッピングをいくら
入念に行っても水中の炭酸ガス濃度は2 ppm程度以
下に下らず、このため高説塩率の逆浸透処理の後にも、
この残留炭酸ガスはそのま1イオン交換装置の負荷とし
て残ることになる。
(Problems to be Solved by the Invention) In the method of the prior art described above, no matter how carefully the carbon dioxide gas stripping is performed, the carbon dioxide concentration in the water does not fall below about 2 ppm, and for this reason, reverse osmosis with a high salt rate Even after processing,
This residual carbon dioxide gas remains as a load on the ion exchanger.

本発明は従来技術の上記問題点を解決し、超純水製造過
程の水中に含まれる炭酸ガスのレベルをさらに下げ、後
続するイオン交換装置の負荷を軽減する手段を提供する
ことを目的とする。
The present invention aims to solve the above-mentioned problems of the prior art and provide a means for further lowering the level of carbon dioxide gas contained in water during the ultrapure water production process and reducing the load on the subsequent ion exchange equipment. .

(問題点を解決するだめの手段) 前記問題を検討の結果、水中の炭酸ガス濃度の低下を阻
む原因は脱炭酸塔において水中の炭酸ガスの駆逐除去を
遂行する空気にあることが知見きれた。すなわち空気中
には炭酸ガスが通常300ppm程度含まれており、こ
の空気をその1ま脱炭酸に用いたのでは炭酸ガスの分圧
により水中に平衡濃度の炭酸ガスが残る結果となる。
(Means to solve the problem) As a result of examining the above problem, it was found that the cause of preventing the decrease in the concentration of carbon dioxide in water is the air that performs the expulsion and removal of carbon dioxide in water in the decarboxylation tower. . That is, air normally contains about 300 ppm of carbon dioxide gas, and if this air is used for decarbonation, an equilibrium concentration of carbon dioxide gas will remain in the water due to the partial pressure of carbon dioxide gas.

本発明は、この究明に基いて対策として創作されたもの
でろって、空気吹込式の脱炭酸塔に吹込む空気は炭酸ガ
スを除去したものとする。
The present invention was created as a countermeasure based on this investigation, and assumes that the air blown into the air-blowing type decarboxylation tower has carbon dioxide removed.

そのため、予め苛性ソーダ等のアルカリ剤を循環する湿
式吸着塔の充填層において予め炭酸ガスを除去した空気
をつくり、この空気を使用して脱炭酸塔で水中炭酸ガス
の除去を遂行する超純水製造システムを構成する。
Therefore, we create ultrapure water by removing carbon dioxide from the air in advance in the packed bed of a wet adsorption tower that circulates an alkaline agent such as caustic soda, and then use this air to remove carbon dioxide from water in a decarbonation tower. Configure the system.

すなわち、本発明の超純水装置におけるアニオン負荷低
減方法は、構成上、原水を逆浸透処理ののちイオン交換
処理して超純水を製造する過程において、脱炭酸処理を
逆浸透処理の前または後において実施し、アルカリ剤を
用いる湿式吸着塔を通過させて炭酸ガス濃度を低下させ
た空気と当該過程の水との接触により前記脱炭酸処理を
行うようにしたことを特徴とする。
That is, the method for reducing the anion load in the ultrapure water apparatus of the present invention has a structure in which, in the process of producing ultrapure water by subjecting raw water to reverse osmosis treatment and then ion exchange treatment, decarboxylation treatment is performed before or after reverse osmosis treatment. The method is characterized in that the decarboxylation treatment is carried out later by contacting the water in the process with air whose carbon dioxide concentration has been reduced by passing through a wet adsorption tower using an alkaline agent.

添付図は本発明方法を実施する超純水設備の装置および
処理フローの1例を示す。
The attached diagram shows an example of an ultrapure water facility and a processing flow for carrying out the method of the present invention.

処理されるべき原水(1)は原水槽(2)に受入れられ
原水ポンプ(3)によ)原水の脱炭酸塔(4)の上位に
送入される。この送水ライン(5)には酸貯槽(6)か
ら酸注入ポンプ(7)により塩酸、硫酸等の酸を注入し
、原水のPI−Iを4〜5に下げ、Mアルカリ度の一部
寸たけ全部を炭酸ガスに変換しておく。
Raw water (1) to be treated is received in a raw water tank (2) and sent (by a raw water pump (3)) to the upper part of a raw water decarbonation tower (4). Hydrochloric acid, sulfuric acid, and other acids are injected into this water supply line (5) from the acid storage tank (6) using the acid injection pump (7) to lower the PI-I of the raw water to 4 to 5, and reduce the M alkalinity by a certain amount. Convert all of it into carbon dioxide gas.

一方、空気はプロア(8)によシ先づ湿式吸着塔(9)
に吹込まれる。湿式吸着塔(9)においてはそのアルカ
リ水槽01にアルカリ水aυが保有されており、このア
ルカリ水は循環ポンプ@によυ循環ラインσ葎を通り塔
内のラツシヒリング等の充填層0→にスプレーさり11
.充填層0→内を流下する間に上昇流する空気と気液接
触を行い、空気中の炭酸ガスを吸収除去する。
On the other hand, the air is transferred to the wet adsorption tower (9) before being transferred to the Proa (8).
is blown into. In the wet adsorption tower (9), alkaline water aυ is held in its alkaline water tank 01, and this alkaline water is sprayed onto the packed bed 0→ of the Ratschig ring in the tower through the circulation line σ by the circulation pump @. Sari 11
.. While flowing down inside the packed bed 0, gas-liquid contact is made with the upwardly flowing air, and carbon dioxide gas in the air is absorbed and removed.

アルカリ水01)としては、常に強アルカリに保持され
るようアルカリ貯槽αOからアルカリ注入ポンプDIに
よりアルカリ剤を循環ライン0に注入する。アルカリ剤
としては例えば20%苛性ソーダ等を用いる。アルカリ
水槽a1には若干の水を補給して、炭酸ソーダとして数
チ、PHとして13程度以上を保持するようにする。こ
うしてアルカリ水槽a1より少■のプローaカを行い。
As the alkaline water 01), an alkaline agent is injected into the circulation line 0 from the alkaline storage tank αO by the alkaline injection pump DI so that it is always kept strongly alkaline. As the alkaline agent, for example, 20% caustic soda is used. A small amount of water is replenished into the alkaline water tank a1 to maintain several liters of soda carbonate and a pH of about 13 or more. In this way, a smaller amount of probing was performed than in the alkaline water tank a1.

常に上記条件を保つようにする。Always maintain the above conditions.

炭酸ガスを除去された空気はデミスタ−(ト)を経てア
ルカリ水滴が除去され管路OIを経て原水脱炭酸塔(4
)に送られる。
The air from which carbon dioxide gas has been removed passes through a demister (T), alkaline water droplets are removed, and the air passes through a pipe OI to a raw water decarboxylation tower (4).
) will be sent to.

脱炭酸塔(4)では供給された原水は、塔内でスプレー
されラッシヒリング等の充填層−内を流下し管路OIか
ら送られる炭酸ガスを除去された空気と接触し、脱炭酸
され、脱炭酸水Qυとして溜められる。
In the decarboxylation tower (4), the supplied raw water is sprayed in the tower, flows through a packed bed such as a Raschig ring, and comes into contact with the air from which carbon dioxide gas is removed, which is sent from the pipe OI, and is decarboxylated. It is stored as carbonated water Qυ.

この脱炭酸水■υは脱炭酸水ポンプ(イ)にょフ送出さ
れカートリッジフィルタ(財)全通過し、ココで下流の
逆浸透装置(ハ)の目づまりを生じさせるかも知れない
懸濁固形物が除去される。カートリッジフィルタ■を通
過した処理水はさらに加圧ポンプ(イ)により逆浸透処
理に心理に必要な圧力、通常15〜40ky/dGに加
圧されて逆浸透装置(財)に送られ逆浸透処理され透過
水(ホ)を得る。
This decarbonated water ■υ is sent out through the decarbonated water pump (a) and passes through the cartridge filter, where suspended solids that may clog the downstream reverse osmosis device (c) are removed. removed. The treated water that has passed through the cartridge filter ■ is further pressurized by a pressure pump (A) to the psychologically necessary pressure for reverse osmosis treatment, usually 15 to 40 ky/dG, and then sent to the reverse osmosis equipment (foundation) for reverse osmosis treatment. and obtain permeated water (e).

この透過水は、後続処理として必要となるイオン交換!
@に送られてイオン交換処理され、その処理水(ハ)は
処理水槽−に送られ使用に供される。
This permeated water undergoes ion exchange, which is necessary as a subsequent treatment!
The treated water (c) is sent to the treated water tank and used for ion exchange treatment.

逆浸透装ju(ハ)からはその濃縮側からブロー水(ト
)が系外に放出され、この水は弱酸性であるためアルカ
リ水ブローaηと混合してPH5,8〜8.6程度の中
性水質のuト水として放流される。
Blow water (t) is released from the reverse osmosis device from the concentration side, and since this water is weakly acidic, it is mixed with alkaline water blow aη to a pH of about 5.8 to 8.6. It is discharged as neutral water.

原水脱炭酸塔(4)は全く同様な構造で逆浸透装置(ハ
)の処理水(透過水)出口に設置し、後続するイオン交
換装置に)の前段階で脱炭酸処理を行ってもよい。
The raw water decarboxylation tower (4) has exactly the same structure and may be installed at the treated water (permeate water) outlet of the reverse osmosis device (c) to perform the decarboxylation process before the subsequent ion exchange device). .

(作用) 以上のように炭酸ガスを除去した空気を用いて充填塔に
て曝気して脱炭酸処理を行えば、炭酸ガスの分圧の低下
により原水中の炭酸ガス濃度を無処理空気使用の場合に
較べて大幅に低下させること・ができる。
(Function) If decarbonation treatment is performed by aeration in a packed tower using the air from which carbon dioxide has been removed as described above, the carbon dioxide concentration in raw water can be lowered by reducing the partial pressure of carbon dioxide compared to using untreated air. It is possible to significantly reduce the amount compared to the case.

(実施例) 以下、本発明方法の実施例を数値により示す。(Example) Examples of the method of the present invention are shown below using numerical values.

先づ原水に硫酸を注入してI’Hを下げアルカリ度をほ
ぼ全量、炭酸ガスに変換させる一方、空気中の炭酸ガス
をアルカリ水で除去して濃度20〜30 ppmに低下
させ、この空気により脱炭酸処理を行い、のち逆浸透処
理するプロセスの図中指摘の各過程点+Al (BI 
K5の)の水質を第1表に示す。
First, sulfuric acid is injected into the raw water to lower the I'H and almost all the alkalinity is converted to carbon dioxide gas, while carbon dioxide in the air is removed with alkaline water to reduce the concentration to 20-30 ppm. Each process point pointed out in the figure + Al (BI
The water quality of K5) is shown in Table 1.

比較のため、従来技術によシ脱炭酸処理した場合の図中
指摘の各過程点−03f (cfi−での水質を第2表
に示す。
For comparison, Table 2 shows the water quality at each process point -03f (cfi-) indicated in the figure when decarboxylation was performed using the conventional technique.

第1表 本発明実施例の水質 〔註記=A原水、B硫酸注入後原水、C炭酸ガス除去空
気による水中炭酸ガス除去処 理後、D逆浸透処理後〕 〔註記=C′:従来技術による炭酸ガス除去処理後、D
′:従来技術のプロセスの逆 浸透処理後〕 また本発明方法においてブロー水とそれらの混合結果は
第6表に示すように彦る。
Table 1 Water quality of Examples of the present invention [Notes = A Raw water, B Raw water after sulfuric acid injection, C After water carbon dioxide removal treatment with carbon dioxide removal air, D After reverse osmosis treatment] [Notes = C': Carbonic acid by conventional technology After gas removal treatment, D
': After reverse osmosis treatment in the process of the prior art] In addition, in the method of the present invention, the blow water and the mixing results thereof are as shown in Table 6.

第6表 ブロー水 (発明の効果) 以上のように、本発明方法により炭酸ガス除脱処理した
空気により水中炭酸ガスのストリッピング除去処理をし
た処理水は、炭酸ガス濃度が0.2ppm8度となシ、
この炭酸ガスは後続工程が逆浸透処理してもそのまま透
過してイオン交換処理のアニオン負荷の一部となるが、
全アニオン負荷は3.8ppm程度に軽減される。これ
は従来技術でのイオン交換処理の全アニオン負荷が5.
9ppmであるの、に較べて64褒にも負担が軽減され
る。この値は通常の再生式イオン交換装置ではあまり問
題とならないが、超純水装置のように最終的脱塩を非再
生型イオン交換装置で仕上処理する必要がβる場合には
、その耐用期間、期間末期の脱塩機能の点で大きな効果
があられれる。同様のことは高説塩率逆浸透装置を用い
て微量イオンを除去するプロセスにも適用される。
Table 6 Blow water (effects of the invention) As described above, treated water that has been subjected to stripping removal treatment of carbon dioxide gas in water using air treated to remove carbon dioxide gas by the method of the present invention has a carbon dioxide concentration of 0.2 ppm and 8 degrees Celsius. Nasi,
This carbon dioxide gas passes through the subsequent reverse osmosis process and becomes part of the anion load in the ion exchange process.
The total anion load is reduced to around 3.8 ppm. This means that the total anion load of the ion exchange treatment using the conventional technology is 5.
The burden is reduced to 64 points compared to 9 ppm. This value does not pose much of a problem with ordinary regenerative ion exchange equipment, but in cases where final desalination needs to be completed with a non-regenerative ion exchange equipment, such as in ultrapure water equipment, the service life of , it has a great effect on the desalination function at the end of the period. The same applies to the process of removing trace ions using a high salt rate reverse osmosis device.

1だ酸性、アルカリ性ブロー水の混合排出により、特に
排水中和装置を別途に設ける必要はなくなる。
Mixed discharge of acidic and alkaline blow water eliminates the need for a separate wastewater neutralization device.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は本発明方法を実施する超純水設備の装置および
連続式のフローの1例を示す図である0 (1)・・原水、(2)・・原水槽、(3)・・原水ポ
ンプ%(4)・・原水脱炭酸塔、(5)・・送水ライン
、(6)・・酸貯槽、(7)・・酸注入ポンプ、(8)
・・ブロア、(9)・・湿式吸着塔、00・・アルカリ
水槽、Oa・・アルカリ水、Oa・・循環ポンプ、σe
・・循環ライン、04)・・充填層、0Q・・アルカリ
貯槽、01・・アルカリ注入ポンプ、σカ・・ブロー、
α枠・・デミスタ−1OI・・管路、翰・・充填層、Q
υ・・脱炭酸水、(イ)・・脱炭酸水ポンプ、@・・カ
ートリッジフィルタ、(財)・・逆浸透装置、(ハ)・
・加圧ポンプ、(ト)φ・透過水、■・・イオン交換塔
、@・・処理水、(イ)・・処理水槽、(ト)・・ブロ
ー水。
The attached drawings are diagrams showing an example of the equipment and continuous flow of ultrapure water equipment that implements the method of the present invention.0 (1) Raw water, (2) Raw water tank, (3) Raw water Pump% (4) Raw water decarboxylation tower, (5) Water supply line, (6) Acid storage tank, (7) Acid injection pump, (8)
・・Blower, (9)・・Wet adsorption tower, 00・・Alkaline water tank, Oa・・Alkaline water, Oa・・Circulation pump, σe
・・Circulation line, 04)・・Packed bed, 0Q・・Alkali storage tank, 01・・Alkali injection pump, σ・・・Blow,
α frame...Demister-1OI...Pipeline, Window...Filled bed, Q
υ...Decarbonated water, (A)...Decarbonated water pump, @...Cartridge filter, (Foundation)...Reverse osmosis device, (C)...
・Pressure pump, (g) φ・permeated water, ■... ion exchange tower, @... treated water, (i)... treated water tank, (g)... blow water.

Claims (2)

【特許請求の範囲】[Claims] (1)原水を逆浸透処理ののちイオン交換処理して超純
水を製造する過程において、充填塔による脱炭酸処理を
逆浸透処理の前または後において実施し、アルカリ剤を
用いる湿式吸着塔を通過させて炭酸ガス濃度を低下させ
た空気を前記充填塔に吹き込み当該過程の水との接触に
より前記脱炭酸処理を行うようにしたことを特徴とする
超純水装置におけるアニオン負荷低減方法。
(1) In the process of producing ultrapure water by subjecting raw water to reverse osmosis treatment and then ion exchange treatment, decarboxylation treatment using a packed tower is performed before or after reverse osmosis treatment, and a wet adsorption tower using an alkaline agent is used. A method for reducing an anion load in an ultrapure water apparatus, characterized in that the decarbonation treatment is performed by blowing air that has been passed through to reduce the carbon dioxide concentration into the packed tower and comes into contact with the water in the process.
(2)逆浸透処理より生ずる弱酸性濃縮側ブロー水と湿
式吸着塔より出るアルカリ性ブロー水とを混合し中性P
H範囲の排水とする特許請求の範囲第1項記載の超純水
装置におけるアニオン負荷低減方法。
(2) Mix the weakly acidic concentrated side blow water generated from reverse osmosis treatment with the alkaline blow water coming out of the wet adsorption tower to create a neutral P
A method for reducing anion load in an ultrapure water apparatus according to claim 1, wherein the wastewater is in the H range.
JP13848786A 1986-06-13 1986-06-13 Method for reducing anion load in ultrapure water equipment Expired - Fee Related JPH0694028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13848786A JPH0694028B2 (en) 1986-06-13 1986-06-13 Method for reducing anion load in ultrapure water equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13848786A JPH0694028B2 (en) 1986-06-13 1986-06-13 Method for reducing anion load in ultrapure water equipment

Publications (2)

Publication Number Publication Date
JPS62294483A true JPS62294483A (en) 1987-12-21
JPH0694028B2 JPH0694028B2 (en) 1994-11-24

Family

ID=15223243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13848786A Expired - Fee Related JPH0694028B2 (en) 1986-06-13 1986-06-13 Method for reducing anion load in ultrapure water equipment

Country Status (1)

Country Link
JP (1) JPH0694028B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576760B2 (en) * 2001-06-25 2010-11-10 栗田工業株式会社 Circulating cooling water treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576760B2 (en) * 2001-06-25 2010-11-10 栗田工業株式会社 Circulating cooling water treatment method

Also Published As

Publication number Publication date
JPH0694028B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JPH0647105B2 (en) Purification method and device for pure water or ultrapure water
WO2000064568A1 (en) Apparatus for producing water containing dissolved ozone
JP5441714B2 (en) Pure water production method and apparatus, ozone water production method and apparatus, and cleaning method and apparatus
JPS62294484A (en) Reverse osmosis treatment of water containing silica at high concentration
JP3903746B2 (en) Circulating cooling water treatment method
JPS62204892A (en) Desalting method
JP2733573B2 (en) Ultrapure water production method and apparatus
JPH10137542A (en) Treatment of flue gas desulfurization waste water
JPH0252088A (en) Apparatus for making desalted water
JPH01231988A (en) Two-step treatment with reverse osmosis membrane
JPS62294483A (en) Reduction of anion load in ultrapure water system
JPH09253638A (en) Ultrapure water making apparatus
JPH09122690A (en) Method for decomposing organic nitrogen and water treatment apparatus
JPH10202296A (en) Ultrapure water producer
JPH07962A (en) Production of pure water
JPH034394Y2 (en)
JPH0790215B2 (en) Method for removing dissolved carbon dioxide gas in pure water production equipment
JP3238745B2 (en) Method of treating ammonium fluoride-containing water
JP3270133B2 (en) Purification method
JP2001205297A (en) Apparatus for producing pure water
JP3534155B2 (en) Pure water production equipment
JP2000301146A (en) Deionizer
JP2002001069A (en) Method for producing pure water
JP3543435B2 (en) Ultrapure water production method
JP2000271569A (en) Production of pure water

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees