JPS6229178A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6229178A
JPS6229178A JP16685685A JP16685685A JPS6229178A JP S6229178 A JPS6229178 A JP S6229178A JP 16685685 A JP16685685 A JP 16685685A JP 16685685 A JP16685685 A JP 16685685A JP S6229178 A JPS6229178 A JP S6229178A
Authority
JP
Japan
Prior art keywords
oxide film
region
implantation
epitaxial layer
type epitaxial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16685685A
Other languages
Japanese (ja)
Inventor
Junichi Okano
岡野 順市
Noboru Yamamoto
昇 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16685685A priority Critical patent/JPS6229178A/en
Publication of JPS6229178A publication Critical patent/JPS6229178A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the reverse current characteristics by removing the oxide film used for the first implantation diffusion when forming the N<+> region of a hyper abrupt junction variable capacitance diode, and thereafter newly forming an oxide film for the second implantation diffusion, thereby eliminating the damage of the vicinity of the N<+> region's surface due to the implantations. CONSTITUTION:In the opening of the field oxide film 103 on an N-type epitaxial layer 102 formed on an N-type silicon substrate 101, a first thin oxide film 11 is formed by thermal oxidation. Then, the first implantation diffusion is applied through the oxide film 11 to form a first N<+> region 12 in part of the N-type epitaxial layer 102. Next, the oxide film is removed by, e.g., hydrofluoric acid. Then, a thin oxide film 21 for the second implantation is formed by thermal oxidation. Subsequently, the second implantation diffusion is applied through the oxide film 21 to form a second N<+> layer 22 in part of the N-type epitaxial layer 102. Then, etching is applied via photoetching to the reserved area for forming a P<+> region to make an opening therein, a BSG film 106 is coated, and boron is diffused to form a P<+> region 107, completing a diode chip.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は半導体装置の製造方法に関するもので、特に
超階段型接合可変容量ダイオード(以下バリキャップダ
イオードと称する)に使用されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and is particularly used for a hyperstep junction variable capacitance diode (hereinafter referred to as a varicap diode).

〔発明の技術的背景〕[Technical background of the invention]

テレビチューナ等に用いられるバリキャップダイオード
は容量−電圧曲線(C−Vカーブ)が直線的でなおかつ
高レシオ特性が望まれ、N+領領域形成はインプラを用
いた二重拡散が適用されている。
Varicap diodes used in television tuners and the like are desired to have a linear capacitance-voltage curve (CV curve) and high ratio characteristics, and double diffusion using implantation is applied to form the N+ region.

従来のバリキャップダイオードにおけるN+領領域形成
を第2図によって説明する。まず、高濃度N型シリコン
基板ioiの一方の主面にN5=4X10”程度のN型
エピタキシャル層102を形成し、これに熱酸化を施し
てフィールド酸化膜103を形成したのち、この酸化膜
に写真蝕刻法によりN+領域形成予定域に開孔を設け、
ここに熱酸化法により薄い酸化膜(膜厚約1000人)
104を形成する。ついで。
The formation of an N+ region in a conventional varicap diode will be explained with reference to FIG. First, an N-type epitaxial layer 102 of approximately N5=4×10" is formed on one main surface of a highly doped N-type silicon substrate ioi, and this is subjected to thermal oxidation to form a field oxide film 103. An opening is made in the area where the N+ region is to be formed by photolithography,
A thin oxide film (approximately 1,000 layers thick) is formed here using a thermal oxidation method.
104 is formed. Next.

上記酸化膜104を介して第1イオンインプラ(以下イ
ンプラと称する)を打ったのち加熱して上記N型エピタ
キシャル層102の一部に第1N+領域105を拡散さ
せる(図a)。
A first ion implant (hereinafter referred to as implant) is performed through the oxide film 104 and then heated to diffuse a first N+ region 105 into a part of the N type epitaxial layer 102 (FIG. a).

次に、第2インプラ、拡散を施して上記第1N+領域1
05の一部に第2N+領域115を形成する(図b)。
Next, a second implantation and diffusion are performed to form the first N+ region 1.
A second N+ region 115 is formed in a part of 05 (FIG. b).

次に、写真蝕刻法によりP+領域形成予定域の酸化膜に
エツチングを施して開孔し、BSG膜(Boron 5
ilicate Glass) 106を被着しボロン
を拡散してピ領域107を形成してダイオードチップが
完成する。
Next, the oxide film in the area where the P+ region is to be formed is etched by photolithography to open a hole, and a BSG film (Boron 5
A diode chip is completed by depositing glass 106 and diffusing boron to form a pin region 107.

〔背景技術の問題点〕[Problems with background technology]

上記従来の方法によると、同一の薄い酸化膜を介して1
00KeV以上の加速電圧で2度もインプラが行なわれ
るので、N+領領域表面近傍にはインプラによるダメー
ジが残り、重要な電気特性の−っであるIR(逆電流)
特性の低下をみるという重大な問題があった。
According to the above conventional method, one
Since implantation is performed twice at an accelerating voltage of 00 KeV or more, damage from the implantation remains near the surface of the N+ region, resulting in IR (reverse current), which is an important characteristic of electrical properties.
There was a serious problem in that the characteristics deteriorated.

〔発明の目的〕[Purpose of the invention]

この発明は叙上の背景技術の問題点に鑑み、超階段型接
合可変容量タイオードのN+領域形成に関する製造方法
を提供する。
In view of the above-mentioned problems in the background art, the present invention provides a manufacturing method for forming an N+ region of a super-step junction variable capacitance diode.

〔発明の概要〕[Summary of the invention]

この発明にかかる半導体装置の製造方法は、超階段型接
合可変容量ダイオードのN+領域形成において、第1の
インプラ拡散に用いた酸化膜を除去したのち、新たに第
2のインプラ拡散用の酸化膜を形成することを特徴とす
る。
In the method for manufacturing a semiconductor device according to the present invention, in forming the N+ region of a super-step junction variable capacitance diode, after removing the oxide film used for the first implant diffusion, a new oxide film for the second implant diffusion is formed. It is characterized by the formation of

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の実施例につき第1図を参照して説明す
る。なお、説明において従来と変わらない部分について
は図面に従来と同じ符号を付けて示し説明を省略する。
Embodiments of the present invention will be described below with reference to FIG. In addition, in the description, parts that are the same as in the prior art are indicated by the same reference numerals as in the prior art in the drawings, and the description thereof will be omitted.

まず、N型シリコン基板101に形成されたN型エピタ
キシャル層102上のフィールド酸化膜103の開孔に
、熱酸化により第1の薄い酸化膜(膜厚約1000人)
11を形成する。ついで上記第1の薄い酸化膜11を介
して第1インプラ拡散を施してN型エピタキシャル層1
02の一部に第1N”領域12を形成する(図a)。
First, a first thin oxide film (approximately 1,000 layers thick) is formed by thermal oxidation into the opening of the field oxide film 103 on the N-type epitaxial layer 102 formed on the N-type silicon substrate 101.
11 is formed. Next, a first implant diffusion is performed through the first thin oxide film 11 to form an N-type epitaxial layer 1.
A first N'' region 12 is formed in a part of 02 (Figure a).

次に、上記第1の薄い酸化膜11を例えば弗酸で除去す
る(図b)。
Next, the first thin oxide film 11 is removed using, for example, hydrofluoric acid (FIG. b).

次に、熱酸化法により上記酸化膜11を除去したあとに
第2インプラ用の薄い酸化膜(膜厚約1000人)21
を形成する。ついで上記薄い酸化膜21を介して第2イ
ンプラ拡散を施してN型エピタキシャル層102の一部
に第2N+領域22を形成する(図C)。
Next, after removing the oxide film 11 by a thermal oxidation method, a thin oxide film (film thickness of approximately 1000 mm) 21 for the second implant is removed.
form. Next, a second implant diffusion is performed through the thin oxide film 21 to form a second N+ region 22 in a part of the N type epitaxial layer 102 (FIG. C).

次に写真蝕刻法によりP+領域形成予定域の酸化膜にエ
ツチングを施して開孔し、BSG膜106を被着しボロ
ンを拡散してP”領域107を形成してダイオードチッ
プが完成する(図d)。
Next, the oxide film in the area where the P+ region is to be formed is etched by photolithography to open a hole, a BSG film 106 is deposited, and boron is diffused to form the P'' region 107, completing the diode chip (Fig. d).

〔発明の効果〕〔Effect of the invention〕

この発明によれば、インプラによって第1の薄い酸化膜
に蓄積されたダメージが完全に弥去される。また、これ
に近いシリコン表面に生じた結晶欠陥等を有するシリコ
ンの部分は第2の薄い酸化膜形成により酸化されて第2
の薄い酸化膜に変わりダメージが消滅する。その結果I
Rレベルが顕著に改善された。これを第3図に示すIR
の分布でみると、この発明(A)は従来(B)よりも小
さく。
According to this invention, damage accumulated on the first thin oxide film by implantation is completely removed. In addition, the silicon portions that have crystal defects, etc. that occur on the silicon surface near this area are oxidized by the formation of a second thin oxide film.
The damage is replaced by a thin oxide film and disappears. As a result I
The R level was significantly improved. This is shown in Figure 3.
In terms of distribution, this invention (A) is smaller than the conventional (B).

平均値(x)がこの発明のx(A)は2nA、従来のx
 (B)は7nAで充分小さいことからも確認でき、こ
のような品質の向上と、製造歩留(良品率)も10〜2
0%向上をみた。
The average value (x) of this invention is 2nA, and the conventional x
It can be confirmed that (B) is sufficiently small at 7nA, and this quality improvement and manufacturing yield (good product rate) are also 10 to 2.
I saw an improvement of 0%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aないしdはこの発明の一実施例のダイオードチ
ップの製造方法の要部を工程順に示すいずれも断面図、
第2図aないしCは従来の製造方法の要部を工程順に示
すいずれも断面図、第3図はこの発明の詳細な説明する
ためのIR分布を示す線図である。 11      第1の薄い酸化膜 21      第2の薄い酸化膜 12      第1N+領域 22      第2N+領域 101N型シリコン基板 102N型エピタキシヤル層
FIGS. 1a to 1d are cross-sectional views showing essential parts of a method for manufacturing a diode chip according to an embodiment of the present invention in the order of steps;
2A to 2C are cross-sectional views showing the main parts of the conventional manufacturing method in the order of steps, and FIG. 3 is a diagram showing the IR distribution for explaining the present invention in detail. 11 First thin oxide film 21 Second thin oxide film 12 First N+ region 22 Second N+ region 101 N-type silicon substrate 102 N-type epitaxial layer

Claims (1)

【特許請求の範囲】[Claims] 超階段型接合可変容量ダイオードのN^+領域形成にお
いて、第1のイオンインプラ拡散に用いた酸化膜を除去
したのち、新たに第2のイオンインプラ拡散用の酸化膜
を形成することを特徴とする半導体装置の製造方法。
In forming the N^+ region of the super-step junction variable capacitance diode, after removing the oxide film used for the first ion implantation diffusion, a new oxide film for the second ion implantation diffusion is formed. A method for manufacturing a semiconductor device.
JP16685685A 1985-07-30 1985-07-30 Manufacture of semiconductor device Pending JPS6229178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16685685A JPS6229178A (en) 1985-07-30 1985-07-30 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16685685A JPS6229178A (en) 1985-07-30 1985-07-30 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6229178A true JPS6229178A (en) 1987-02-07

Family

ID=15838912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16685685A Pending JPS6229178A (en) 1985-07-30 1985-07-30 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6229178A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592975A (en) * 2012-03-19 2012-07-18 上海先进半导体制造股份有限公司 Method for reducing P/N node capacitance and electricity leakage of P type coating source process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102592975A (en) * 2012-03-19 2012-07-18 上海先进半导体制造股份有限公司 Method for reducing P/N node capacitance and electricity leakage of P type coating source process

Similar Documents

Publication Publication Date Title
JPS6229178A (en) Manufacture of semiconductor device
JPS5923476B2 (en) Manufacturing method of semiconductor device
JPS58200554A (en) Manufacture of semiconductor device
JPH06302826A (en) Insulated gate field-effect transistor and preparation thereof
JP2546650B2 (en) Method of manufacturing bipolar transistor
JPS597228B2 (en) Zetsuen Gate Handout Taisouchino Seizouhouhou
JP2633411B2 (en) Method for manufacturing semiconductor device
JPH04127536A (en) Manufacture of semiconductor device
JPH0247853B2 (en)
JPS61251165A (en) Manufacture of bi-mis integrated circuit
JPH0621077A (en) Semiconductor device and manufacture thereof
JPH0744183B2 (en) Method for manufacturing semiconductor device
JPS60226175A (en) Manufacture of semiconductor device
JPH10189752A (en) Manufacturing method of semiconductor device
JPS60116159A (en) Manufacture of semiconductor device
JPH0132669B2 (en)
JPS59165456A (en) Manufacture of semiconductor device
JPH05326554A (en) Manufacture of field effect transistor
JPS6293929A (en) Manufacture of semiconductor device
JPH04192335A (en) Manufacture of semiconductor device
JPS60117775A (en) Manufacture of semiconductor device
JPH04186724A (en) Manufacture of semiconductor device
JPS6292452A (en) Manufacture of semiconductor device
JPH0474435A (en) Semiconductor device
JPS59148359A (en) Manufacture of semiconductor device